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The Big Data era 



What is Big Data? 

 Big data is like teenage sex:  

 everyone talks about it  

 nobody really knows how to do it  

 everyone thinks everyone else is doing it  

 so everyone claims they are doing it... 

 --Dan Ariely, Professor at Duke University 

 

 

 

 



Big Data Definition 

 No single standard definition… 

 

“Big Data” is data whose scale, diversity, and complexity 

require new architecture, techniques, algorithms, and 

analytics to manage it and extract value and hidden 

knowledge from it… 
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Characteristics of Big Data:  

1-Scale (Volume) 

 Data Volume 

 44x increase from 2009 2020 

 From 0.8 zettabytes to 35zb 

 Data volume is increasing exponentially  
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Exponential increase in 

collected/generated data 



Characteristics of Big Data:  

2-Complexity (Varity) 

 Various formats, types, and 
structures 

 Text, numerical, images, audio, 
video, sequences, time series, social 
media data, multi-dim arrays, etc… 

 Static data vs. streaming data   

 A single application can be 
generating/collecting many types of 
data   
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To extract knowledge all these types of 

data need to linked together 



Characteristics of Big Data:  

3-Speed (Velocity) 

 Data is begin generated fast and need to be processed 
fast 

 Online Data Analytics 

 Late decisions  missing opportunities 

 Examples 

 E-Promotions: Based on your current location, your purchase 
history, what you like  send promotions right now for store next to 
you 

 

 Healthcare monitoring: sensors monitoring your activities and 
body   any abnormal measurements require immediate reaction 
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Big Data: 3V’s 
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Extended Big Data Characteristics: 6V 

 Volume: In a big data environment, the amounts of data collected and 
processed are much larger than those stored in typical relational 
databases. 

 Variety: Big data consists of a rich variety of data types. 

 Velocity: Big data arrives to the organization at high speeds and from 
multiple sources simultaneously. 

 

 Veracity: Data quality issues are particularly challenging in 
a big data context. 

 Visibility/Visualization: After big data being processed, we 
need a way of presenting the data in a manner that’s 
readable and accessible.  

 Value: Ultimately, big data is meaningless if it does not 
provide value toward some meaningful goal. 



Veracity (Quality & Trust) 

 Data  =  quantity +  quality 

 When we talk about big data, we typically mean its 
quantity: 

 What capacity of a system provides to cope with the sheer size of 
the data? 

 Is a query feasible on big data within our available resources? 

 How can we make our queries tractable on big data? 

 . . .  

 Can we trust the answers to our queries? 

 Dirty data routinely lead to misleading financial reports, strategic 
business planning decision  loss of revenue, credibility and 
customers, disastrous consequences 

 The study of data quality is as important as data quantity 

 



Data in real-life is often dirty 

500,000 dead people 

retain active Medicare 

cards 

81 million National Insurance 

numbers but only 60 million 

eligible citizens 

98000 deaths each year, 

caused by errors in 

medical data 



Visibility/Visualization 

 Visible to the process of big data management 

 Big Data – visibility = Black Hole? 

 

 

 

 

 

 

 

 

 Big data visualization tools: 

A visualization of Divvy bike rides across Chicago 

http://dataconomy.com/chicago-city-big-data/


Value 

 Big data is meaningless if it does not provide value toward 

some meaningful goal 



Big Data: 6V in Summary 

Transforming Energy and Utilities through Big Data & Analytics. By Anders 

Quitzau@IBM 



Other V’s 

 Variability 

 Variability refers to data whose meaning is constantly changing. 
This is particularly the case when gathering data relies on 
language processing.  

 Viscosity   

 This term is sometimes used to describe the latency or lag time in 
the data relative to the event being described.  We found that this 
is just as easily understood as an element of Velocity. 

 Virality   

 Defined by some users as the rate at which the data spreads; how 
often it is picked up and repeated by other users or events. 

 Volatility 

 Big data volatility refers to how long is data valid and how long 
should it be stored. You need to determine at what point is data no 
longer relevant to the current analysis. 

 More V’s in the future … 



Harnessing Big Data 

 OLTP: Online Transaction Processing   (DBMSs) 

 OLAP: Online Analytical Processing   (Data Warehousing) 

 RTAP: Real-Time Analytics Processing  (Big Data Architecture & technology) 
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Who is generating Big Data? 

Homeland Security 

Real Time Search 

Social 

eCommerce 

User Tracking & 

Engagement 

Financial Services  



The Model Has Changed… 

 The Model of Generating/Consuming Data has Changed 
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Old Model: Few companies are generating data, all others are consuming data  

New Model: all of us are generating data, and all of us are consuming data  



Challenges in Handling Big Data 

 The Bottleneck is in technology 

 New architecture, algorithms, techniques are needed 

 Also in technical skills 

 Experts in using the new technology and dealing with big data  
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How much data? 

Hadoop: 10K nodes, 
150K cores, 150 PB 
(4/2014) 

Processes 20 PB a day (2008) 
Crawls 20B web pages a day (2012) 
Search index is 100+ PB (5/2014) 
Bigtable serves 2+ EB, 600M QPS 
(5/2014) 

300 PB data in Hive +  
600 TB/day (4/2014) 

400B pages, 
10+ PB 
(2/2014) 

LHC: ~15 PB a year 
 

LSST: 6-10 PB a year  
(~2020) 640K ought to be 

enough for 
anybody. 

150 PB on 50k+ servers  
running 15k apps (6/2011) 

S3: 2T objects, 1.1M 
request/second (4/2013) 

SKA: 0.3 – 1.5 EB  

per year (~2020) 

Hadoop: 365 PB, 330K 
nodes (6/2014) 



No data like more data! 

(Banko and Brill, ACL 2001) 

(Brants et al., EMNLP 2007) 

s/knowledge/data/g; 

How do we get here if we’re not Google? 



What to do with more data? 

 Answering questions 

 Pattern matching on the Web 

 Works amazingly well 

 

 Learning relations 

 Start with seed instances 

 Search for patterns on the Web 

 Using patterns to find more instances 

Who shot Abraham Lincoln?  X shot Abraham Lincoln 

Birthday-of(Mozart, 1756) 

Birthday-of(Einstein, 1879) 

Wolfgang Amadeus Mozart (1756 - 1791) 

Einstein was born in 1879 

PERSON (DATE – 

PERSON was born in DATE 

(Brill et al., TREC 2001; Lin, ACM TOIS 2007) 

(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; … ) 



Emergence of the 4th 
Paradigm 

Data-intensive e-Science Maximilien Brice, © CERN 

Science 



Engineering 
The unreasonable effectiveness of 

data 

Count and normalize! 

Source: Wikipedia (Three Gorges Dam) 



Commerce 

Know thy customers 

Data  Insights  Competitive 
advantages  

Source: Wikiedia (Shinjuku, Tokyo) 



What is cloud computing? 



Just a buzzword? 

 Before clouds… 

 P2P computing 

 Grids 

 HPC 

 … 

 Cloud computing means many different things: 

 Large-data processing 

 Rebranding of web 2.0 

 Utility computing 

 Everything as a service 



Rebranding of web 2.0 

 Rich, interactive web applications 

 Clouds refer to the servers that run them 

 AJAX as the de facto standard (for better or worse) 

 Examples: Facebook, YouTube, Gmail, … 

 “The network is the computer”: take two 

 User data is stored “in the clouds” 

 Rise of the netbook, smartphones, etc. 

 Browser is the OS 

 



Utility Computing 

 What? 

 Computing resources as a metered service (“pay as you go”) 

 Ability to dynamically provision virtual machines 

 Why? 

 Cost: capital vs. operating expenses 

 Scalability: “infinite” capacity 

 Elasticity: scale up or down on demand 

 Does it make sense? 

 Benefits to cloud users 

 Business case for cloud providers 

 

I think there is a 
world market for 
about five computers. 



Enabling Technology: Virtualization 

Hardware 

Operating System 

App App App 

Traditional Stack 

Hardware 

OS 

App App App 

Hypervisor 

OS OS 

Virtualized Stack 



Cloud computing market 

Hardware provider 

Cloud technology enabler 

Infrastructure as a service 

Platform as a service 

Software as a service Everything is a service 



Everything as a Service 

 Utility computing = Infrastructure as a Service (IaaS) 

 Why buy machines when you can rent cycles? 

 Examples: Amazon’s EC2, Rackspace 

 Platform as a Service (PaaS) 

 Give me nice API and take care of the maintenance, upgrades, … 

 Example: Google App Engine 

 Software as a Service (SaaS) 

 Just run it for me! 

 Example: Gmail, Salesforce 

 



How do we scale up? 



Divide and Conquer 

“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker” “worker” “worker” 

Partition 

Combine 



Parallelization Challenges 

 How do we assign work units to workers? 

 What if we have more work units than workers? 

 What if workers need to share partial results? 

 How do we aggregate partial results? 

 How do we know all the workers have finished? 

 What if workers die? 

What is the common theme of all of these problems? 



Synchronization! 

 Parallelization problems arise from: 

 Communication between workers (e.g., to exchange state) 

 Access to shared resources (e.g., data) 

 Thus, we need a synchronization mechanism 

 



Managing Multiple Workers 

 Difficult because 

 We don’t know the order in which workers run 

 We don’t know when workers interrupt each other 

 We don’t know the order in which workers access shared data 

 Thus, we need: 

 Semaphores (lock, unlock) 

 Conditional variables (wait, notify, broadcast) 

 Barriers 

 Still, lots of problems: 

 Deadlock, livelock, race conditions... 

 Dining philosophers, sleeping barbers, cigarette smokers... 

 Moral of the story: be careful! 



Current Tools 

 Programming models 

 Shared memory (pthreads) 

 Message passing (MPI) 

 Design Patterns 

 Master-slaves 

 Producer-consumer flows 

 Shared work queues 

 

Message Passing 

P1 P2 P3 P4 P5 

Shared Memory 

P1 P2 P3 P4 P5 

M
e

m
o

ry
 

master 

slaves 

producer consumer 

producer consumer 

work queue 



What’s the point? 

 It’s all about the right level of abstraction 

 The von Neumann architecture has served us well, but is no longer 

appropriate for the multi-core/cluster environment 

 Hide system-level details from the developers 

 No more race conditions, lock contention, etc. 

 Separating the what from how 

 Developer specifies the computation that needs to be performed 

 Execution framework (“runtime”) handles actual execution 

 

The datacenter is the computer! 



Building Blocks 

Source: Barroso and Urs Hölzle (2009) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2013) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2013) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2013) 



Anatomy of a Datacenter 

Source: Barroso and Urs Hölzle (2013) 



Anatomy of a Datacenter 

Source: Barroso and Urs Hölzle (2013) 



Scaling “up” vs. “out” 

 No single machine is large enough 

 Smaller cluster of large SMP machines vs. larger cluster of 

commodity machines (e.g., 16 128-core machines vs. 128 16-core 

machines) 

 Nodes need to talk to each other! 

 Intra-node latencies: ~100 ns 

 Inter-node latencies: ~100 s 

 Let’s model communication overhead… 

Source: analysis on this an subsequent slides from Barroso and Urs Hölzle (2009) 



Modeling Communication Costs 

 Simple execution cost model: 

 Total cost = cost of computation + cost to access global data 

 Fraction of local access inversely proportional to size of cluster 

 n nodes (ignore cores for now) 

 

 

• Light communication: f =1 

• Medium communication: f =10 

• Heavy communication: f =100 

 What are the costs in parallelization? 

1 ms + f  [100 ns  (1/n) + 100 s  (1 - 1/n)] 



Cost of Parallelization 



Advantages of scaling “up” 

So why not? 
Why does commodity beat exotic? 



Moving Data Around 

Source: Barroso and Urs Hölzle (2013) 



Seeks vs. Scans 

 Consider a 1 TB database with 100 byte records 

 We want to update 1 percent of the records 

 Scenario 1: random access 

 Each update takes ~30 ms (seek, read, write) 

 108 updates = ~35 days 

 Scenario 2: rewrite all records 

 Assume 100 MB/s throughput 

 Time = 5.6 hours(!) 

 Lesson: avoid random seeks! 

Source: Ted Dunning, on Hadoop mailing list 



“Big Ideas” 

 Scale “out”, not “up” 

 Limits of SMP and large shared-memory machines 

 Move processing to the data 

 Cluster have limited bandwidth 

 Process data sequentially, avoid random access 

 Seeks are expensive, disk throughput is reasonable 

 Seamless scalability 

 From the mythical man-month to the tradable machine-hour 



MapReduce 



What is MapReduce? 

 Programming model for expressing distributed 

computations at a massive scale 

 Execution framework for organizing and performing such 

computations 

 Open-source implementation called Hadoop 



Typical Large-Data Problem 

 Iterate over a large number of records 

 Extract something of interest from each 

 Shuffle and sort intermediate results 

 Aggregate intermediate results 

 Generate final output 

Key idea: provide a functional abstraction for 

these two operations 

(Dean and Ghemawat, OSDI 2004) 



g g g g g 

f f f f f Map 

Fold 

Roots in Functional Programming 



Challenges 

1. Cheap nodes fail, especially if you have many 

 Mean time between failures for 1 node = 3 years 

 Mean time between failures for 1000 nodes = 1 day 

 Solution: Build fault-tolerance into system 

 

2. Commodity network = low bandwidth 

 Solution: Push computation to the data 

 

3. Programming distributed systems is hard 

 Solution: Data-parallel programming model: users write “map” & 

“reduce” functions, system distributes work and handles faults 



MapReduce 

 Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’’, v’’>* 

 All values with the same key are sent to the same reducer 

 The execution framework handles everything else… 

What’s “everything else”? 



map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce “Runtime” 

 Handles scheduling 

 Assigns workers to map and reduce tasks 

 Handles “data distribution” 

 Moves processes to data 

 Handles synchronization 

 Gathers, sorts, and shuffles intermediate data 

 Handles errors and faults 

 Detects worker failures and restarts 

 Everything happens on top of a distributed FS 



MapReduce 

 Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’’, v’’>* 

 All values with the same key are reduced together 

 The execution framework handles everything else… 

 Not quite…usually, programmers also specify: 

partition (k’, number of partitions) → partition for k’ 

 Often a simple hash of the key, e.g., hash(k’) mod n 

 Divides up key space for parallel reduce operations 

combine (k’, v’) → <k’, v’>* 

 Mini-reducers that run in memory after the map phase 

 Used as an optimization to reduce network traffic 



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 



Two more details… 

 Barrier between map and reduce phases 

 But we can begin copying intermediate data earlier 

 Keys arrive at each reducer in sorted order 

 No enforced ordering across reducers 



MapReduce Execution 

 Single master controls job execution on multiple slaves 

 

 Mappers preferentially placed on same node or same rack 

as their input block 

 Minimizes network usage 

 

 Mappers save outputs to local disk before serving them to 

reducers 

 Allows recovery if a reducer crashes 

 Allows having more reducers than nodes 

 



split 0 

split 1 

split 2 

split 3 

split 4 

worker 

worker 

worker 

worker 

worker 

Master 

User 

Program 

output 

file 0 

output 

file 1 

(1) submit 

(2) schedule map (2) schedule reduce 

(3) read 
(4) local write 

(5) remote read 
(6) write 

Input 

files 

Map 

phase 

Intermediate files 

(on local disk) 

Reduce 

phase 

Output 

files 

Adapted from (Dean and Ghemawat, OSDI 2004) 



“Hello World”: Word Count 

Map(String docid, String text): 

     for each word w in text: 

          Emit(w, 1); 

 

Reduce(String term, Iterator<Int> values): 

     int sum = 0; 

     for each v in values: 

          sum += v; 

          Emit(term, value); 

 



Word Count Execution 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 
fox, 1 

quick, 1 

the, 1 

fox, 1 
the, 1 

how, 1 

now, 1 
brown, 1 

ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 



Word Count with Combiner 

Input Map & Combine Shuffle & Sort Reduce Output 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 
fox, 1 

quick, 1 

the, 2 

fox, 1 

how, 1 

now, 1 
brown, 1 

ate, 1 

mouse, 1 

cow, 1 



Search Example 

 Input: (lineNumber, line) records 

 Output: lines matching a given pattern 

 

 Map:  

    if(line matches pattern): 
        output(line) 

 

 Reduce: identify function 

 Alternative: no reducer (map-only job) 



pig 

sheep 

yak 

zebra 

aardvark 

ant 

bee 

cow 

elephant 

Sort Example 

 Input: (key, value) records 

 Output: same records, sorted by key 

 

 Map: identity function 

 Reduce: identify function 

 

 Trick: Pick partitioning 

function h such that 

k1<k2 => h(k1)<h(k2) 

Map 

Map 

Map 

Reduce 

Reduce 

ant, bee 

zebra 

aardvark, 
elephant 

cow 

pig 

sheep, yak 

[A-M] 

[N-Z] 



Inverted Index Example 

 Input: (filename, text) records 

 Output: list of files containing each word 

 

 Map:  

      foreach word in text.split(): 
         output(word, filename) 

 

 Combine: uniquify filenames for each word 

 Reduce: 
  def reduce(word, filenames):   
      output(word, sort(filenames)) 

 



Inverted Index Example 

 

to be or 
not to be afraid, (12th.txt) 

be, (12th.txt, hamlet.txt) 
greatness, (12th.txt) 

not, (12th.txt, hamlet.txt) 
of, (12th.txt) 

or, (hamlet.txt) 
to, (hamlet.txt) 

hamlet.txt 

be not 
afraid of 
greatness 

12th.txt 

to, hamlet.txt 
be, hamlet.txt 
or, hamlet.txt 
not, hamlet.txt 
 
 

be, 12th.txt 
not, 12th.txt 
afraid, 12th.txt 
of, 12th.txt 
greatness, 12th.txt 
 
 



Most Popular Words Example 

 Input: (filename, text) records 

 Output: top 100 words occurring in the most files 

 

 Two-stage solution: 

 Job 1: 

• Create inverted index, giving (word, list(file)) records 

 Job 2: 

• Map each (word, list(file)) to (count, word) 

• Sort these records by count as in sort job 

 

 Optimizations: 

 Map to (word, 1) instead of (word, file) in Job 1 

 Count files in job 1’s reducer rather than job 2’s mapper 

 Estimate count distribution in advance and drop rare words 



Fault Tolerance in MapReduce 

1. If a task crashes: 

 Retry on another node 

• OK for a map because it has no dependencies 

• OK for reduce because map outputs are on disk 

 If the same task fails repeatedly, fail the job or ignore that 

input block (user-controlled) 

 Note: For these fault tolerance features to work, your 

map and reduce tasks must be side-effect-free 



Fault Tolerance in MapReduce 

2. If a node crashes: 

 Re-launch its current tasks on other nodes 

 Re-run any maps the node previously ran 

• Necessary because their output files were lost along with 

the crashed node 



Fault Tolerance in MapReduce 

3. If a task is going slowly (straggler): 

 Launch second copy of task on another node (“speculative 

execution”) 

 Take the output of whichever copy finishes first, and kill the 

other 

 

 Surprisingly important in large clusters 

 Stragglers occur frequently due to failing hardware, software 

bugs, misconfiguration, etc 

 Single straggler may noticeably slow down a job 



Takeaways 

 By providing a data-parallel programming model, 

MapReduce can control job execution in useful ways: 

 Automatic division of job into tasks 

 Automatic placement of computation near data 

 Automatic load balancing 

 Recovery from failures & stragglers 

 

 User focuses on application, not on complexities of 

distributed computing 



Hadoop Components 

 Distributed file system (HDFS) 

 Single namespace for entire cluster 

 Replicates data 3x for fault-tolerance 

 

 MapReduce framework 

 Executes user jobs specified as “map” and “reduce” 

functions 

 Manages work distribution & fault-tolerance 



MapReduce Implementations 

 Google has a proprietary implementation in C++ 

 Bindings in Java, Python 

 Hadoop is an open-source implementation in Java 

 Development led by Yahoo, now an Apache project 

 Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, 

… 

 The de facto big data processing platform 

 Large and expanding software ecosystem 

 Lots of custom research implementations 

 For GPUs, cell processors, etc. 

 



How do we get data to the workers? 

Compute Nodes 

NAS 

SAN 

What’s the problem here? 



Distributed File System 

 Don’t move data to workers… move workers to the data! 

 Store data on the local disks of nodes in the cluster 

 Start up the workers on the node that has the data local 

 Why? 

 Not enough RAM to hold all the data in memory 

 Disk access is slow, but disk throughput is reasonable 

 A distributed file system is the answer 

 GFS (Google File System) for Google’s MapReduce 

 HDFS (Hadoop Distributed File System) for Hadoop 



GFS: Assumptions 

 Commodity hardware over “exotic” hardware 

 Scale “out”, not “up” 

 High component failure rates 

 Inexpensive commodity components fail all the time 

 “Modest” number of huge files 

 Multi-gigabyte files are common, if not encouraged 

 Files are write-once, mostly appended to 

 Perhaps concurrently 

 Large streaming reads over random access 

 High sustained throughput over low latency 

GFS slides adapted from material by (Ghemawat et al., SOSP 2003) 



GFS: Design Decisions 

 Files stored as chunks 

 Fixed size (64MB) 

 Reliability through replication 

 Each chunk replicated across 3+ chunkservers 

 Single master to coordinate access, keep metadata 

 Simple centralized management 

 No data caching 

 Little benefit due to large datasets, streaming reads 

 Simplify the API 

 Push some of the issues onto the client (e.g., data layout) 

HDFS = GFS clone (same basic ideas) 



From GFS to HDFS 

 Terminology differences: 

 GFS master = Hadoop namenode 

 GFS chunkservers = Hadoop datanodes 

 Differences: 

 Different consistency model for file appends 

 Implementation 

 Performance 

For the most part, we’ll use Hadoop terminology… 



Hadoop Distributed File System 

 Files split into 64MB blocks 

 Blocks replicated across several 

datanodes (usually 3) 

 Single namenode stores metadata 

(file names, block locations, etc) 

 Optimized for large files, 

sequential reads 

 Files are append-only 

Namenode 

Datanodes 

1 

2 

3 

4 

1 

2 

4 

2 

1 

3 

1 

4 

3 

3 

2 

4 

File1 



Namenode Responsibilities 

 Managing the file system namespace: 

 Holds file/directory structure, metadata, file-to-block mapping, 

access permissions, etc. 

 Coordinating file operations: 

 Directs clients to datanodes for reads and writes 

 No data is moved through the namenode 

 Maintaining overall health: 

 Periodic communication with the datanodes 

 Block re-replication and rebalancing 

 Garbage collection 



Adapted from (Ghemawat et al., SOSP 2003) 

(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state 
(block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace 

/foo/bar 

block 3df2 

Application 

HDFS Client 

HDFS Architecture 

 



Putting everything together… 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 



Source: LLNL 


