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7. Αναδρομή

 Αναδρομή

Η αναδρομή είναι τεχνική κατά την οποία μια συνάρτηση καλεί τον εαυτό της για να λύσει 

μικρότερες εκδοχές του ίδιου προβλήματος.

 Κάθε αναδρομική συνάρτηση χρειάζεται:

o Recursive Case (Αναδρομική Κλήση)

Η περίπτωση όπου το πρόβλημα μειώνεται και 

η συνάρτηση καλεί τον εαυτό της..

o Base Case (Συνθήκη Τερματισμού)

Η πιο απλή περίπτωση του προβλήματος όπου 

η συνάρτηση δεν καλεί τον εαυτό της.
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 Αναδρομή

Η αναδρομή είναι τεχνική κατά την οποία μια συνάρτηση καλεί τον εαυτό της για να λύσει 
μικρότερες εκδοχές του ίδιου προβλήματος.

 Χρησιμοποιείται όταν ένα πρόβλημα μπορεί να «σπάσει» σε μικρότερα, όμοια 
υποπροβλήματα.

 Χρειάζεται πάντα συνθήκη τερματισμού.

o Αποτρέπει την άπειρη αναδρομή.

o Είναι η απλούστερη περίπτωση του προβλήματος (base case).

o Χωρίς αυτήν θα έχουμε RecursionError.

o Παράδειγμα:  Αν υπολογίζω το παραγοντικό n!, η πιο απλή περίπτωση είναι: 0! = 1

 Ιδανική για: δέντρα, δομές, μαθηματικά μοτίβα.
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 Αναδρομή

Η αναδρομή είναι τεχνική κατά την οποία μια συνάρτηση καλεί τον εαυτό της για να λύσει 

μικρότερες εκδοχές του ίδιου προβλήματος.

 Αναδρομή vs Επανάληψη

o Η αναδρομή είναι συχνά πιο κομψή και πιο κοντά στον τρόπο που περιγράφουμε 

λογικά το πρόβλημα.

o Η επανάληψη (loops) είναι συνήθως πιο αποδοτική σε μνήμη και ταχύτητα.

o Η Python έχει όριο βάθους αναδρομής (περίπου 1000 επίπεδα).

o Η αναδρομή μπορεί να αντικατασταθεί με while/for loops στις περισσότερες 

περιπτώσεις.
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 Αναδρομή

Η αναδρομή είναι τεχνική κατά την οποία μια συνάρτηση καλεί τον εαυτό της για να λύσει 

μικρότερες εκδοχές του ίδιου προβλήματος.

Πότε χρησιμοποιούμε αναδρομή;

 Όταν το πρόβλημα είναι φυσικά αναδρομικό.

Παραδείγματα:

▪ Δέντρα (traversal)

▪ Αναζήτηση σε φακέλους

▪ Πύργοι του Ανόι

▪ Διαίρεση και κατάκτηση (merge sort, quicksort)
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 Αναδρομή

Η αναδρομή είναι τεχνική κατά την οποία μια συνάρτηση καλεί τον εαυτό της για να λύσει 

μικρότερες εκδοχές του ίδιου προβλήματος.

Πότε χρησιμοποιούμε αναδρομή;

 Όταν το πρόβλημα είναι φυσικά αναδρομικό.

Κίνδυνοι & Συμβουλές

Προσοχή:

▪ Έλλειψη συνθήκης τερματισμού

▪ Πολλές αναδρομικές κλήσεις → μεγάλη χρήση μνήμης

Συμβουλή:

▪ Να ξεκινάς γράφοντας πρώτα το “base case”

▪ Έπειτα την αναδρομική σχέση
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 Αναδρομή

Η αναδρομή είναι τεχνική κατά την οποία μια συνάρτηση καλεί τον εαυτό της για να λύσει 

μικρότερες εκδοχές του ίδιου προβλήματος.

Πότε χρησιμοποιούμε αναδρομή;

 Όταν το πρόβλημα είναι φυσικά αναδρομικό.

Κίνδυνοι & Συμβουλές

Προσοχή:

▪ Έλλειψη συνθήκης τερματισμού

▪ Πολλές αναδρομικές κλήσεις → μεγάλη χρήση μνήμης

Συμβουλή:

▪ Να ξεκινάς γράφοντας πρώτα το “base case”

▪ Έπειτα την αναδρομική σχέση

o Η αναδρομή είναι ισχυρό εργαλείο.

o Χρειάζεται σωστή συνθήκη τερματισμού.

o Έχει περιορισμούς στη μνήμη.

o Απαραίτητη σε πολλές αλγοριθμικές τεχνικές.



7. Αναδρομή

 Παράδειγμα Εφαρμογής: Παραγοντικό

def factorial(n):

if n == 0:

return 1

return n * factorial(n - 1)



7. Αναδρομή

 Παράδειγμα Εφαρμογής: Παραγοντικό

def factorial(n):

if n == 0:

return 1

return n * factorial(n - 1)
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 Παράδειγμα Εφαρμογής: Παραγοντικό

def factorial(n):

if n == 0:

return 1

return n * factorial(n - 1)

στοίβα κλήσεων τη στιγμή που "βαθαίνει" η αναδρομή.

Φάση 1 — Κλήση factorial(4)

TOP → | factorial(4) |

               ----------------

Φάση 2 — factorial(4) καλεί factorial(3)

TOP → | factorial(3) |

              | factorial(4) |

               ----------------

Φάση 3 — factorial(3) → factorial(2)

TOP → | factorial(2) |

        | factorial(3) |

         | factorial(4) |

           ----------------

Φάση 4 — factorial(2) → factorial(1)

TOP → | factorial(1) |

         | factorial(2) |

        | factorial(3) |

         | factorial(4) |

          ----------------

Φάση 5 — factorial(1) → factorial(0)

TOP → | factorial(0) |

         | factorial(1) |

         | factorial(2) |

         | factorial(3) |

         | factorial(4) |

                ----------------

Base case — factorial(0) επιστρέφει 1 και απομακρύνεται από τη στοίβα

TOP → | factorial(1) |

         | factorial(2) |

        | factorial(3) |

        | factorial(4) |

          ----------------

και συνεχίζεται μέχρι να καθαρίσει η στοίβα.
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 Παράδειγμα Εφαρμογής: Παραγοντικό στοίβα κλήσεων τη στιγμή που "βαθαίνει" η αναδρομή.

Φάση 1 — Κλήση factorial(4)

TOP →   | factorial(4) |

                 ----------------

Φάση 2 — factorial(4) καλεί factorial(3)

TOP →   | factorial(3) |

                | factorial(4) |

                 ----------------

Φάση 3 — factorial(3) → factorial(2)

TOP →    | factorial(2) |

        | factorial(3) |

         | factorial(4) |

           ----------------

Φάση 4 — factorial(2) → factorial(1)

TOP →   | factorial(1) |

         | factorial(2) |

        | factorial(3) |

         | factorial(4) |

          ----------------

Φάση 5 — factorial(1) → factorial(0)

TOP →   | factorial(0) |

         | factorial(1) |

         | factorial(2) |

         | factorial(3) |

         | factorial(4) |

                ----------------

Base case — factorial(0) επιστρέφει 1 και απομακρύνεται από τη στοίβα

TOP →    | factorial(1) |

         | factorial(2) |

        | factorial(3) |

        | factorial(4) |

          ----------------

και συνεχίζεται μέχρι να καθαρίσει η στοίβα.



7. Αναδρομή

 Παράδειγμα Εφαρμογής: Fibonacci 

Αναλυτική Αναδρομική Δομή

def fib(n):

    if n <= 1:

        return n

    return fib(n-1) + fib(n-2)

Ο αριθμός κλήσεων αυξάνεται πολύ:

▪ η Fibonacci αναδρομή είναι αργή!
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 Παράδειγμα Εφαρμογής: Fibonacci 

Αναλυτική Αναδρομική Δομή

def fib(n):

    if n <= 1:

        return n

    return fib(n-1) + fib(n-2)

Ο αριθμός κλήσεων αυξάνεται πολύ:

▪ η Fibonacci αναδρομή είναι αργή!

Index Fibonacci
Base 

Count

Total 

Count

1 1 1 1

2 1 2 3

3 2 3 5

4 3 5 9

5 5 8 15

6 8 13 25

7 13 21 41

8 21 34 67

9 34 55 109

10 55 89 177

11 89 144 287

12 144 233 465

13 233 377 753

14 377 610 1,219

15 610 987 1,973

16 987 1,597 3,193

17 1,597 2,584 5,167

18 2,584 4,181 8,361

19 4,181 6,765 13,529

20 6,765 10,946 21,891



7. Αναδρομή

 Παράδειγμα Εφαρμογής: Fibonacci 

def fib_dp(n):

    dp = [0] * (n + 1)

    if n > 0:

        dp[1] = 1

    

    for i in range(2, n + 1):

        dp[i] = dp[i-1] + dp[i-2]

    

    return dp[n]

• Fibonacci με Δυναμικό Προγραμματισμό (Bottom-Up)

• Ιδέα: Φτιάχνουμε έναν πίνακα dp όπου: dp[i] = fib(i) 

      και τα υπολογίζουμε από το 0 προς τα πάνω, αποφεύγοντας την αναδρομή.

Πίνακας Υπολογισμού για n = 6

i :  0   1   2   3   4    5    6

--------------------------------

dp:  0   1   1   2   3    5    8

dp[0] = 0

dp[1] = 1

for i from 2 to n:

    dp[i] = dp[i-1] + dp[i-2]
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 Παράδειγμα Εφαρμογής: Fibonacci 

def fib_dp(n):

    dp = [0] * (n + 1)

    if n > 0:

        dp[1] = 1

    

    for i in range(2, n + 1):

        dp[i] = dp[i-1] + dp[i-2]

    

    return dp[n]

• Fibonacci με Δυναμικό Προγραμματισμό (Bottom-Up)

• Ιδέα: Φτιάχνουμε έναν πίνακα dp όπου: dp[i] = fib(i) 

      και τα υπολογίζουμε από το 0 προς τα πάνω, αποφεύγοντας την αναδρομή.

Πίνακας Υπολογισμού για n = 6

i :  0   1   2   3   4    5    6

--------------------------------

dp:  0   1   1   2   3    5    8

dp[0] = 0

dp[1] = 1

for i from 2 to n:

    dp[i] = dp[i-1] + dp[i-2]

dp[0] → 0

  dp[1] → 1

  dp[2] → dp[1] + dp[0] = 1

  dp[3] → dp[2] + dp[1] = 2

  dp[4] → dp[3] + dp[2] = 3

  dp[5] → dp[4] + dp[3] = 5

  dp[6] → dp[5] + dp[4] = 8



7. Αναδρομή

 Παράδειγμα Εφαρμογής: Preorder Διάσχιση Δέντρου 

def preorder(node):

    if not node:

        return

    print(node.value)

    preorder(node.left)

    preorder(node.right)
A → B → D → E → C → F



7. Αναδρομή

 Παράδειγμα Εφαρμογής: Πύργοι του Ανόι (Hanoi Towers)

def hanoi(n, start, mid, end):

    if n == 1:

        print(f"Move {start} -> {end}")

        return

    hanoi(n-1, start, end, mid)

    print(f"Move {start} -> {end}")

    hanoi(n-1, mid, start, end)

1. Αρχική κλήση
TOP → | hanoi(3, A, B, C) |

       ---------------------

2. Καλεί hanoi(2, A, C, B)
TOP → | hanoi(2, A, C, B) |

       | hanoi(3, A, B, C) |

       ---------------------

3. Καλεί hanoi(1, A, B, C)
TOP → | hanoi(1, A, B, C) |

       | hanoi(2, A, C, B) |

       | hanoi(3, A, B, C) |

       ---------------------

Base case → γίνεται το move:
Move A → C

Pop:
TOP → | hanoi(2, A, C, B) |

       | hanoi(3, A, B, C) |

       ---------------------

4. Επιστρέφουμε σε hanoi(2…) → move A → B
(move A → B)

5. Καλεί hanoi(1, C, A, B)

Push:
TOP → | hanoi(1, C, A, B) |

       | hanoi(2, A, C, B) |

       | hanoi(3, A, B, C) |

       ---------------------

Base case → move:
(move C → B)

Pop:
TOP → | hanoi(2, A, C, B) |

       | hanoi(3, A, B, C) |

       ---------------------

hanoi(2,…) τελειώνει → pop:
TOP → | hanoi(3, A, B, C) |

       ---------------------

6. Επιστρέφουμε σε hanoi(3…) → move A → C
(move A → C)

7. Καλεί hanoi(2, B, A, C)

Push:
TOP → | hanoi(2, B, A, C) |

       | hanoi(3, A, B, C) |

       ---------------------

8. Καλεί hanoi(1, B, C, A)

Push:
TOP → | hanoi(1, B, C, A) |

       | hanoi(2, B, A, C) |

       | hanoi(3, A, B, C) |

       ---------------------

Base case → move:
(move B → A)

Pop stack:
TOP → | hanoi(2, B, A, C) |

       | hanoi(3, A, B, C) |

       ---------------------

 9. Move B → C
(move B → C)

10. Καλεί hanoi(1, A, B, C)

Push:
TOP → | hanoi(1, A, B, C) |

       | hanoi(2, B, A, C) |

       | hanoi(3, A, B, C) |

       ---------------------

Base → move:
(move A → C)

Pop:
TOP → | hanoi(2, B, A, C) |

       | hanoi(3, A, B, C) |

       ---------------------

Pop:
TOP → | hanoi(3, A, B, C) |

       ---------------------

11. Τελικό Pop — Stack empty
TOP → [ empty stack ]

Push hanoi(3)

 Push hanoi(2)

  Push hanoi(1)

  Pop

 Move A→B

  Push hanoi(1)

  Pop

Pop hanoi(2)

Move A→C

 Push hanoi(2)

   Push hanoi(1)

   Pop

 Move B→C

   Push hanoi(1)

   Pop

 Pop hanoi(2)

Pop hanoi(3)

Empty stack



7. Αναδρομή

 Παράδειγμα Εφαρμογής: …Lists

Άθροισμα Λίστας

def sum_list(lst):

    if not lst:

        return 0

    return lst[0] + sum_list(lst[1:])
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 Παράδειγμα Εφαρμογής: …Lists

Άθροισμα Λίστας

def sum_list(lst):

    if not lst:

        return 0

    return lst[0] + sum_list(lst[1:])

Μέγιστο Λίστας

def max_rec(lst):

    if len(lst) == 1:

        return lst[0]

    m = max_rec(lst[1:])

    return lst[0] if lst[0] > m 

else m



7. Αναδρομή

Ασκήσεις…

 Άσκηση 1: Γράψε αναδρομική συνάρτηση που υπολογίζει το άθροισμα των αριθμών από 1 έως n. 

Υπόδειξη: sum(n) = n + sum(n-1)



7. Αναδρομή

Ασκήσεις…

 Άσκηση 1: Γράψε αναδρομική συνάρτηση που υπολογίζει το άθροισμα των αριθμών από 1 έως n. 

Υπόδειξη: sum(n) = n + sum(n-1)

def sum_to_n(n):

    if n == 0:

        return 0

    return n + sum_to_n(n-1)



7. Αναδρομή

Ασκήσεις…

 Άσκηση 2: Γράψε αναδρομική συνάρτηση που μετράει πόσα στοιχεία έχει μια λίστα.



7. Αναδρομή

Ασκήσεις…

 Άσκηση 2: Γράψε αναδρομική συνάρτηση που μετράει πόσα στοιχεία έχει μια λίστα.

def count(lst):

    if not lst:

        return 0

    return 1 + count(lst[1:])



7. Αναδρομή

Ασκήσεις…

 Άσκηση 3: Γράψε αναδρομική συνάρτηση που αντιστρέφει μια λίστα.



7. Αναδρομή

Ασκήσεις…

 Άσκηση 3: Γράψε αναδρομική συνάρτηση που αντιστρέφει μια λίστα.

def reverse(lst):

    if not lst:

        return []

    return reverse(lst[1:]) + [lst[0]]



7. Αναδρομή

Ασκήσεις…

 Άσκηση 4: Υλοποίησε αναδρομική δυαδική αναζήτηση (binary search).



7. Αναδρομή

Ασκήσεις…

 Άσκηση 4: Υλοποίησε αναδρομική δυαδική αναζήτηση (binary search).

def binary_search(arr, target, left, right):

    if left > right:

        return False

    mid = (left + right) // 2

    if arr[mid] == target:

        return True

    elif target < arr[mid]:

        return binary_search(arr, target, left, mid-1)

    else:

        return binary_search(arr, target, mid+1, right)



7. Αναδρομή

Ασκήσεις…

 Άσκηση 5: Γράψε συνάρτηση που ελέγχει αναδρομικά αν μια λέξη είναι παλίνδρομο.



7. Αναδρομή

Ασκήσεις…

 Άσκηση 5: Γράψε συνάρτηση που ελέγχει αναδρομικά αν μια λέξη είναι παλίνδρομο.

def is_pal(s):

    if len(s) <= 1:

        return True

    if s[0] != s[-1]:

        return False

    return is_pal(s[1:-1])
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Ασκήσεις…

 Άσκηση 5: Γράψε συνάρτηση που ελέγχει αναδρομικά αν μια λέξη είναι παλίνδρομο.

def is_pal(s):

    if len(s) <= 1:

        return True

    if s[0] != s[-1]:

        return False

    return is_pal(s[1:-1])



7. Αναδρομή

Εφαρμογή …

 Πλήθος μονοπατιών σε πλέγμα (Grid Paths)

o Δίνεται ένα πλέγμα n × m.

o Ξεκινάς από τη θέση (0, 0) και θέλεις να φτάσεις στο (n–1, m–1).

o Κανόνας κίνησης: → Μπορείς να πας ΜΟΝΟ Δεξιά ή Κάτω.

Ζητούμενο: 

Γράψε μια αναδρομική συνάρτηση που επιστρέφειτο σύνολο των πιθανών μονοπατιών από την αρχή στο τέλος.

Παράδειγμα:

Για πλέγμα 2×2, τα μονοπάτια είναι:

Right → Down

Down → Right

Άρα: 2 μονοπάτια.
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Εφαρμογή …

 Πλήθος μονοπατιών σε πλέγμα (Grid Paths)

o Δίνεται ένα πλέγμα n × m.

o Ξεκινάς από τη θέση (0, 0) και θέλεις να φτάσεις στο (n–1, m–1).

o Κανόνας κίνησης: → Μπορείς να πας ΜΟΝΟ Δεξιά ή Κάτω.

Ζητούμενο: 

Γράψε μια αναδρομική συνάρτηση που επιστρέφειτο σύνολο των πιθανών μονοπατιών από την αρχή στο τέλος.

Παράδειγμα:

Για πλέγμα 2×2, τα μονοπάτια είναι:

Right → Down

Down → Right

Άρα: 2 μονοπάτια.

Αν είμαι σε κελί (r, c), δύο επιλογές:

1. Πάω κάτω → (r+1, c)\

2. Πάω δεξιά → (r, c+1)

Έτσι: paths(r, c) = paths(r+1, c) + paths(r, c+1)

Base case 1:

Αν φτάσω στο τελευταίο κελί → επιστροφή 1 (βρήκα μονοπάτι)

Base case 2:

Αν βγω έξω από το πλέγμα → επιστροφή 0
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Εφαρμογή …

 Πλήθος μονοπατιών σε πλέγμα (Grid Paths)

def count_paths(r, c, n, m):

    # Αν φτάσαμε στον προορισμό => 1 μονοπάτι

    if r == n - 1 and c == m - 1:

        return 1

    # Αν βγήκαμε εκτός πλέγματος => 0 μονοπάτια

    if r >= n or c >= m:

        return 0

    # Αλλιώς: μονοπάτια δεξιά + μονοπάτια κάτω

    return count_paths(r + 1, c, n, m) + count_paths(r, c + 1, n, m)

▪ Κάθε (2,2) επιστρέφει 1 (στόχος)

▪ Όσα ξεφεύγουν από το πλέγμα (3,) ή (,3) → 0

▪ Έχουμε ΠΟΛΛΕΣ επαναλήψεις 

γι' αυτό είναι δύσκολο χωρίς DP/memoization

Κλήση για πλέγμα 3×3:

print(count_paths(0, 0, 3, 3))   # Απάντηση: 6
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Εφαρμογή …

 Πλήθος μονοπατιών σε πλέγμα (Grid Paths)

def count_paths(r, c, n, m):

    # Αν φτάσαμε στον προορισμό => 1 μονοπάτι

    if r == n - 1 and c == m - 1:

        return 1

    # Αν βγήκαμε εκτός πλέγματος => 0 μονοπάτια

    if r >= n or c >= m:

        return 0

    # Αλλιώς: μονοπάτια δεξιά + μονοπάτια κάτω

    return count_paths(r + 1, c, n, m) + count_paths(r, c + 1, n, m)

Κλήση για πλέγμα 3×3:

print(count_paths(0, 0, 3, 3))   # Απάντηση: 6

Κλήση 1

count_paths(0,0)

Καλεί δύο:

TOP → | count_paths(1,0) |

     | count_paths(0,0) |

Κλήση 2

count_paths(1,0)

→ καλεί:

TOP → | count_paths(2,0) |

     | count_paths(1,0) |

       | count_paths(0,0) |

Κλήση 3

count_paths(2,0)

→ καλεί:

TOP → | count_paths(3,0) |

    | count_paths(2,0) |

       | count_paths(1,0) |

      | count_paths(0,0) |

Base case → επιστροφή 0

Pop:

TOP → | count_paths(2,0) |

      | count_paths(1,0) |

      | count_paths(0,0) |

Τώρα καλεί count_paths(2,1):

TOP → | count_paths(2,1) |

      | count_paths(2,0) |

     | count_paths(1,0) |

     | count_paths(0,0) |

Αυτό συνεχίζεται μέχρι να συναντήσει (2,2) → base 

case 1.



7. Αναδρομή

Εφαρμογή …

 Πλήθος μονοπατιών σε πλέγμα (Grid Paths)

Top-Down Dynamic Programming (Memoization)

def count_paths_memo(r, c, n, m, memo):

    # Αν υπάρχει στο memo → επέστρεψέ το

    if (r, c) in memo:

        return memo[(r, c)]

    # Base case: φτάσαμε στον προορισμό

    if r == n - 1 and c == m - 1:

        return 1

    # Base case: έξω από πλέγμα

    if r >= n or c >= m:

        return 0

    # Αλλιώς: υπολογισμός και αποθήκευση

    memo[(r, c)] = (

        count_paths_memo(r + 1, c, n, m, memo) +

        count_paths_memo(r, c + 1, n, m, memo)

    )

    return memo[(r, c)]

# Κλήση

memo = {}

print(count_paths_memo(0, 0, 3, 3, memo))   # Απάντηση: 6
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Χρησιμοποιούμε την ίδια αναδρομική λογική, αλλά αποθηκεύουμε

κάθε υπολογισμένο αποτέλεσμα στο memo.

Αποφεύγουμε επαναληπτικούς υπολογισμούς

Το recursion tree γίνεται γραμμικό

Τεράστια επιτάχυνση

• Το (1,1) υπολογίζεται μία φορά

• Το (2,2) υπολογίζεται μία φορά

• Πολλοί κόμβοι οδηγούν σε memo hits



7. Αναδρομή

Εφαρμογή …

 Πλήθος μονοπατιών σε πλέγμα (Grid Paths)

Bottom-Up Dynamic Programming (Tabulation)

def count_paths_bottomup(n, m):

    # Δημιουργούμε πίνακα n×m με μηδενικά

dp = [[0]*m for _ in range(n)]

    # Το τελευταίο κελί έχει πάντα 1 μονοπάτι

dp[n-1][m-1] = 1

    # Γέμισμα πίνακα

for r in range(n-1, -1, -1):

        for c in range(m-1, -1, -1):

            # Παραλείπουμε το τελευταίο κελί

if r == n-1 and c == m-1:

                continue

            right = dp[r][c+1] if c+1 < m else 0

            down  = dp[r+1][c] if r+1 < n else 0

            dp[r][c] = right + down

    return dp[0][0]
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Γεμίζουμε έναν πίνακα dp[n][m] από το τέλος:

• Το τελευταίο κελί = 1

• Τα υπόλοιπα = άθροισμα δεξιάς + κάτω γειτονικής τιμής

• Γεμίζουμε τον πίνακα από κάτω δεξιά προς πάνω αριστερά

Γεμίζουμε από κάτω προς τα πάνω:

Βήμα 1 — Αρχικό

0 0 0

0 0 0

0 0 1

Βήμα 2 — Συμπλήρωση τελευταίας σειράς & τελευταίας στήλης

0 0 1

0 0 1

0 1 1

Βήμα 3 — Πλήρης πίνακας

6 3 1

3 2 1

1 1 1

Παρατήρηση

• Το dp[0][0] = 6

• Αντιστοιχεί στο πλήθος μονοπατιών

• Είναι ίδιο με το αποτέλεσμα της αναδρομής αλλά 

πολύ πιο γρήγορο
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