PREDATOR-PREY DYNAMICS

Objectives

® Set up a spreadsheet model of interacting predator and prey
populations.

* Modify the model to include an explicit carrying capacity
for the prey population, independent of the effect of preda-
tion.

e Explore the effects of different prey reproductive rates on
the dynamics of both models.

e Explore the effects of different predator attack rates and
reproductive efficiencies on the dynamics of both models.

e Evaluate the stability of these models.

e Evaluate these models in comparison to real predator and
prey populations.

Suggested Preliminary Exercises: Geometric and Exponential
Population Models; Logistic Population Models

INTRODUCTION

In this exercise, you will set up a spreadsheet model of interacting predator and
prey populations. You will begin with the classic Lotka-Volterra predator-prey
model (Rosenzweig and MacArthur 1963), which treats each population as if it
were growing exponentially. After exploring the predictions of this model, you
will modify it to include refuges for the prey and see how this changes the behav-
ior of the model.

Next, you will modify the model of the prey population to include an explicit
carrying capacity. This reflects the idea that the prey population may be limited
by available resources in addition to any limitation by the effects of predation.

Finally, you may modify the predator model to include an explicit carrying
capacity. This would represent some limitation on the predator population other
than the availability of prey. Such limitation might arise from other required
resources or from direct interference among predators.

Model Development

This exercise departs somewhat from the format of others in this book, because
we want to follow the progression of increasingly complex and realistic models
outlined above. You will build the simplest model first, make some graphs, and
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answer some questions about the model and its ecological meaning. Then you will
return to the spreadsheet to modify the model, reexamine the same questions, and
repeat this process a third time.

In the models that follow, we will use the symbols explained in Table 1.

TABLE 1 Symbols used in predator-prey models

Symbol Name Description

C, Predator population Think “Consumer”

V, Prey population Think “Victim”

R Prey population growth Per capita growth rate of prey
population

K, Predator carrying capacity Maximum sustainable predator
population

K, Prey carrying capacity Maximum sustainable prey
population

q Predator starvation rate Per capita rate of mortality of

predators due to starvation

a Attack rate The ability of a predator to find
and consume prey

f Conversion efficiency The efficiency with which a
predator converts consumed
prey into predator offspring

First Model: A Classical Lotka-Volterra Predator-Prey Model

To begin, we will build a discrete-time version of the continuous-time model devel-
oped by Alfred Lotka and Vito Volterra. In this model, neither prey population nor
predator population has an explicit carrying capacity. Be aware, however, that either
or both may have an implicit carrying capacity imposed by the interaction between the
two populations.

To model the prey population, we begin with a basic geometric model for the prey
population

Vi =V, + RV,

and subtract the number of prey individuals killed by predators in the interval from ¢
to t + 1. This number killed will depend on the number of predators: the more preda-
tors, the more prey they will kill. It will also depend on the number of prey available:
the more prey, the more successful the predators. Finally, it will depend on the attack
rate: the ability of a predator to find and consume prey. The number of prey killed in
one time interval will be the product of these, or using the symbols given above, aC,V,.
The equation for the prey population thus becomes

Vi =V, +RV,—aC,V, Equation 1

In words, the prey population grows according to its per capita growth rate minus
losses to predators. Losses are determined by attack rate, predator population, and prey
population.

To model the predator population, we also begin with an exponential model, in
concept. However, there is a wrinkle in this model, because we cannot assume a con-
stant per capita rate of population growth. There is no simple R for the predator popu-
lation because its growth rate will depend on how many prey are caught. As in the prey
model, the number of prey caught will be aC,V,. The growth of the predator population
will depend on this number, and on the efficiency with which predators convert con-
sumed prey into predator offspring. We will represent this conversion efficiency with
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the parameter f, so the per capita population growth of predators will be afV,C,. We
should reduce this predator population growth by some quantity to represent the star-
vation rate of predators who fail to consume prey. This will be the product of the per
capita starvation rate times the predator population: 4C,. Taking all this into account, we
can write an equation for the predator population:

Cip1 = C +afViC—qC, Equation 2

In words, the predator population grows according to the attack rate, conversion effi-
ciency, and prey population, minus losses to starvation. Note that the productafV, acts
as the predator’s R.
Having created these models, we can ask several questions about the interaction they
portray, such as
* Under what conditions (i.e., parameter values) will the predator population
drive the prey to extinction?
¢ Under what conditions will the predator population die off, leaving the prey
population to expand unhindered?
¢ Under what conditions will predator and prey populations both persist indefi-
nitely? What will be their population dynamics while they coexist? In other
words, will one or both populations stabilize, or will they continue to change
over time?

Equilibrium Solutions

As we did in the Interspecific Competition exercise, we will begin to answer these ques-
tions by seeking equilibrium solutions to Equations 1 and 2. For the prey population,
we want to find values of predator and prey population sizes at which the prey pop-
ulation remains stable. In other words, we want to solve for AV, = 0.

Beginning with Equation 1
Vi =V, +RV,-aC,V,

we subtract V, from both sides, and get
Vin—V,=RV,-aC,V,

Because V,,, — V, = AV, we can substitute into the equation and get
AV,=RV,-aC,V,

We are looking for a solution when AV, = 0, so we substitute again:

0=RV,-aC,V,
Adding aC,V, to both sides gives us
aC,V, =RV,
Dividing both sides by V,, we get
aC, =R

Dividing both sides by a gives us our solution:
C,=R/a Equation 3

In words, the prey population reaches equilibrium when the predator population equals
the prey’s per capita growth rate divided by the predator’s attack rate. Note that this
is a constant. Strangely, the equilibrium size of the prey population is not determined
by this solution, which says, in effect, that the prey population can be stable at any size
as long as the predator population is at the specified size.

For the predator population, we follow the same strategy, and solve for AC = 0. Begin-
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ning with Equation 2,
Cip =C, +afV,C,—qC,
we subtract C, from both sides, and get
Cr1 — G =afV,C, —qC,
Because C,,; — C, = AC,, we can substitute into the equation and get
AC, = afV,C, - qC,
We are looking for a solution when AC, = 0, so we substitute again:
0=afv,C,-qC,
Adding gC, to both sides gives us
qC, = afV,C,
Dividing both sides by C,, we get
q=afV,
Dividing both sides by af gives us our solution:
q/af =V,

Equation 4

In words, the predator population reaches equilibrium when the prey population equals
the predator’s starvation rate over the product of attack rate times conversion efficiency.
Note that this is also a constant, and like the solution for the prey population, it does
not specify the equilibrium size of the predator population, only the size of the prey

population at which the predators are at equilibrium.

Aswe did in the model of interspecific competition, we can plot the population sizes
of the two interacting populations on the two axes of a graph (Figure 1). The equilib-
rium solutions (Equations 3 and 4) then become straight-line zero net growth isoclines
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Figure 1 Graph of prey and predator zero net growth isoclines (ZNGlIs), according to the
Lotka-Volterra model of predator-prey dynamics. The horizontal line is the ZNGI for the
prey population, and horizontal arrows show areas of population increase or decrease for
the prey population. The vertical line is the ZNGI for the predator population, and vertical

arrows show areas of increase or decrease for the predator population.



INSTRUCTIONS

Part 1. Discrete-Time
Version of the Lotka-
Volterra Model

A. Set up the spreadsheet.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 2.

2. Set up a linear series
from 0 to 100 in column A
(cells A14-A114).
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(ZNGlIs), as they did in the interspecific competition model. On this graph, the ZNGI
for the prey population is a horizontal line at C, = R/a (the solid line in Figure 1), below
which the prey population increases, and above which it decreases (solid arrows). The
ZNGI for the predator population is a vertical line at V, = g/af (dashed line), to the left
of which the predator population decreases, and to the right of which it increases (dashed
arrows). Where the two lines cross—at the point [(7/4f), (R/a)]—the two populations
are at equilibrium. As in the Interspecific Competition exercise, the two populations are
represented by a point on this phase diagram, and that point will trace out a trajectory
through phase space as the populations change in size.

As discussed in most ecology texts, the continuous-time Lotka-Volterra model pre-
dicts that the point representing the two populations will cycle endlessly around the
point where the two ZNGIs cross. The discrete-time model, however, behaves rather
differently, as you will discover.

PROCEDURES

We will use the spreadsheet to explore the behavior of the model developed so far before
we introduce the models with explicit prey and predator carrying capacities.
As always, save your work frequently to disk.

ANNOTATION

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in. Note that cells B12 through C13 must be empty.

A ] B | C D E F G H
1 |Predator-Prey Dynamics
2 |Uses an exponentially-growing prey population, with an additional term for losses to predators.
3 |Uses an exponentially-growing predator population with per capita pop growth rate determined
4 by prey capture and conversion efficiency.
5
6 Zero net growth isoclines Prey parameters Predator parameters
7 3649.232 25.000 R 0.250 Starvation rate (g) | 0.100
8 0.000 25.000 Conversion efficiency (f)| 0.008
9 0.000 0.000 Attack rate (a)| 0.010
10 1250.000 0.000
11 1250.000 41.999
12
13| Time
14 0 1000.000 20.000
15 1 1050.000 19.600
16 2 1106.700 19.286
Figure 2

Enter the value 0 in cell A14.
Enter the formula =A14+1 in cell A15. Copy this formula down to cell A114.
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3. Enter the values shown
for the parameters R, g, f,
and a.

4. Enter the initial popula-
tion sizes (V and C,).

5. Enter formulae and val-
ues into cells B7 through
C11 to define the prey and
predator ZNGIs.

6. Enter a formula to cal-
culate the size of the prey
population at time 1.

Type the values shown into cells F7, H7, H8, and H9.
Cells F8 and H10 remain empty for now.

Enter the value 1000 into cell B14.
Enter the value 20 into cell C14.
Leave cells B12 through C13 empty.

This will force the spreadsheet to plot the ZNGIs on the graph, as shown in Figure 1.

In cell B7, enter the formula =MAX(B14:B114).
In cell C7, enter the formula =$F$7/$H$9. This corresponds to R/a, the equilibrium
value of the prey population (see Equation 3).

Cells B7 and C7 are the coordinates of the right-hand end of the prey ZNGI. Of course,
this line extends infinitely to the right, but we cut it off even with the maximum actual
value of the prey population so that we can graph our results.

In cell B, enter the value 0. Copy the formula from cell C7 into cell C8.
Cells B8 and C8 are the coordinates of the point where the prey ZNGI intersects the
predator (vertical) axis.

In cells B9 and C9, enter the value 0.
Cells B9 and C9 are the coordinates of the origin of the graph. This is a trick to get us
from the prey ZNGI to the predator ZNGI without drawing extraneous lines on the

graph.

In cell B10 enter the formula =$H$7/($H$9*$H$8). This corresponds to q/af, the equi-
librium value of the predator population (see Equation 4).

In cell C10, enter the value 0.

Cells B10 and C10 are the coordinates of the point where the predator ZNGI inter-
sects the prey (horizontal) axis.

Copy the formula from cell B10 into cell B11.

In cell C11, enter the formula =MAX(C14:C114).

Cells B11 and C11 are the coordinates of the upper end of the predator ZNGI. Like the
prey ZNGI, this line is infinitely long, but we truncate it at the maximum predator pop-
ulation for convenience.

In cell B15, enter the formula =IF(B14+$F$7*B14-$H$9*C14*B14>0,
B14+$F$7*B14-$H$9*C14*B14,0).

B14+$F$7*B14-$H$9*C14*B14 corresponds to Equation 1,
Vi =V, +RV,-aC,V,

However, if you simply use Equation 1, it is likely to produce negative population sizes,
which make no sense biologically. We use the IF() function here to prevent this popu-
lation from going negative. The formula says, “Calculate the prey population accord-
ing to Equation 1, and if the result is greater than zero, use it. If the result is zero or less,
use zero.”

You can simplify the task of entering this formula if you type it in through the “>0,”
copy the part between the left parenthesis and the “>" sign, and paste it after the comma.
Then type in the second comma, followed by a zero, and close the parentheses.



7. Enter a formula to cal-
culate the size of the pred-
ator population at time 1.

8. Copy the formulae from
cells B16 and C16 down
their columns.

9. Save your work.
B. Create graphs.

1. Graph prey and preda-
tor populations against
time. Edit your graph for
readability.

Be aware that the predator
population is plotted on a
different scale (the right-
hand y-axis) than the prey
population (the left-hand
y-axis). This is necessary
because the two cover
such different ranges.

2. Graph predator popula-
tion (y-axis) against prey
population (x-axis), as in
the standard presentation
of the Lotka-Volterra
model. Edit your graph
for readability.
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In cell C15, enter the formula =IF(C14+$H$8*$H$9*B14*C14$H$7*C14>0,
C14+$H$8*$H$9*B14*C14-$H$7*C14,0).
C14+$H$8*$H$9*B14*C14-$H$7*C14 corresponds to Equation 2,

Ci + athCt -qC,

Here again, we use the IF() function to prevent the population from going negative.
You can use the same shortcut to enter this formula as in the previous step.

Select cells B15 through C15. Copy.
Select cells B16 through C114. Paste.

Select cells A14 through C114. Follow the usual procedure to make an XY graph.
In the second Chart Wizard dialog box, click on the Series tab, and use the boxes to name
Series 1 “Prey” and Series 2 “Predator.”

Lotka-Volterra Predator-Prey Model
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@ 2500 r 30
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Time (1)
Figure 3

After you've finished the graph, double-click on a data point in the line for the preda-
tor population. This line will lie almost on top of the x-axis, so it may take several
tries to select the data series rather than the axis. In the Format Data Series dialog box,
click on the Axis tab, and select Secondary Axis. This will cause the predator population
to be plotted on a separate y-axis, with a different scale from that of the prey popula-
tion. Your graph should resemble Figure 3.

See Exercise 8, “Logistic Population Models,” for details on creating a second y-axis.
Select cells B7 through C114 and make an XY graph.
In the third Chart Wizard dialog box, click the Legend tab and click in the Show Legend

checkbox, to prevent the legend from being shown (the check mark in the box should
disappear). Your graph should resemble Figure 4.
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You should see that the trajectory spirals in a counterclockwise direction.
Your graph will show the two ZNGIs, but unfortunately will not label their endpoints.

The graph will also not indicate which direction (clockwise or counterclockwise) the
population trajectory moves. You can figure this out by locating the point (V,, C,), which
is the first point on the trajectory.

QUESTIONS

1. Does a larger prey population growth rate (R) increase or decrease the stability
of the predator-prey interaction?

2. What happens if the predators starve more quickly? Less quickly?

3. What happens if the predator is more efficient at converting prey into off-
spring? Less efficient?

4. What happens if the predator is better at finding prey? Worse?

5. Is the behavior of the model sensitive to starting populations? Begin with popu-
lations near the point where the isoclines cross, and move slowly farther out.

6. What is the ultimate outcome of the predator-prey interaction, regardless of
parameter values? How does this compare to real predator and prey popula-
tions? What factors not included in the model may explain the differences
between model predictions and reality?

Modifying the Model to Include Prey Refuges

In the model so far, predators are capable of hunting down every single prey individ-
ual. In reality, it is often the case that some prey individuals can escape predation by
hiding in refuges, such as burrows, crevices in rocks or coral reefs, etc. Thus, there
will always be at least a few prey individuals surviving. These survivors, of course,
could potentially breed and replenish the prey population. Does the presence of prey
refuges alter the outcome of the model?



INSTRUCTIONS

Part 2. Predator-Prey
Model with Prey
Refuges

A. Set up the spread-
sheet.

1. Return the parameters
to their original values
(see Figure 2).

2. Modify your existing
formula for the prey pop-
ulation at time 1 to include
prey refuges.

3. Copy the modified for-
mula down its column.

4. Try other values for the
number of survivors.

B. Create graphs.
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ANNOTATION

If you wish to retain your existing model, save it under a separate file name before mak-
ing changes, or copy your spreadsheet to a new worksheet and make changes on the

copy.

Edit the formula in cell B15 by changing the zeros to tens.

The new formula should read =IF(B14+$F$7*B14-$H$9*B14*C14>10,B14+$F$7*B14-
$H$9*B14*C14,10).

This formula says to calculate the size of the prey population at time 1 based on its size
at time 0 and losses to predation. If that size is greater than 10, use it; otherwise, make
the prey population 10.

The biological interpretation is that at least 10 prey individuals survive in refuges,
regardless of the number or effectiveness of predators.

Copy the formula in cell B15 into cells B16 through B114.

Repeat steps 2 and 3, using some number other than 10.

You do not need to make any new graphs or edit your existing ones. Your changes will
be automatically reflected in your existing graphs.

QUESTIONS

7. Reinvestigate questions 1-6 on the preceding page, but based on your model
with prey refuges.

Modifying the Model to Include a Prey Carrying Capacity

The classical continuous-time Lotka-Volterra predator-prey model predicts that prey
and predator populations will cycle endlessly around their equilibrium values. Some
real predator-prey systems, such as the snowshoe hare and Canada lynx, display cycles
that resemble these, but others do not. Even in cases of cyclic population dynamics,
ecologists seriously question whether the Lotka-Volterra model, with all its simplify-
ing assumptions, accurately reflects reality. A recent model of the hare-lynx cycle (King
and Schaffer 2001) includes 17 parameters and variables.

One obvious omission from the Lotka-Volterra model is any limitation on the prey
population other than losses to predation. Surely, prey individuals require resources
such as food and water, which could potentially limit the size of their population even
in the absence of predators. Perhaps including a prey carrying capacity in the model
would reduce its tendency to cycle, or in the case of the discrete-time model, its tendency
toward increasing population fluctuations and eventual extinctions. In other words, if
there were a cap on the size of the prey population, that number might also limit the
predator population, which in turn might prevent the predators from hunting the prey
to extinction and then starving.
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We can modify our prey population equation, Equation 1, to include a carrying capac-
ity in the same way we modified our geometric population equation in Exercise 5,

“Logistic Population Models.” If we let K represent the prey carrying capacity (in the
absence of predators), we can write

Kv_Vt

v

Vi =Vt RVt( j_ aCVi Equation 5
If the predator population (C,) is zero, then losses to predation (aC,V,) will be zero, and
the prey population will stabilize at K. If predators are present, losses to predation will

reduce the prey population to some value less than K . We will leave the predator equa-
tion unchanged for now.

Equilibrium Solution. Because we have not changed the predator equation, its equilib-
rium solution remains unchanged. However, our change in the prey equation means we
must solve the new equation for its equilibrium (ZNGI). We find this by setting AV, = 0.

AV, = Vi~V =RVt[KUK‘Vf

v

j— aCVy

aC,V, =RVt(K” "ij

KU

_ KzJ—Vt

cofie
_R(1_W%

C ”( va
_R_RV;
F=a 4K,
_R__R
C a aK Vi

There’s no easy way to express this equilibrium solution in words, but we can deduce
some things about it. First, the equation is in the standard form of a straight line
(y = a + bx), with a slope of -R/(aK,). Second, if we plug in V, = 0, we find the y-intercept
(C-intercept) to be R/a, just as in the classical Lotka-Volterra model. Third, if we plug in
C, =0, we find the x-intercept (V-intercept) to be K, (see below). This makes sense, because
we would expect the prey population to go to K, if there were no predators present.

R

_R__R
0= a aKUVf
R _R
ak, Vi=4
Vi _
K, !
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Part 3. Predator-Prey
Model with Prey
Carrying Capacity

A. Set up the spread-
sheet.

1. Return the parameters
to their original values.

2. Modify your existing

spreadsheet headings to
include a prey carrying

capacity.

3. Enter formulae and val-
ues into cells B7 through
C11 to define the prey and
predator ZNGIs.

4. Modify the formula for
the prey population at
time 1 to include the prey
carrying capacity.

5. Copy the modified for-
mula down its column.
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ANNOTATION

To retain your existing model, save it under a separate file name before making changes,
or copy your spreadsheet to a new worksheet and make changes on the copy.

Edit the text in cell A2 to reflect the change to a logistically-growing prey population.
In cell E8, enter the label “Kv”.
In cell F8, enter the value 2000.

Your graphs will look very odd while you are making these changes. Ignore them for
now—the errors will disappear after you complete the changes to your spreadsheet.
In cell B7, enter the formula =$F$8.

In cell C7, enter the value 0.

Cells B7 and C7 are the coordinates of the point where the prey ZNGI crosses the
prey axis, (K,,0). Leave cells B8 through C11 unchanged.

In cell B15, enter the formula =IF(B14+$F$7*B14*($F$8-B14)/$F$8-$H$9*B14*C14>0,
B14+$F$7*B14*($F$8-B14)/$F$8-$H$9*B14*C14,0).
B14+$F$7*B14*($F$8-B14)/$F$8-$H$9*B14*C14 corresponds to the equation

KU_Vt

%

Vi =Vt R )y,

which is our logistic model of the prey population. Again, we use the IF() function to
prevent the population from going negative.

Note that we removed the refuges from the prey population by changing the >10
back to >0. We do this so we can see the effects of a prey carrying capacity without
clouding the issue with refuges.

Select cell B15. Copy. Select cells B16 through B115. Paste.
Your spreadsheet should resemble Figure 5.

A ] B [ C D E F G H
1 |Predator-Prey Dynamics
2 |Uses a logistically-growing prey population, with an additional term for losses to predators.
3 |Uses an exponentially-growing predator population with per capita pop growth rate determined
4 by prey capture and conversion efficiency.
5
6 Zero net growth isoclines Prey parameters Predator parameters
7 2000.000 0.000 R 0.250 Starvation rate (q)| 0.100
8 0.000 25.000 K, | 2000.000] Conversion efficiency (f)| 0.008
9 0.000 0.000 Attack rate (a)| 0.010
10 1250.000 0.000
11 1250.000 19.600
12
13| Time
14 0 1000.000 20.000
15 1 925.000 19.600
16 2 867.997 19.090

Figure 5
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B. Create graphs. You do not need to make any new graphs. Your existing graphs will automatically
reflect the changes in your spreadsheet. Edit the graph titles to distinguish them from
graphs of the classical Lotka-Volterra model. Your graphs should now resemble Fig-
ures 6 and 7.
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Figure 6
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Figure 7

QUESTIONS

8. Reinvestigate questions 1-6 but based on your model with a carrying capacity
for the prey population.
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Modifying the Model to Include Carrying Capacities for
Prey and Predator

It is quite conceivable that the predator population may have a carrying capacity
imposed by environmental constraints other than prey availability. Factors imposing
such a limitation might include mutual interference between predators (fighting over
prey or hunting territories) or limited availability of other essential resources, such as
water, burrow sites, or something else. If prey are superabundant (i.e., supply exceeds
demand and no predators starve), then the predator population (C,) will increase to its
carrying capacity (K ), but not beyond it.

We can include a predator carrying capacity in the same way we included a prey car-
rying capacity. We will modify the predator equation as follows:

K--C
Ct+1=Ct+athCt( CKC t)—th

Will the introduction of a predator carrying capacity change the behavior of the model?
Try predicting the result before exploring it with the spreadsheet.

Equilibrium Solution. As before, we will have to re-derive our equilibrium solution
for this modified equation. Letting AC, = 0, we get

K.-C
0=’1thCt[ CKC t)_qct

qC; = ”thCt[KCK_ Ct)
C

K.-C
q=ath( CKC t)

i_ Kc_ct

”f_Vt( K )
K,

—__1"c¢ __vy

af(Kc_Ct) !

In words, “Gadzooks!” But it turns out this produces a predator ZNGI that crosses the
x-axis (V-axis) at the same point as before, V = g/af (plug in 0 = C, and solve). However,
instead of a straight vertical line, it gives us a curve that leans over to the right, as you
will see in the spreadsheet graph. The ZNGI equation makes no sense at C, = K, because
the denominator of the term on the left becomes undefined, and then negative.
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INSTRUCTIONS

Part 4. Predator-Prey
Model with Carrying
Capacities for Prey and
Predator

A. Set up the spread-
sheet.

1. Change your parame-
ters to these values:
g =0.25, f=0.20,a = 0.005

2. Modify your existing
spreadsheet headings to
include a predator carry-
ing capacity.

3. Change the initial popu-
lation sizes to V, = 100,
C, = 10.

4. Enter formulae and val-
ues into cells B8 through
C12 to define the prey and
predator ZNGIs.

5. Modify the formula for
the predator population at
time 1 to include the pred-
ator carrying capacity.

6. Copy the modified for-
mula down its column.

7. Set up a new data series
in column D to graph the
predator ZNGL

ANNOTATION

If you wish to retain your existing model, save it under a separate file name before mak-
ing changes, or copy your spreadsheet to a new worksheet and make changes on the

copy.

Enter the values given into cells H7, H8, and H9, respectively.

Edit the text in cell A3 to reflect the change to a logistically growing predator
population.

In cell G10, enter the label “Kc”.

In cell H10, enter the value 100.

Enter the given values into cells B14 and C14, respectively.

Your graphs will look very odd while you are making these changes. Ignore them for
now—the errors will disappear after you have completed all the changes to your
spreadsheet.

Leave cells B8 through C10 unchanged. Delete the contents of cells B11 and C11.
In cell C15, enter the formula =IF(C14+$H$8*$H$9*B14*C14*($H$10-C14)/$H$10-

$H$7*C14>0,C14+$HS$8*$H$9*B14*C14*($H$10-C14)/$H$10-$H$7*C14,0).
This corresponds to Equation 6:

K--C
Ct+1=ct+ﬂthCt( C}(C tj—th

Again, we use the IF() function to prevent the population from going negative.

Select cell C15. Copy.
Select cells C16 through B114. Paste.

We need to do this because this ZNGI is not a straight line, so we must calculate many
points along it, and connect them with a line.

We will use the formula we derived above to express the predator ZNGI as a function

of prey population size:
9K,

afV

We must use a little spreadsheet trickery to make this come out right on the graph.
Indeed, even with our trickery, the ZNGI may look a little strange with some para-
meter values.

Ct:KC_




B. Create graphs.

1. Make a new graph of
predator population ver-
sus prey population,

including the new ZNGls.

Edit your graph for read-
ability. It should resemble
Figure 9.
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In cell B13 enter the formula =$H$7/($H$9*$H$8). This is equal to g/ (af).
Leave cell C13 empty. In cell D13, enter the value 0.

In cell D14, enter the formula =IF($H$10-($H$7*$H$10)/($H$9*$H$8*B14)>0,$H$10-
($H$7*$H$10)/($H$9*$H$8*B14),0).
Use the same shortcut as before to enter this formula.

This formula requires a little explanation. It is the spreadsheet version of the equation
for the predator ZNGI (derived above), rewritten as a function of V,, so that we can
plot it on the graph of predator population versus prey population. The derivation is:

gk,
af(Kc - Ct)
qK. = af(KC - Ct)Vt

=Vi

K
thC = afK, — afCy

K
Ilf Cy = aﬂ<c - thC

C — afKC _ ch
LT afY,
K
Ct :KC_ZfVCt

Copy the formula from cell D14 into cells D15 through D114. Your spreadsheet should
look like Figure 8.

A ] B [ C D E F G H
1 |Predator-Prey Dynamics
2 |Uses an exponentially-growing prey population, with an additional term for losses to predators.
3 |Uses an exponentially-growing predator population with per capita pop growth rate determined
4 by prey capture and conversion efficiency.
5
6 Zero net growth isoclines Prey parameters Predator parameters
7 2000.000 0.000 R 0.250 Starvation rate (q) 0.250)]
8 0.000 50.000 K,| 2000.000] Conversion efficiency (f) 0.200]
9 0.000 0.000 Attack rate (a) 0.005
10 250.000 0.000 K| 100.000
11
12
13| Time 250.000 0.000
14 0 100.000 10.000| 0.000
15 1 118.750 8.400| 0.000
16 2 141.687 7.214| 0.000
Figure 8

It is possible to edit your existing graph, but that is difficult and prone to error, so it’s
easier just to start over.

Select cells B7 through D114 and make an XY graph.

Select the predator ZNGI by double-clicking on any data point along it. In the Format
Data Series dialog box, click the Patterns tab and choose None for marker style. This will
cause the predator ZNGI to be plotted as a line with no data markers, like the prey ZNGI.
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2. Do not change your

graph of population sizes Predator-Prey Model w/ Ks for Both
versus time. 80 .
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10 |

Predator Population
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Figure 9

QUESTIONS

9. Reinvestigate questions 1-6 but based on your model with carrying capacities
for both prey and predator populations.

10. Attempt to summarize the implications of all the models developed in this exer-
cise.
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