Large Scale Graph Processing

D. Tsoumakos
AvaAuaon ko Eneéepyaaia Asdopevwv

[MTM2 Epeuvntikec KateuBuvoelc otnv
[MAnpodoplkn

Department of Informatics
lonian University

a\C R
Q.“_,A—,- fp&

Ano napouoiaon Sebastian Schelter, Invited talk at GameDuell Berlin, 29th May 2012 j '&
Ané napouvociaon padparog CS 347: Parallel and Distributed Data Management, Stanford, H.G E;*"i |0N|AN sl
' ’ T % (./.-‘ D DEPARTMENT OF INFORMATICS
NIy as

Molina

Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) Google Pregel

Graphs

graph: abstract representation of a set of objects

(vertices), where some pairs of these objects are
connected by links (edges), which can be directed or
undirected

Graphs can be used to model arbitrary things like
road networks, social networks, flows of goods, etc.

Majority of graph algorithms /’&

are iterative and traverse 6
the graph in some way o“\\

What is a graph

Formally: A finite graph G(V, E) is a pair (V, E),
where Vis a finite set and E is a binary relation
on V.

— Recall: A relation R between two sets X and Yis a
subset of X x Y.

— For each selection of two distinct V’s, that pair of
V’s is either in set E or not in set E.

The elements of the set V are called vertices]
(or nodes) and those of set E are called edges. b‘/‘

Undirected graph: The edges are unordered

pairs of V (i.e. the binary relation is — ¢
symmetric).

— Ex: undirected G(V,E); V = {a,b,c}, E = {{a,b}, {b,c}}

Directed graph (digraph):The edges are a
ordered pairs of V (i.e. the binary relation is b/O
not necessarily symmetric).

— Ex: digraph G(V,E); V ={a,b,c}, E = {(a,b), (b,c)} ‘\QC

Why graphs?

Many problems can be stated in terms of a graph

The properties of graphs are well-studied

— Many algorithms exists to solve problems posed as graphs
— Many problems are already known to be intractable

By reducing an instance of a problem to a standard

graph problem, we may be able to use well-known
graph algorithms to provide an optimal solution

Graphs are excellent structures for storing, searching,
and retrieving large amounts of data
— Graph theoretic techniques play an important role in

increasing the storage/search efficiency of computational
techniques.

Basic definitions

Undirected graph Directed graph

loop loop C
(!

G=(V,E) ®
isolated vertex

<« adjacent —

multiple /
edges

* incidence: an edge édirected or undirected) is incident to a
vertex that is one of its end points.
* degree of a vertex: number of edges incident to it

— Nodes of a digraph can also be said to have an indegree and an
outdegree

* adjacency: two vertices connected by an edge are adjacent

Types of graphs

simple graph: an undirected graph with no loops or multiple edges between
the same two vertices

multi-graph: any graph that is not simple
connected graph: all vertex pairs are joined by a path
disconnected graph: at least one vertex pairs is not joined by a path

complete graph: all vertex pairs are adjacent
— K, the completely connected graph with n vertices

"

Simple graph

Disconnected graph
with two components C

Types of graphs (2)

acyclic graph (forest): a graph with no cycles
tree: a connected, acyclic graph

rooted tree: a tree with a “root” or “distinguished” vertex
— leaves: the terminal nodes of a rooted tree

directed acyclic graph (DAG): a digraph with no cycles

weighted graph: any graph with weights associated with the edges
(edge-weighted) and/or the vertices (vertex-weighted)

® /‘\
Y /‘\ o

“Travel” in graphs
‘W‘

X y

path: no vertex can be repeated

example path: a-b-c-d-e b
trail: no edge can be repeated

example trail: a-b-c-d-e-b-d
walk: no restriction

example walk: a-b-d-a-b-c

closed: if starting vertex is also ending vertex
length: number of edges in the path, trail, or walk

circuit: a closed trail (ex: a-b-c-d-b-e-d-a)
cycle: closed path (ex: a-b-c-d-a)

Digraph definitions

for digraphs only... Directed graph

Every edge has a head Sstartmg point) b a
and a tail (ending point

Walks, trails, and paths can only use
edges in the appropriate direction

In a DAG, every path connects an c
predecessor/ancestor (the vertex at

the head of the path) to its
successor/descendents (nodes at the .
tail of any path).

parent: direct ancestor (one hop) w / \
child: direct descendent (one hop) / \

A descendent vertex is reachable
from any of its ancestors vertices \ | 2

y

Subgraphs

e G’(V’,E’)is asubgraph of G(V,E) if V c Vand E’' C E.
* induced subgraph: a subgraph that contains all possible edges in E
that have end points of the vertices of the selected V’

a a

‘ b e

d
d ‘/’ C

‘ Induced subgraph of

G(V,E) G’({a,c,d},{{c,d}}) G with V' = {b,c,d,e}

Complement of a graph

 The complement of a graph G (V,E) is a graph with
the same vertex set, but with vertices adjacent
only if they were not adjacent in G(V,E)

Famous problems: Shortest path

Consider a weighted connected directed graph with a
distinguished vertex

source: a distinguished vertex with zero in-degree

What is the path of total minimum weight from the source to
any other vertex?

Greedy strategy works for simple problems (no cycles, no
negative weights)

Longest path is a similar problem (complement weights)

Famous problems: Hamilton & TSP

 Hamiltonian path: a path through a graph which
contains every vertex exactly once

* Finding a Hamiltonian path is another NP-complete
problem...

* Traveling Salesmen Problem (TSP): find a Hamiltonian
path of minimum cost

Topological Sort

 We just computed a topological sort of the dag

— This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

‘/'

e Useful in job scheduling with precedence constraints

15

Example of Topological Sort

e Starcraft Il build order: Roach Rush

Roach Warren

Hatchery Spawning Pool

Possible Topological Sorts

1. Hatch, SPool, RWarren, Gas, Roaches
2. Hatch, SPool, Gas, RWarren, Roaches
3. Hatch, Gas, SPool, RWarren, Roaches

Graph Coloring

e A of an undirected graph is an assignment of a color
to each node such that no two adjacent vertices get the same
color

 chromatic number: the smallest number of labels for a
coloring of a graph

* How many colors are needed to color this graph?

Graph Coloring

e A of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

* How many colors are needed to color this graph?

An Application of Coloring

Vertices are jobs

Edge (u,v) is present if jobs u and v each
require access to the same shared resource,
and thus cannot execute simultaneously

Colors are time slots to schedule the jobs

Minimum number of colors needed to color
the graph = minimum number of time slots

required @

Planarity

 Agraphis if it can be embedded in the
plane with no edges crossing

* Is this graph planar?

Planarity

 Agraphis if it can be embedded in the
plane with no edges crossing

* Is this graph planar?
— Yes

21

Planarity

 Agraphis if it can be embedded in the
plane with no edges crossing

* Is this graph planar?
— Yes

22

Detecting Planarity

e Kuratowski's Theorem

Sy E

 Agraphis planarif and only if it does not contain
a copy of K; or K, ; (possibly with other nodes
along the edges shown)

Central Balkan

Four-Color Theorem:
Every planar graph

is 4-colorable.
(Appel & Haken, 1976)

Brindisi

Scale 1:3,550,000

Lambert Conformal Conic Projection,
standard parallels 40 N and 56 N

24

Another 4-colored planar graph

http://www.cs.cm

Bipartite Graphs

* Adirected or undirected graph is if
the vertices can be partitioned into two sets
such that all edges go between the two sets

* The following are equivalent
— G is bipartite
— G is 2-colorable
— G has no cycles of odd length

Traveling Salesperson

* Find a path of minimum distance that visits
every city

27

The Web

* the World Wide Web itself can be seen as a huge
graph, the so called web graph

— pages are vertices connected by edges that represent
hyperlinks

—the web graph has several billion vertices and several
billion edges

* the success of major internet companies such as

Google is based on the ability to conduct
computations on this huge graph

Google‘s PageRank

« success factor of Google‘s search engine:
— much better ranking of search results

* ranking is based on PageRank,
a graph algorithm computing
the ,importance’ of webpages

— simple idea: look at the structure
of the underlying network

— important pages have a lot of links
from other important pages

| e .
/ PalVak
~ |
‘- .‘ I !

* major technical success factor of Google:
ability to conduct web scale graph processing

Social Networks

e on facebook, twitter, Linkedln, etc, the users and
their interactions form a social graph

— users are vertices connected by edges that represent
some kind of interaction such as
friendship, following, business contact

e fascinating research questions: L

— what is the structure of N 0N et ¥ W
these graphs? A | pU3=
— how do they evolve over time? -

e analysis requires knowledge
in both computer science and social sciences

six degrees of separation

 small world problem

— through how many social contacts do
people know each other on average?

« small world experiment by Stanley Milgram

— task: deliver a letter to a recipient whom you
don‘t know personally

— you may forward the letter only to persons that
you know on a first-name basis

— how many contacts does it take on average until the letter reaches the target?

e results
— it took 5.5 to 6 contacts on average

— confirmation of the popular assumption of ,six degrees of separation’
between humans

— experiment criticised due to small number of participants, possibly biased
selection

3.5 degrees of separation

e the small word problem as a graph problem in social
network analysis

— what is the average distance between two users in a social
graph?
* In Feb 2016, a world scale experiment using the Facebook
social graph
— 1.6 billion users
— result: average distance in Facebook is 3.57

125+

~—100 1

~
[6)]
1

Facebook users (millions
[¢)]
o

n
o
1

25 2.7 2.9 3.1 3.3 3.5 3.7 39 41 4.3 45 4.7
Average degrees of separation

Graphs in bioinformatics

* Sequences
— DNA, proteins, etc.

—>‘—>‘—>‘—>‘—>

Chemical compounds

Galactoge Pentose and
metabolis glucuronate
mterconversions

Metabolic pathways

Graphs in bioinformatics

rmei=1 Caenorhabditis

0.1 zATPaze Schistosoma
MOZC1 1.5 Caenorhabditis
YME1 YTA11 0SD1
fisH Mycoplasma genitalium
fisH chuplasrna preumaoniae
fizH Helicobacter
Metalloproteases 5111 463 E‘;_gnechnn:gshs

Eapsucum
ﬁlre.aaécéq:m RS
“Hah Arabloperts
s'lriYi:}:EII;#S Nfiﬂc{uﬁtlﬂ
gstfze

" e~ \ \

YTAIZ RC S b
FTATD AFDE e NN '

YHE A Methanobacterium %
S8 Methanococous *

CHRXII new
smallminded Drn;nphi]a——-_-—:___-———-—-—_____

C24BS 2 Caenorhabditis IY1E10SIS/Mitochondria
TE"'EP, vEn7 MSPT YTAd

K4DT 2 Caenorhabditis
Mauge D1 20C4E Drosophila
Speup Spombe woq o6 & Mycobacterium
? andldi
i te .:*SI{I}E Mot
Secretion

wnih MNeurotransmission
; K0462.3 Caenorhabditis *

YTAT —
F11410.1 Caenorhabditis

cdoH Halobacterium

CDCas gqjlgrﬁc?ccus

C41C4 2 Caenorhabditis
cCosAl 1 Caemrhabditis
YCP Pig/TER- ﬁﬂé

E‘!ﬁfw L

PV K-EES
MDDE ?‘I‘:‘! dUF,!I!
Ca | D Iﬂ Slon CE{CI alll CdGD51G?E§ELUm
Centrosome/ COCATP Plasmedium

: AFG2 DRG i
ER Homotypic Fusion ChDpe4 Sqyire /
il
mts2 5 u:m:ue
Ilg h'l --Fl
P2&54 Mouse /54 Rat /54 Man
FZ&54 Drosophila
) TEFZ Rige

T TBPa Dictyostelium

i CECT1H1 & Caenorhabditis
FAS1 rmn
Fas
PAS1 Pichia Peroxisomes
FAFZ REat
PA&F=2 Mar
e PasE
; = FASS Pichia
= FAY4 Yarrowia

Subunits of the 265 Proteasome

YT A1
TEP1 Fat

L [FFo 1, Man

TEET Rite

LeMa=1 Tomato
265 %plnacna

T hs CIHS .
CE- 4 Caenorhabditis
ouse

n SHenopus
EgF P]Swfr ,.m]‘!m P S?
Maegleria
| TERP10 Dctyostelium
b 54 Methanococcus 1506 Manduca
Trip! Man

.|' Sl 3 '\I:'IILll.IlJb
mEUGT Molze /SUGT Rat/TEP10 Pig
T4TP1, 50l =1 1c|:|r i mta
1F‘l{g, %‘BF‘ ug;{n'ﬂnL 11 5. pombe D
e-n-:-rhahdths

Han f TEFT Rat

SR Fhnd:
CW2) Polse

thpa Asper ﬂlus
VTas i o 56

Phylogenetic trees

Genetic interactions: synthetic lethals and suppressors

Genetic Interactions:

 Widespread method used
by geneticists to discover
pathways in yeast, fly, and
worm

* Implications for drug
targeting and drug
development for human
disease

 Thousands are now
reported in literature and
systematic studies

* As with other types, the
number of known genetic

interactions is exponentially

increasing...

| ’wsz .Yh_zl w

hAD g
IV TV s

i st
YPLF T
P O 70w

L/
oy ,h_—:'imq ' 5
~ —— ‘,\nm__, . Nm'd{; N 5'-"".5-.,_‘ >y .). -
S gtk TNy VPTE \Li\g VA T ST~
L orue ®usre _R",Kgx"f‘,l'.'.mf:s' ® ..":‘ 5
B ; P @ "m. i YBLOG2v

.\H.I'N @ r'ou‘." HA=Y
WRM ™\ Fypam

e/

> N 7500 By

5

| PRS y @
— WSS R
Cwen S\MS‘ 2 RNR1
P - n_>"nnm
¢ U B
rmE,H g wn . B 10w
. : ~.. nADSN .- .
Wk SR AL R i, - ®vmanew
@ Lwl'g P N T s 9
HeLzra g HIG2 @y e, o nrL24A
.--' LU Sy : {_-.a(l‘.l FIR]
'
RrSe .YNme LseE

h\sm /o
KV {
PrK1 L f o

f 1A .ipl.vurcmsu
| @Y &

@ BTS1

RGN1

@ Cell Polarity

® Cell Wall Maintenance
® Cell Structure

@ Mitosis

G Chromosome Structure
@ DNA Synthesis

@ DNA Repair

® Unknown

© QOthars

Adapted from Tong et al., Science 2001

Yeast protein-protein interaction network

M

et 1- -ﬁ-e"r“-’l‘l"'.'. N
s ehi
ALISY

o} iy h

oo 4/ 44 VAL What are its network
properties?

Applications of Graphs

Communication networks; social networks
Routing and shortest path problems
Commodity distribution (network flow)
Traffic control

Resource allocation

Numerical linear algebra (sparse matrices)
Geometric modeling (meshes, topology, ...)
Image processing (e.g., graph cuts)
Computer animation (e.g., motion graphs)
Systems biology

Computer representation

* adjacency matrix: a |V| x | V| array where each

cell i,j contains the WEI%ht of the edge between v,

and v; (or O for no edge
. adjacency list: a |V| array where each cell i

contains a list of all vertices adjacent to v,
* incidence matrix: a |V| by |E| array where each

cell i,j contains a weight (or a defined constant
HEAD for unweighted graphs) if the vertexii is the

head of edge j or a constant TAIL if vertex | is the

tail of edgej

8

a |c (8),d(4)

1]2

3

4

a1

b

8

c |b (6)

a
b

t

t

2

d [c (2), b (10)

c|6 |t

t

alb|c
a
b
C 6
8 10 . 5
adjacency

matrix

adjacency
list

d

2

10

incidence
matrix

Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) Google Pregel

Why not use MapReduce/Hadoop?

 MapReduce/Hadoop is a popular way to perform data-

intensive computing, why not use it for graph
processing?

 Example: PageRank

— defined recursively D
— each vertex distributes its Di J

authority to its neighbors in
equal proportions

1
M
\

Textbook approach to
PageRank in MapReduce

e PageRank p is the principal eigenvector of the Markov matrix
M defined by the transition probabilities between web pages

* it can be obtained by iteratively multiplying an initial
PageRank vector by M (power method)

Pi-1 = Mp
row 1 of M . >
row 2 of M . >

Drawbacks

-

* Not intuitive: only crazy scientists i
think in matrices and eigenvectors I

* Unnecessarily slow: Each iteration is a single

MapReduce job with lots of overhead
— separately scheduled

— the graph structure is read from disk
— the intermediary result is written to HDFS

 Hard to implement: a join has to be implemented

by hand, lots of work, best strategy is data
dependent

Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) Google Pregel

Google Pregel

distributed system especially developed for
large scale graph processing

intuitive APl that let’s you ,think like a vertex'

Bulk Synchronous Parallel (BSP) as execution
model

fault tolerance by checkpointing

Bulk Synchronous Parallel (BSP)

processors

local computation I I I I

communication M

barrier I

synchronization

superstep

Vertex-centric BSP

each vertex has an id, a value, a list of its adjacent neighbor ids and the
corresponding edge values
each vertex is invoked in each superstep, can recompute its value and

send messages to other vertices, which are delivered over superstep
barriers

advanced features : termination votes, combiners, aggregators, topology
mutations

<>
...

superstep i superstepi+1 superstep i + 2

Bulk Synchronous Parallel Model

1 Q@ Q QO G E

Jollieg

Ilterations

ORONONORCNONE

Master-slave architecture

* vertices are partitioned and
assigned to workers
— default: hash-partitioning
— custom partitioning possible

* master assigns and coordinates,
while workers execute vertices
and communicate with each

TN

Master

Algorithm Termination

= Algorithm termination is based on every vertex voting to halt

= |nsuperstep O, every vertex is active
= All active vertices participate in the computation of any given superstep

= Avertex deactivates itself by voting Vote to Halt
to halt and enters an inactive state —
= Avertex can return to active state [Inactive }

if it receives an external message

Message Received

Vertex State Machine

= Program terminates when all vertices
are simultaneously inactive and there are no messages in transit

Finding the Max Value in a Graph

3

Blue Arrows
are messages

Blue vertices
have voted to
halt

Message Passing, Combiners, and
Aggregators

" [Messages can be passed from any vertex to any other vertex
inthe Graph e T S

= Any number of messages may be passed

<
Compute()
Value

Compute()
Value

- v

= Message order is not guaranteed

»

= Messages will not be duplicated

Compute()” ‘
Value

= Combiners can be used to reduce the
number of messages passed between supersteps

" Aggregators are available for reduction operations such as
sum, min, max etc.

Topology Mutations, Input and Output

= The graph structure can be modified during any superstep
= \Vertices and edges can be added or deleted
= Conflicts are handled using partial ordering of operations
= User-defined handlers are also available to manage conflicts

= Flexible input and output formats
= Text File
= Relational Database
= Bigtable Entries

= |nterpretation of input is a “pre-processing” step separate
from graph computation

= Custom formats can be created by sub-classing the Reader and Writer
classes

Graph Partitioning

= The input graph is divided into partitions consisting of
vertices and outgoing edges

= Default partitioning function is hash(ID) mod N, where N is the # of
partitions

= |t can be customized

2
Ivorker 14 Worker 2

Graph
Partitioning

Execution of a Pregel Program

= Steps of Program Execution:

1. Copies of the program are distributed across all workers

1.1 One copy is designated as a master
2. Master partitions the graph and assigns workers their respective
partition(s) along with portions of the input

3. Master coordinates the execution of supersteps and delivers messages
among vertices

4. Master calculates the number of inactive vertices after each superstep
and signals workers to terminate if all vertices are inactive and no
messages are in transit

5. Each worker may be instructed to save its portion of the graph

Fault Tolerance in Pregel

Fault tolerance is achieved through checkpointing

= At the start of every superstep the master may instruct the workers to
save the state of their partitions in a stable storage

Master uses ping messages to detect worker failures

If a worker fails, the master reassigns corresponding vertices
and input to another available worker and restarts the
superstep

= The available worker reloads the partition state of the failed worker
from the most recent available checkpoint

Architecture

worker A —

input
data 1

master

worker B —
N

input
data 2
N—

sample record:
[a, value]

worker C

graph has nodes a,b,c,d...

56

Architecture

'a,b,c

master

input
data 1

' d, e

partition graph and
assign to workers

input
data 2

: vertexes
f,eh

57

Architecture

master

worker A
L vertexes
'a,b,c

input
data 1

read input data

' d, e

vertexes
' f,g, h

input
data 2

worker A
forwards input
values to
appropriate
workers

58

Architecture

worker A
L vertexes
'a,b,c

master

input
data 1

' d, e

run superstep 1

input
data 2

: vertexes
f,eh

59

Architecture

halt?

master

worker A
L vertexes
'a,b,c

r

input
data 1

' d, e

input
data 2

vertexes
' f,g, h

at end
superstep 1,
send messages

60

Architecture

worker A
L vertexes
'a,b,c

master

input
data 1

' d, e

run superstep 2

input
data 2

: vertexes
f,eh

61

Architecture

worker A
L vertexes
'a,b,c

master

input
data 1

' d, e

checkpoint

input
data 2

: vertexes
f,eh

62

Architecture

master

worker A
L vertexes
'a,b,c

checkpoint

write to stable store:
MyState, OutEdges,
InputMessages

(or OutputMessages)

' d, e

2

vertexes
' f,g, h

63

Architecture

worker A

L vertexes
'a,b,c

master

L vertexes
' d, e

if worker dies,

find replacement &
restart from

latest checkpoint

64

Architecture

worker A
L vertexes
'a,b,c

master

input
data 1

' d, e

input
data 2

: vertexes
f,eh

PageRank in Pregel

class PageRankVertex {
void compute(lterator messages) {

if (getSuperstep()> 0) {
// recompute own PageRank from the neighborsmessages
pageRank= sum(messages);

setVertexValue(pageRank);
} P

if (getSuperstep()< k) {
// send updated PageRank to each neighbor

sendMessageToAlINeighbors(pageRank/ getNumOutEdges());
} else {
voteToHalt(); // terminate

}
1}

PageRank toy example

.33 Superstep 0

Input graph

R @

Superstep 2

Cool, where can | download it?

* Pregel is proprietary, but:

— Apache Giraph is an open source
implementation of Pregel

—runs on standard Hadoop infrastructure
— computation is executed in memory
—can be a job in a pipeline (MapReduce, Hive)
— uses Apache ZooKeeper for synchronization

NEO4)J (Graph database)

* A graph is a collection nodes (things) and edges (relationships) that connect
pairs of nodes.

 Attach properties (key-value pairs) on nodes and relationships
*Relationships connect two nodes and both nodes and relationships can hold
an

arbitrary amount of key-value pairs.

* A graph database can be thought of as a key-value store, with full support for
relationships.

* http://neodj.org/

NEO4)

2.1.1. A Graph contains Nodes and Relationships

“A Graph —records data in— Nodes —which have— Properties”

The simplest possible graph is a single Node, a record that has named values referred to
as Properties. A Node could start with a single Property and grow to a few million,
though that can get a little awkward. At some point it makes sense to distribute the data
into multiple nodes, organized with explicit Relationships.

records data m

records data mn

have

70

NEO4)

2.1 2lationships organize the Graph

‘Nodes —are organized by— Relationships —which also have— Properties’

Relationships organize Nodes into arbitrary structures, allowing a Graph to resemble a
List, a Tree, a Map, or a compound Entity - any of which can be combined into vet more

complex, richly inter-connected structures.

71

NEO4)

= * =, Query a Graph with a Traversal

“A Traversal —navigates— a Graph; it —identifies— Paths —which order— Nodes”

A Traversal is how you query a Graph, navigating from starting Nodes to related Nodes
according to an algorithm, finding answers to questions like “what music do my friends
like that I don't vet own,” or “if this power supply goes down, what web services are

affected?

identifies

navigates eEpresses

records data in

Relationships

order

records data in

72

NEOA4]

2.1.4. Indexes look-up Nodes or Relationships

A1 { —maps from— Properties —10 either— Nodes or Relationships”™

Often, vou want to find a specific Node or Relationship according to a Property it has.
Rather than traversing the entire graph, use an Index to perform a look-up, for questions
like “find the Account for username master-of-graphs.”

Indexes

Relationships

map from

73

NEO4)

. Neogj is a Graph Database
“A Graph Dartabase —manages a— Graph and —also manages related— Indexes”

Neod]j is a commercially supported open-source graph database. It was designed and built
from the ground-up 1o be a reliable database, optimized for graph stuuctures instead of

tables. Working with Neo4]j, vour application gets all the expressiveness of a graph, with
all the dependability vou expect out of a database.

[Graph Database j

navigates

records data in

records data in

NEO4)

Properties

Properties are kev-value pairs where the key is a siring. Property values can be either a
primitive or an array of one primitive type. For example string, int and int[] values are
valid for properties.

Note
/ null is not a valid property value. Nulls can instead be modeled by the absence of a

can be an array of

boolean\"

byte

short

int

Primitive lang

float

double

char

\ String y.

75

NEO4)] Features

* Dual license: open source and commercial

*Well suited for many web use cases such as tagging, metadata annotations,
social networks, wikis and other network-shaped or hierarchical data sets

* Intuitive graph-oriented model for data representation. Instead of static and
rigid tables, rows and columns, you work with a flexible graph network
consisting of nodes, relationships and properties.

* Neodj offers performance improvements on the order of 1000x
or more compared to relational DBs.

* A disk-based, native storage manager completely optimized for storing
graph structures for maximum performance and scalability

* Massive scalability. Neo4j can handle graphs of several billion
nodes/relationships/properties on a single machine and can be sharded to
scale out across multiple machines

*Fully transactional like a real database

*Neo4j traverses depths of 1000 levels and beyond at millisecond speed.
(many orders of magnitude faster than relational systems)

76

Transactions

1. Debit 100 TL to Groceries Expense Account
2. Credit 100 to Checking Account

UPDATE accountl SET balance=balance-500;
UPDATE accountl SET balance=balance+500;

* A transaction is simply a number of individual queries that are grouped
together.

*Transactions provide an "all-or-nothing" proposition, stating that each
work-unit performed in a database must either complete in its entirety
or have no effect whatsoever.

Transactions

four conditions (ACID) to which transactions need to adhere

Atomicity: The queries that make up the transaction must either all be
carried out, or none at all should be carried out

Consistency: Refers to the rules of the data. During the transaction, rules
may be broken, but this state of affairs should never be visible from outside
of the transaction.

Isolation : Simply put, data being used for one transaction cannot be used by
another transaction until the first transaction is complete.

Connection 1: SELECT balance FROM accountl;
Connection 2: SELECT balance FROM accountl;
Connection 1: UPDATE accountl SET balance = 900+100;
Connection 2: UPDATE accountl SET balance = 900-100;

. Durability: Once a transaction has completed, its effects should remain, and
not be reversible.

