
INTERSPECIFIC COMPETITION AND
COMPETITIVE EXCLUSION9
Objectives

• Program the Lotka-Volterra model of interspecific competi-
tion in a spreadsheet.

• Understand the competitive exclusion principle and how it
relates to the model.

• Use the model to explore competitive exclusion and coexis-
tence.

• Determine under what conditions two competing species
can coexist, in terms of their competition coefficients, carry-
ing capacities, and intrinsic rates of increase.

Suggested Preliminary Exercise: Logistic Population Models

INTRODUCTION
Our previous models of population dynamics considered only one population.
As informative as those models were, it should be obvious that real populations
do not exist in isolation, but share habitats with populations of other species. In
many cases, coexisting species will interact by interspecific competition, preda-
tion, parasitism, mutualism, or other ecological interactions. More realistic mod-
els must take such interactions into account. In the 1920s, Vito Volterra and Alfred
Lotka (1932) independently developed models of interspecific competition (com-
petition between two species), and investigated the conditions that would per-
mit competing species to coexist indefinitely. In this exercise, you will build a dis-
crete-time version of their continuous-time models.

An important ecological generalization, the competitive exclusion principle,
has grown out of the Lotka-Volterra model and from other sources. This princi-
ple states that two species cannot coexist unless their niches are sufficiently different that
each limits its own population growth more than it limits that of the other. In other words,
if there is too much niche overlap, one species will competitively exclude the other.
In reality, whether two species coexist depends not only on their competitive inter-
actions with each other, but also on their interactions with the abiotic environment
and with other species not included in this simple model. Nevertheless, as with
other models in this book, the competitive exclusion principle has proven fruit-
ful in stimulating research and understanding ecological interactions in the natu-
ral world.

 



Model Development
To review, the geometric model of population growth, Nt+1 = Nt + RNt, includes no effect
of competition. The population increases by RNt in every time interval, without any
limitations such as might be imposed by finite resources.

The logistic model of population growth includes intraspecific competition (com-
petition between individuals of the same species). To keep things (relatively) simple, we
will develop our model of interspecific competition beginning with this form of the logis-
tic model:

Equation 1

where K is the carrying capacity, or largest sustainable population. The value of K is set
by available resources and by each individual’s resource demand. This version of the
logistic model has intraspecific competition built into it in the term (K – Nt)/K. This term
reduces the population growth rate in response to the addition of each new member
of the population, representing the reduction in per capita birth rate, and increase in
per capita death rate, caused by competition for limited resources. You can review Exer-
cise 8, “Logistic Population Models,” for more information about this model.

The Lotka-Volterra model of interspecific competition builds on the logistic model of
a single population. It begins with a separate logistic model of the population of each
of the two competing species.

Population 1: 

Population 2:

Note the use of subscripts 1 and 2 to denote which species’ population is being mod-
eled. Each population has its own rate of increase R and carrying capacity K, and these
may differ between the two species.

Next we build interspecific competition into each of these equations. In the model of
population 1 above, we assume that each new member of population 1 reduces resources
available to each member of population 1, and thus reduces population growth rate. In
the two-species model, new members of population 2 will also reduce resources available
to members of population 1—this is, after all, the meaning of interspecific competiton.

The simplest way to model this would be to modify the (K1 – N1,t)/K term into 
(K1 – N1,t – N2,t)/K1. However, this assumes that each additional member of population
2 will affect population 1 exactly as much as an additional member of population 1. That
is not necessarily the case, so we multiply N2,t in this term by a competition coefficient,
α12 to express how much effect each additional member of population 2 has on popu-
lation 1, relative to the effect of a new member of population 1. We modify the model
for population 2 in a parallel way. The resulting Lotka-Volterra model of two-species
competition is:

Population 1: Equation 2

Population 2: Equation 3

Note the subscripts on the competition coefficients: α 12 expresses the effect of one mem-
ber of population 2 on the growth rate of population 1; α 21 expresses the effect of one
member of population 1 on the growth rate of population 2.
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In broad terms, the question Lotka and Volterra asked was, What will happen to the
population dynamics of these two populations, given various values of the model
parameters? Are there parameter values that will produce a winner and a loser,—one
population that persists while the other goes extinct? This would be competitive exclu-
sion. Will other values result in coexistence, in which both competing populations per-
sist indefinitely? You will look for answers to these questions both analytically (alge-
braically) and graphically (using the spreadsheet).

Equilibrium Solutions
One approach to answering the questions posed above is to look for equilibrium solu-
tions to Equations 2 and 3. If population 1 is at equilibrium, then N1,t+1 = N1,t and we
can substitute N1,t for N1,t+1:

Subtracting N1, t from both sides of the equation gives us

In words, this equation says the population stops growing when it is at equilibrium,
which should come as no surprise. This equation is satisfied if N1,t = 0 or if R1 = 0, but
these solutions are trivial.

The equation is also satisfied by the more interesting case of 

K1 – N1,t – α12N2,t = 0

If we add N1,t to both sides and rearrange the terms, we get

N1,t = K1 – α12N2,t Equation 4

Notice that this equation is in the general form of a linear equation, y = a + bx, and is
therefore a straight line. We call this line a zero net growth isocline, or ZNGI, because
anywhere along it, population 1 has zero net growth. In other words, this is an equi-
librium solution for population 1.

Just as x and y in the general linear equation y = a + bx can be used as coordinates
for graphing, so we can use N1,t and N2,t as coordinates to graph Equation 4. We can
graph this isocline by finding any two points along it and connecting them with a straight
line. Two convenient points are where N2,t = 0 and where N1,t = 0.

If N2,t = 0, then we solve for N1,t. Equation 4 becomes

N1,t = K1 – α120

which reduces to

N1,t = K1

In words, if there are no members of population 2 in the habitat, population 1 will sta-
bilize at its own carrying capacity, K1. This seems a reasonable solution.

If we set N1,t = 0, and then solve for N2,t. Equation 4 becomes

0 = K1 – α12N2,t

and adding a12N2,t to both sides gives us

α12N2,t = K1

Dividing both sides by α12 gives us

N2,t = K1/ α12
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In words, if there are K1/α12 members of population 2 in the habitat, there will be no
resources left over for population 1, and its numbers will go to zero.

We can find a ZNGI and two points on it for population 2 in the same manner.

N2,t = K2 – α21N1,t

If N1,t = 0, then N2,t = K2

If N2,t = 0, then N1,t = K2/α21

We can draw these isoclines on a linear graph of the two populations as shown in Fig-
ure 1. If we plot N1 on the horizontal axis and N2 on the vertical, then the solution points
found become the intercepts of the isoclines on the axes.

We can graph the populations of the two species at any time by a point on a graph.
If the point falls below and/or to the left of a species’ isocline, that population will
continue to increase. If the point falls above and/or to the right of a species’ isocline,
that population will decrease. In the case of the point shown in Figure 1, population 1
will increase and population 2 will decrease. As time passes, the point will move down-
ward (population 2 decreases) and to the right (population 1 increases), and the point
describing the two populations will trace some trajectory across the graph.

Notice that time does not appear on either axis of this graph. Figure 1 is called a phase
diagram, and the space bounded by its axes is called phase space. You will plot the
trajectory of two changing populations through the phase space and from that deter-
mine whether one species excludes the other, or if they coexist. The isoclines need not
be arranged as shown in Figure 1; their arrangement will depend on the values of K1,
K2, α12, and α21.

PROCEDURES

The questions Lotka and Volterra asked, and which you will answer in this exercise,
are: What values of these parameters will cause population 1 to exclude population 2,
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Figure 1 Zero net growth isoclines (ZNGIs) generated by the Lotka-
Volterra model of two-species competition. The point (N1,t, N2,t) represents
the two populations at time t.



and vice versa? What parameter values will allow the two populations to coexist indef-
initely? What do these outcomes, and their associated parameter values, mean in eco-
logical terms?

As always, save your work frequently to disk.

ANNOTATION

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in.
You must leave cells B10 and C10 empty for your graphs to come out properly.
The values in cells B5 through C8 are the coordinates of the endpoints of the ZNGIs for
the two species. How we got these values will be explained in subsequent steps.

See the exercise “Spreadsheet Hints and Tips” for details.

These are in cells F4 through F9. Do not enter anything in cells B5 through C8 yet.

These are ZNGI endpoints where each population is itself at zero. Cells B5 through
C8 hold coordinates for the endpoints of the two ZNGIs. You must lay out these end-
point cells as shown for your graphs to work properly.

In cell B7, enter the formula =F5.
In cell C5, enter the formula =F8.
These are ZNGI endpoints where the competing population is at zero. When you
change carrying capacities later in the exercise, your changes will automatically be car-
ried over to the ZNGI endpoints.

In cell B6, enter the formula =F8/F9. This corresponds to N1,t = K2/α21.
In cell C8, enter the formula =F5/F6. This corresponds to N2,t = K1/α12.

INSTRUCTIONS

A. Set up the spreadsheet.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 2.

2. Set up a linear time
series from 0 to 50 in cells
A11 through A61.

3. Enter the values shown
for the parameters.

4. Enter zeros in cells B5,
C6, C7, and B8.

5. In cells B7 and C5, enter
formulae to echo the car-
rying capacities of popula-
tions 1 and 2, respectively.

6. Enter formulae to calcu-
late the other ZNGI end-
points.
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In cell B11, enter the value 100. In cell C11, enter the value 50. You will change these
values later.

In cell B12, enter the formula =B11+$F$4*B11*($F$5-B11-$F$6*C11)/$F$5. This corre-
sponds to Equation 2:

In cell C12, enter the formula =C11+$F$7*C11*($F$8-C11-$F$9*B11)/$F$8. This corre-
sponds to Equation 3:

Be sure to use absolute and relative addresses as shown.

See “Spreadsheet Hints and Tips” for details on copying and pasting.

Use an XY graph (scatterplot). Include only cells A11 through C51 in the block of data
to graph. Leave out the ZNGI endpoints (cells B5 through C8).
Use the second Chart Wizard dialog box to name your series so that they will be labeled
properly in the legend.

In the dialog box (Figure 3), click the Series tab. Select Series1 and type “Pop 1” in the
box to the right. Then select Series 2 and type “Pop 2” in the box. Your finished graph
should resemble Figure 4.
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7. Enter initial population
sizes (N1,0 and N2,0).

8. Enter formulae to calcu-
late populations sizes at
times t = 0 through t = 50.

9. Copy and paste the for-
mulae in cells B12 and C12
down their columns
through row 51.

B. Create graphs.

1. Graph N1 and N2 (verti-
cal axis) against time (hor-
izontal axis).
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Include cells B5 through C61 in the block to graph—in other words, this time include
the ZNGI endpoints, but leave out “Time” (column A). Use an XY graph  (scatterplot).
Your graph should resemble Figure 5.

Unfortunately, the program does not label the ZNGI endpoints for you. You will have
to identify each endpoint by its coordinates in the spreadsheet. In Figure 5, the top-
left endpoint is (0, K1/α12); the lower-left endpoint is (0, K2); the bottom-right endpoint
is (K2/α21, 0); and the bottom-left endpoint is (K1, 0).

2. Graph N2 (vertical axis)
against N1 (horizontal axis).

Interspecific Competition and Competitive Exclusion 131

L-V Competition Model

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

Time (t )

Pop1
Pop2

P
o

p
u

la
ti

o
n

si
ze

(N
)

Figure 4

L-V Competition Model
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QUESTIONS

1. What parameter values will cause species 1 to exclude species 2 from the habi-
tat? What do these values mean in ecological terms?

2. What parameter values will reverse this outcome? What do these values mean
in ecological terms?

3. What parameter values will allow the two species to coexist indefinitely and
stably? What do these values mean in ecological terms?

4. Are there parameter values under which the outcome depends on initial popu-
lation sizes or rates of population growth? What do these values mean in eco-
logical terms?
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