# alternative way to do the same if (!requireNamespace("dbscan", quietly = TRUE)) { install.packages("dbscan") } library(dbscan) # Create example data: 50 points in 2D space set.seed(123) data <- matrix(rnorm(100), ncol=2) # 50 observations, 2 features # Perform DBSCAN dbscan_result <- dbscan(data, eps = 0.5, minPts = 5) # Print clustering results print(dbscan_result) # Basic scatter plot with clustering results plot(data, col = ifelse(dbscan_result$cluster == 0, "grey", as.factor(dbscan_result$cluster)), pch = 20, main="DBSCAN Clustering", xlab="Feature 1", ylab="Feature 2") legend("topright", legend=c("Noise", unique(dbscan_result$cluster)), col=c("grey", unique(as.factor(dbscan_result$cluster))), pch=20)