Big Data & Hadoop

Introduction to Big Data,
MAP/REDUCE, Hadoop, HDFS

D. Tsoumakos
Data Analysis and Processing

2020

Department of Informatics \@'«“ R,

lonian University i e " IONIAN UNIVERSITY
Material adapted from slides by Jimmy Lin, The iSchool — University of Maryland 1,,, :V 22 DDEI’AIITMEIIT OF INFORMATICS

And from www.cloudcomputingchina.com

The Big Data era

What is Big Data?
o Big data is like teenage sex:

e everyone talks about it

e nobody really knows how to do it

rﬁ Dan Ariely

ZJ

*“',\—N,{,MO
A o NG,
s

D

/934 TN

I

oL £1,y

o=
G,

DA

PR I
ANE

o Follow

Big data is like teenage sex: everyone talks about it, nobody really knows
how to do it, everyone thinks everyone else is doing it, so everyone claims

they are doing it._.

e everyone thinks everyone else is doing it
e SO everyone claims they are doing it...

--Dan Ariely, Professor at Duke University

W AH,
% /"'ﬂv‘(%’v
VAT)

;O&'Arf;v,
- - - - Y DAS
Big Data Definition

o No single standard definition...

“Big Data” is data whose scale, diversity, and complexity
require new architecture, techniques, algorithms, and
analytics to manage it and extract value and hidden
knowledge from it...

Characteristics of Big Data:
1-Scale (Volume)

o Data Volume

e 44x increase from 2009 2020
e From 0.8 zettabytes to 35zb

o Data volume is increasing exponentially

terabytes petabytes exabytes zettabytes

the amount of data stored by the average company today

Twitter: Tweets Per Day

Exponential increase in
collected/generated data

Jan07 Jin08 Oct09 Sepl0 Junll Octll Juni2
Coppghe ©101 D Feinics bogsto e

The Digital Universe 2009-2020

Growing
o
2008 "+ Factor Of 44
08Zs “
2020: 35.2 hmnnn

Data storage growth
8 In millions of petabytes

5 (One petabyte = 1,024 terabytes) ;

= | |

| 05 07 09 11 13e 1%

Characteristics of Big Data:
2-Complexity (Varity)

o Various formats, types, and
structures

o Text, numerical, images, audio,
video, sequences, time series, social
media data, multi-dim arrays, etc...

o Static data vs. streaming data

o A single application can be
generating/collecting many types of
ata

To extract knowledge=>» all these types of
data need to linked together

AH,
\\\“\ "'4{04’0

Characteristics of Big Data:
3-Speed (Velocity)

ol - £
$0-E,
)984 ,'»<|\\:A

ANgR

o Data is begin generated fast and need to be processed
fast

o Online Data Analytics

o Late decisions = missing opportunities
o Examples

e E-Promotions: Based on your current location, your purchase

history, what you like =» send promotions right now for store next to
you

e Healthcare monitoring: sensors monitoring your activities and
body =» any abnormal measurements require immediate reaction

Big Data: 3V’s

Big Data = Transactions + Interactions + Observations

BIG DATA
Sensors / RFID / Devices User Generated Content
Pe S Mobile Web Sentiment TP
User Click Stream
; Spatial & GPS Coordinates
Web logs WEB AVB testing
/T External Demographics
Offer history Dynamic Pricing
\ | Affiliate N ; Business Data Feeds
Ditfferent types of st . 4
and unstructuned dats Gigabym Segmentation h ng HD Video, Audio, Images
Offer details Speech to Text
Complexity ureh e -~ Customer Touches Behavioral Targeting ProductService Logs
Megabytes urc Support Contacts Dynamic Funnels
Payment reco SMSIMMS

Increasing Data Variety--

Source: Contents of above graphic created in partnership with Teradata, Inc.

Speed Volume

Extended Big Data Characteristics: 6V °

5
\

o Volume: In a big data environment, the amounts of data collected and

processed are much larger than those stored in typical relational
databases.

Variety: Big data consists of a rich variety of data types.

Velocity: Big data arrives to the organization at high speeds and from
multiple sources simultaneously.

Veracity: Data quality issues are particularly challenging in
a big data context.

Visibility/Visualization: After big data being processed, we
need a way of presenting the data in a manner that's
readable and accessible.

Value: Ultimately, big data is meaningless if it does not
provide value toward some meaningful goal.

Veracity (Quality & Trust)
o Data = quantity + quality
o When we talk about big data, we typically mean its
guantity:

e What capacity of a system provides to cope with the sheer size of
the data?

e |s a query feasible on big data within our available resources?

e How can we make our gqueries tractable on big data?
o ...

o Can we trust the answers to our gueries?

e Dirty data routinely lead to misleading financial reports, strategic

business planning decision = loss of revenue, credibility and
customers, disastrous consequences

o The study of data quality is as important as data quantity

Data in real-life is often dirty

8o |40° |00°

Visibility/Visualization

o Visible to the process of big data management

o Big Data — visibility = Black Hole?

= | 759,788

: ~ ":AI IAI:"A+:AIA +AAIAI
© Bigdat? ;“7 7 COGNQS *+ tobleov GSaS
A ;.l_v"“.,‘) lmr e

CloarSto: QlikView Wy Business Objects

http://dataconomy.com/chicago-city-big-data/

W AH,
\z* /"'4!04:0
AN

1

QNOL: £7

Value P

o Big data is meaningless if it does not provide value toward
some meaningful goal

Big Data: 6V in Summary

Big Data N,/ OpenData
Volume Velocity Variety Veracity
o000 0
e 000 0 || =0=0=e . 9
o 0o 0 00 0 O o
e 0 0 0 0 =0 =0 =0=0 0
o.o.o.o.o. 0 0 0 o @
%% =0 =0=0 —=9o Oe- e ©®
o 00 0 o =—0=0 =—0=0O @
e 0000
Data at Data in Data in Data in Data in Data of
Rest Motion Many Forms Doubt the Open Many Values
i Uncertainty due to Open data is Large range of data
Terabytes t St dat
existing data to seconds to multimed?ia ' & incompleteness, anyone. Which raises philanthropy to high
process respond ambiguities, latency, issues o_f privacy. value monetization)
deception, model Security and
approximations provenance
- 7 A\ 7 A 7 A\ >

Transforming Energy and Utilities through Big Data & Analytics. By Anders
Quitzau@IBM

W AH,
\z* /"'4!04:0
AN

0 t h er V,S %Em@a?

o Variability

e Variability refers to data whose meaning is constantly changing.
This is particularly the case when gathering data relies on
language processing.

o Viscosity

e This term is sometimes used to describe the latency or lag time in
the data relative to the event being described. We found that this
IS Just as easily understood as an element of Velocity.

o Virality

e Defined by some users as the rate at which the data spreads; how
often it is picked up and repeated by other users or events.

o Volatility

e Big data volatility refers to how long is data valid and how long
should it be stored. You need to determine at what point is data no
longer relevant to the current analysis.

o More V’s in the future ...

1

QNOL: £7

Harnessing Big Data

). Das
U aQ l'n Mot‘
v ‘on : .
- " o Real Time Analytic
— ¢ _) v Processing (RTAP) to
© improve business response
(Dataat - \\
v ~
O rest :
Q Analysis of current data v
to improve business Stream
Reporting and human transactions Computing 2010
analysis on historical
data Data
Warehousin,
Operational g 2000
Databases
1970 i b
1968
Relational RTAP

Hierarchical

database oo OLAP
wwem QLTP
o OLTP: Online Transaction Processing (DBMSSs)
o OLAP: Online Analytical Processing (Data Warehousing)
o RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)

Customer
Customer Support Segmentation

Feature Lisage

Google
o

y 512 cnpii Y
i 3B - A1 A0AD 169% 0. ’._a D
K ¢ SNUE

The Model Has Changed...

o The Model of Generating/Consuming Data has Changed

Old Model:

New Model:

Qi

i

Challenges in Handling Big Data

Big Data Boom

oo

In millions of petabytes

=T | L% B - (=]

05 07 09 11

Data storage growth

(One petabyte = 1,024 terabytes)

"I'?:e '

15

Big data challenge

Lack of softwaref |

technology | 30%

Lack of analytic skills
|

Insufficient budget 5%
Already using 11%

‘ 28%

Sources: IDC, DataXu

o The Bottleneck is in technology

e New architecture, algorithms, techniques are needed

o Also in technical skills

e Experts in using the new technology and dealing with big data

DATA & AI LANDSCAPE 2019

INFRASTRUCTURE ANALYTICS & MACHINE INTELLIGENCE APPLICATIONS - ENTERPRISE
HADOOP ON-PREMISE HADOOP IN THE CLOUD STREAMING / IN-MEMORY DATA ANALYST PLATFORMS DATA SCIENCE PLATFORMS SALES MARKETING - B2B MARKETING - B2C CUSTOMER EXPERIENCE / SERVICE ENTERPRISE ——
‘ i o) - . N - . PRODUCTIVITY
cloudera m gis B= Microsoft Azure e edntabrici icrosoft ‘@ pentaho alteryx edatabricks :jkal}a N CHORUS Fff\l)IUE: App At 2612 @bioomresch M SendGrid | gualtrics’ QHEmu.I:d A:u:.-—wu sy m:n:: e ack
MAPR D O Google Cloud . geu . QUAVUS AYASDI] EESALES peoplear | revemmne g . | bugge actioma @ siuscons | @ctaRasmioce zendes @ Kustomer @t L_|
Pivotal put ST Cloud Platform B o = S Soomno () rapidminer Tpcgy ® W] o g, %) commrisas remn omonids | B @i O Ganart gpende | ORACLE
S T Cloud Platform ATTIV/O Datameer incorta. . . conversica #iive . sense amploro. G amerty Bavmnme | AR @b & it $os | GURU lumiata
H P i [f]rmooes - I -
hi s dlil m ARtz crucanid inter|ana. Muooe ENDOR ANACONDA Ssas - clart Ao tactai @ e ENGAGIC wo | @@ Siman e [PERSADO] | DighaiGenius ASAPP Qada nuTomar ainitl | (S oiFFeor ©) clare
jethro . . P o S . i ' y s :
J [Moce A zENA % CIGASPACES . Wallaroo . 77 kx Sisu o e 4\ MathiWorks: fuse, Pow 1 | vnoren mpe remesh " See frame talla® Kasisto
HUMAN CAPITAL LEGAL REGTECH & FINANCE BACK OFFICE SECURITY
NosaL D'\TABASE;W . NeWSQLC?"TtABASES GRAPH DB "T’:iil?ji CLOUDEDW =) SERVERLESS| | g p{ aTFORMS VISUALIZATION MACHINE LEARNING —— | fhueie Spmmetrks | RAVEL g | COMPLANCE | 7inaplan | AUTOMATION&RPA | @vanmum it C L ANCE #5>zscaler @muam [- illurmio
ustrix " P Everlan
© Google Cowat WS et u | reed | PR | aws Rioe Ioioker @D BWS | Titobleoy Qe o hil] 2 ouer @ | 7 o | B0 | ZUORQ | [UTPath @
ORACLE g8 picrosnarune otal Nepune — e i mya | seeisco Ok | com T .
O i rmmw O Google Cloud 2 o T v W - £ Google Clout R Qanyo O textio JUDICATA SBoge ;Anssmrr blueprism /A%
Winongol o MarkLogic AnvevsaL O lefusdins | ORACLE | (@cben B2 Microsoft Azure nresos ":‘) =) — - H O Wadetendy Stella | [FEREVIA] PARTNERSHIPS: @reent \:\;Dt.::. ‘:v::k;‘m S pNdrop / exabeam o ey o) Sentnelcro &5 SeuSarecsd § socure
© couctvase 0275 | s “ienios [| (Kpgnitio | Pivotal - arscare B Qlik@ | celonis O ,_[;Rm, gamalon © entelo | = deracrin| R @CHIE o | Fodnsecrs Whitglass 4 BusTien i frased (e zaf
g Y PULSAR <<z IO cuw AR o . -
@00t EEEEIE | vouTrs SPlice @indy | At ;asgl s o G soosvws wsgmaton e birst | Qzest Woorom: pﬂ, ViSENTE ELemENT” s —_— e ; . betkaeper n vtom . A B G S
osson: gz D | e it | Infoworks | e | | Misrostratogy A kesn 10 CHARTIO Flocrs ce deepsensedl cen @ casetext werveue | pilot o BT o oo Semme @)oo K asomes
APPLICATIONS - INDUSTRY
N STORMATION | DATA INTEGRATION TR GO ERNANCE T ONITORING ot Efﬂiﬂf;ﬁﬁi?ﬂ" lumlzoumf Iw_ J— Z';Eéfi.iﬁff @wie ADVERTISING EDUCATION REALESTATE— GOV INTELLIGENCE FINANCE- — FINANCE - LENDING
Fraws ‘N)Ymo‘u:m“ o 01 NS } —_— LR B Lo | REDFIN @ovensov | OPalantir | INVESTING | ondeck Affim BIE netnomide
stalend @pentoho | “’ww © rubrik ﬂ‘ " m"::' 9 darifei oomi | @t vopger. G| [ra— criteol @y 5‘::5 Opendoor | marka3 fDataminr ;ED"U‘:":W DIANPUAI _Kreditech AVANT :&:"‘"“"*’“
alteryx mrscrs ,hgk cmm“'“;m‘“ [E] ‘;;’::‘:u — SO Cdespomatic |) Affeciva < P | B S e | | ORACLE o Clever (‘E’R:D_"F'_S %:2:. Quid Ao | £ @ v Upstart Hippo
Seament ¢ i, ruuo Ivostories “
. arent LT AN Pk Voot pogerart 0 AN | e [T] sowapaung e, Y PHMEE & thetradeDesk @eclara PSS :pRIMER | CNNEED | quypg FLEARBANC i upgroce | Shtiecioo
tamre % Paxata | %y import.io AR gsoft pag ausieuirve ADEE o ORI A 4 d . kidaptiie " ¥ Passp ISENTIUM) ROOT
-] & | nomiogics Al o5 stillery s Liveintent soncmy FolreE 100credn (@)Welab wecashmEER
@ | infoworks ¥ e OKERA P ——. aeagito snips oA T Ausona wostyol P
Fsueamses gy SHOWPLOW 2 AT LL N e () datamorid sxnthesis uss EED A, e S U o iyt B """od““’"“ fmaum sknowre | B | smernicHoan > PlaveriPack s @ weatln s | g
Cppier ., IR ° agradescope Lr— APAGAYA aire aghih A%\ CAPE
STORAGE CLUSTER SUCS 1 DATA GENERATION 1 Al OPS GPU DBs & HARDWARE — | SEARCH LOG ANALYTICS 1 SOCIALANALYTICS -1 WEB /MOBILE/ HEALTHCARE LIFE SCIENCES TRANSPORTATION AGRICULTURE | COMMERCE - INDUSTRIAL ————
2 &LABELLING awormuma | CLOUD ew%\-wu arm A 5P'”“"I’ R Hootsuite' ;1 C?"é:"“:i‘““:m'c; Py flatiron Clover «7ruus @ eere | Wi UBER T=sLs W Z9 ARMERS Ill\»slta;urf AVEVA SIEMENS B
—tico B (i) Ao lastcssend Bsumalogic _ _ ogle Analytics o , wivwe O - UBTAKE
""""wor“"k.a“”.“"t -Pum' ‘;{::E“:: ; crapucore | | @algolia coveo o a‘E NETBASE misponel A sumror o Gingeio Glow Wbomion | cuciorrn Yerly | @eupanmms CIUSE e & | TG Fix :;;\-x -
L:P o Qe - ——— myTHIC 1= Lucidworks ATTIVIO | oo sy & synthesio tracx | ** o 30Med Bzebra @rans WuxiNextC OBE Z o drIve Al - cmemes S350 | QN JounDuene Whetallie: e o [
Iupp scale bt O swiftype 5 exas reach 3 Airtable 2E3C TEMPUS nisiome) aiCure insitro ﬁ!: Droronamy @ <25 Aurora | RBLUERIVER 7‘::(»«7\1 :.f::::f\j
MHIVE Stron e 8 - y 7 euri
BUIVE 1ot | D snasnse vaans | HbBAG iy BsiGorT Ggranly | | BB wcfpune Y ciitizena €) | € certes feenome | 112V @ avorve G i PLonAl o —
D o
LionsmiaE Py | @ omniis SINEQUA i wsimilatied | stora notoble. e QRSN o n0s Dranerss | G¥NI0 PTMUS @moovit m F::;;S;" weharmony stem Amper” ByteDance
@enitc ""(Q Boomon @ avises eITRInE | (=) fexar Kodiak comma-al | ipapanis | ke =
Quentus & anrsev: I MoA e BN woSAR & - ® o @ FOAMATA Jveroicais duetto (G e
8 = puce ENEEET Ot P netradyne semmasie CMIMIBE S o, . ZnizR
= A&Termivien @ Electric @
AWS 2y Google Cloud B Microsoft T evenrans §88S 1010DATA vmware TIBCH Towonin ORACLE Plnetapy $5Y0c50T MAPR. cloudera BJ... Binrovecser e (F)soncrs et Lot | o omaans @ thing INRIX Oprospera | P
OPEN SOURCE
FRAMEWORKS QUERY / DATA FLOW DATA ACCESS & DATABASES ORCHESTRATION & MGMT STREAMING & STATTOOLS & AIOPS Al/MACHINE LEARNING / DEEP LEARNING SEARCH LOGGING & MONITORING —— VISUALIZATION 7 COLLABORATION 7 SECURITY ——
e Spaik’ Spﬂﬁ?SQL O mongo! &P redis stalend ‘i- MESSAGING WEFQ &INFRA Frensorrion [N HEEE UWE» o@. caffe I'M:'m_i & | = . K ibena Y| Mateltib . Apache Ranger
G, coosst i B spaik @ nifie F i @ pM | TensorBoard KNOX
c . =) ¥ Cockroach ras druid Wscala T opens1 T (NEAN0 EETNEEE Aee@t oy FeatureFu 5 llg R logstash @Yprometeus — R
@rink YARN TEZH BRILL e O fpche i " i@¥Kubellow olr Jupyter S
Flink "SLAMDATA - Fink 3 Bstudo @~ D seaborn @ o Ema | \g
, . s .
= : L. Droomo | S C 4 SeinB kwm'-"‘m,m Brone oo | Goory ol S oeoon | D VELES & onnx L) Tacane | N Wiens Broane | [sentry
|y ocier
PO ::Dmnp Hg.h @rins iriak HamseE @ - sccumo oeted & kong Apachs RockithQ - . P f neon” EEERE m Victon Anacoros SooUm-R
DATA SOURCES & APls DATA RESOURCES
HEALTH lot FINANCIAL & ECONOMIC DATA AIR / SPACE / SEA PEOPLE / ENTITIES LOCATION INTELLIGENCE OTHER DATA SERVICES INCUBATORS & SCHOOLS RESEARCH
S ¥ vaiioic @ GE Digital Bloomberg monsonreueRs [| pow Jones Q omates (planet :.: acxi®m s&kperian FOURSQUARE @ ESOMAGY ores @ =] @ galvanize O:EA: faceboolcresearch
" . AIRDBATICS ire N IMAGENET a4 s : PLURALSIOHT A
' R Practice fusion UPTAKE thingworx 08w Hel TEE PLAID secono Vool aspire £ N | #insideView sense’s0 m o ezagon & T : v M““
g P [UPTAKE]) 0 &R B8 seson. [kespry@® Labeie § carasciEnce 4
expemen ; = factual DataCamp =4 Datatlre 1
i i N helium Cehlle @ iestimize = PREMISE ? a V ® tellusans 83 comeniegen Pocell] @esri I foctua [g fractab., 2991 a 7 VECTOR [E‘!Ef‘
fitbit GARMIN Y s 1 Quandl M rigenss] Quantcast Za . INSTITUTE csant
WINDWARD (7) Dromsbepicr [Heasis Ly Mapilory M CRUx DI DataKind INSIGHT, &2 The bata Incubater
[Fowar o B s SteckTwits X/gnite X0 earnest predata - SAFEGRAPH . Kexc N “ = meTs ALLEM INSTITUT
kinsa 9 S P W arineTrattic | VL. < @cuebiq A Radar i smsrmie hgrafiti o INNOPLEXUS kI'Z A b L men

July 16, 2019 - FINAL 2019 VERSION

© Matt Turck (@mattturck), Lisa Xu (@lisaxu92), & FirstMark (@firstmarkeap)

mattturck.com/data2019

FIRSTMARK

EARLY STAGE VENTURE CAPITAL

Google

(5/2014)

Had : 365 PB, 330K
YAHOO! oo 51

®

Hadoop: 10K nodes,
150 PB

150K cores,

ey
(4/2014)

300 PB data in Hive +
facebook

600 TB/day (4/2014)
S3: 2T objects, 1. 1M

request/second (4/2013)

amazon
web services™

wegemmeys 040K ought to be

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS

P ad 1=
400B pages,
10+ PB
(2/2014)

JPMorganChase ()

150 PB on 50k+ servers
running 15k apps (6/2011)

LHC: ~15 PB a year

CERN
\

NS

LSST: 6-10 PB a year
(72020)

SKA: 0.3 - 1.5 EB
per year (2020)

No data like more data!

s/knowledge/data/g;
1.00 4
0.95 4 0.44 P |
+El.5‘IBPhJ:_2;g ee-a*"
@;ﬂ'f"""' +0.15BP/x2
0.90 0421 i ¥ +0.39BPK2 1
> -) +0.56BP/x2.~
s 3 04l oy]
= m . w
0.70BPfx2
0 0.85 - m
o 0.85 E _/'ﬂ-
w + 0.38 [+0.62BP/x2 .
o D Ve target KN ——
0.80 4 = < +ldcnews KN ———
0.36 // - +webnews KN % -
/E, target SB -—-=—
o 0.66BP/x2 +ldcnews SB —=—
.75 4 0.34 F +webnews SB -y
o ewepsBAe TV
) 10 100 1000 10000 10000 1e+06 l
070 LM training data size in million tDkEI‘IS\
0.1 10 = =
Millions of Words -

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

How do we get here if we’re not Google?

What to do with more data?

o Answering guestions

e Pattern matching on the Web
e Works amazingly well

Who shot Abraham Lincoln? — X shot Abraham Lincoln

o Learning relations

e Start with seed instances
e Search for patterns on the Web
e Using patterns to find more instances

Wolfgang Amadeus Mozart (1756 - 1791)
Einstein was born in 1879

Birthday-of(Mozart, 1756)

Birthday-of(Einstein, 1879)
PERSON (DATE —

PERSON was born in DATE

(Brill et al., TREC 2001; Lin, ACM TOIS 2007)
(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; ...)

- %, -

R ST A el
e =i

) = e n.rwﬂnrx ;

~ m—— ey R

Q.,-lh n-.‘.. —
11 ~ 0l S .
T L o

@EMH| R e
TS — aave 3

SRS SR RS
PR i%pﬂ\

IH» — e " - .
* = -~ LA

. S SUSeEIA,

e - i S — o Rt
. .. - 25 m:— &
. = A s
- - - " 3 v -

_ &

Commerce

oD}
=
o
+
o
+
(o))
O,
=)
@
)
0
+
=
o0 un
or—
“ o
SN
=
=
% o
L
4o
ta
©
(=

Know thy customers

What is cloud computing?

&

=8| (D0
ANgR

Just a buzzword?

o Before clouds...

e P2P computing
e Grids
e HPC

o Cloud computing means many different things:

e Large-data processing
e Rebranding of web 2.0
e Ultility computing

e Everything as a service

X\ AH
\Z** /"41042)
A" 2
o 2) 2\

1

PN\
RS .
(R @) 5

(2 >

Rebranding of web 2.0

QNOL: £7

o Rich, interactive web applications

e Clouds refer to the servers that run them
e AJAX as the de facto standard (for better or worse)
e Examples: Facebook, YouTube, Gmail, ...

o “The network is the computer”: take two

e User data is stored “in the clouds”
e Rise of the netbook, smartphones, etc.
e Browser is the OS

Utility Computing

o What?

e Computing resources as a metered service (“pay as you go”)
e Ability to dynamically provision virtual machines

o Why?

e Cost: capital vs. operating expenses

e Scalability: “infinite” capacity

e Elasticity: scale up or down on demand
o Does it make sense?

e Benefits to cloud users
e Business case for cloud providers

I think there is a
world market for
about five computers.

App App App

App App App 0OS 0OS oS
Operating System [Hypervisor }
Hardware Hardware

Traditional Stack Virtualized Stack

Cloud computing market

Software as a service Everything is a service
Platform as a service

Infrastructure as a service

Hardware provider

Everything as a Service

o Utility computing = Infrastructure as a Service (laaS)

e Why buy machines when you can rent cycles?
e Examples: Amazon’'s EC2, Rackspace

o Platform as a Service (PaaS)

e Give me nice APl and take care of the maintenance, upgrades, ...
e Example: Google App Engine

o Software as a Service (SaaS)

e Justrun it for mel!
e Example: Gmail, Salesforce

How do we scale up?

Divide and Conquer

U

/

“worker”

\

Iy

.

“Work”

|

Wy

“worker”

N

“worker”

/

W3

\

I

Partition

|
|

Combine

R

W2k,
S/ ANV e\

Parallelization Challenges

QNOL- £
a0

o How do we assign work units to workers?

o What if we have more work units than workers?
o What if workers need to share partial results?

o How do we aggregate partial results?

o How do we know all the workers have finished?

o What if workers die?

What is the common theme of all of these problems?

W AH,
\z* /"'4!04:0
AN

1

QNOL: £7

Synchronization!

o Parallelization problems arise from:

e Communication between workers (e.g., to exchange state)
e Access to shared resources (e.g., data)

o Thus, we need a synchronization mechanism

Managing Multiple Workers

o Difficult because

e We don’t know the order in which workers run
e We don’t know when workers interrupt each other
e We don’'t know the order in which workers access shared data

o Thus, we need:

e Semaphores (lock, unlock)
e Conditional variables (wait, notify, broadcast)
e Barriers

o Sitill, lots of problems:

e Deadlock, livelock, race conditions...
e Dining philosophers, sleeping barbers, cigarette smokers...

o Moral of the story: be careful!

Current Tools

o Programming models

vy

e Shared memory (pthreads) e

\ 4

Memory

e Message passing (MPI) VYV Y

P, P, P, P, P,

o Design Patterns

e Master-slaves
e Producer-consumer flows
e Shared work queues

producer consumer
ol |

producer consumer

master

A

l}l‘lll}

slaves

T

L LLL

L L

4 L
|
||
— e il
L
v vy

work queue

What’s the point?

-2,

ol £
N,
955 - >

o It's all about the right level of abstraction

e The von Neumann architecture has served us well, but is no longer
appropriate for the multi-core/cluster environment

o Hide system-level details from the developers

e NoO more race conditions, lock contention, etc.
o Separating the what from how

e Developer specifies the computation that needs to be performed
e Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

Building Blocks

Source: Barroso and Urs Holzle (2009)

Storage Hierarchy

One Server

DRAM: 16 GB, 100 ns, 20 GB/s
Disk: 2T B, 10 ms, 200 MB/s
Flash: 128 GB, 100 us, 1 GB/s

Local Rack (80 servers)
DRAM: 1TB, 300 us, 100 MB/s
Disk: 160TB, 11 ms, 100 MB/s

S
Dgé’éﬂiﬂm S Flash: 207TB, 400 us, 100 MB/s
L DRA s

Cluster (30 racks)

DRAM: 30TB, 500 us, 10 MB/s

Disk: 4.80PB, 12 ms, 10 MB/s
e, Flash: 600TB, 600 us, 10 MB/s

Source: Barroso and Urs Hélzle (2013)

Storage Hierarchy

10,000,000.0
1,000,000.0 /
100,000.0 f“‘m\//
10,0000 - / -
1,000.0 ,{/\\: / ‘H"*'--._ et

1000 / -
100 N

1.0 :'
0.1 - I |
Local DRAM Local Disk Rack DRAM Rack Disk Datacenter Datacenter
DRAM Disk
Latency (us) ------==-nn---
Bandwidth (MB/sec)
Capacity (GB)

Source: Barroso and Urs Hélzle (2013)

Storage Hierarchy

10,000,000.0 %

.

S,

1,000,000.0

100,000.0

—

10,000.0

1,000.0

100.0

100 i

1.0 ¥

0.1

Latency (us) ---====veemn--
Ops/sec — — — —
$/GB

Source: Barroso and Urs Hélzle (2013)

Anatomy of a Datacenter

Computer Air Handling Unit (CRAC)

. UP To 30 Ton Sensible Caml Per Unit

» Air Discharge Can Be Up Downflow Configuration

» Downflow Configuration Used With Raised Floor To Create
A Pressunized Supply Air Plenum With Floor Supply Diffuscrs

Individual Colocation Computer Cabinets
* Typ. Cabinet Footprint (28"W x 36"D x 84"H)
« Typical Capacities Of 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU)
» Typical Capacitics Up To 225 kVA Per Unit
« Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)
Emergency Diesel Generators
« Total Generator Capacity = Total Electrical Load To Building
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
+ Can Be Located Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Attenuating Enclosures

Fuel Oil Storage Tanks

» Tank Capacity Dependant On Length
Of Generator Operation

« Can Be Located Underground Or At

o
Grade Or Indoors

Colocation Sulte;

* Modular Configuration For
Flexible Suite Sq.Ft. Areas.) Y . -
* Suites Consist Of Multiple Cabincts With ~ : e * Uninterruptible Power Supply Modules
Secured Partitions (Cages, Walls, Etc.) : * Up To 1000 kVA Per Module
« Cabinets And Battery Strings Or Rotary Flywheels
* Multiple Redundancy Configurations Can Be Designed

//Electrlcal Primary Switchgear

-~ * Includes Incoming Service And Distribution

> » Direct Distribution To Mechanical Equipment

* Distribution To Secondary Electrical Equipment Via UPS

Hest Rejoction Toviens Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Uni
. lers, Air Cooled Chillers, Etc. ¢ Used To Pump Condenser/Chilled Water Between Drycoolers Inits
5 3:,”{"20 400 Ton Capacity Per Usit « Additional Equipment Includes Expansion Tank, Glycol Feed System

« Mounted At Grade Or On Roof * N+1 Design (Standby Pump)

* N+1 Design

Source: Barroso and Urs Hélzle (2013)

Anatomy of a Datacenter

Ceiling Ceiling
il Vet ey pia,
Liquid v+ tE ¢ - Liquid
SuPpILCRAC — LRack - | Rack ‘l . | ack Lpack by [1 CRAC IS_U[;ply
Ie—unit 15 | | {;j@ ' | Unit =
Floor Tiles 3 e e Floor Tiles
Floor Sl Fomm—— e orSIab

Source: Barroso and Urs Holzle (2013)

W AH,
\Z** /"41042)
AN

1

QNOL: £7

N

Scaling “up?” vs. “out”

o No single machine is large enough

e Smaller cluster of large SMP machines vs. larger cluster of
commodity machines (e.g., 16 128-core machines vs. 128 16-core

machines)
o Nodes need to talk to each other!

e Intra-node latencies: ~100 ns
e Inter-node latencies: ~100 us

o Let’'s model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Holzle (2009)

W AH,
\z* L 4!04'0
AN

1
N

5 3& &)=

Modeling Communication Costs

QNOL: £7
79g

o Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster
e n nodes (ignore cores for now)

1 ms +fx[100 ns x (1/n) + 100 us x (1 - 1/n)]

* Light communication: f =1
* Medium communication: f =10
* Heavy communication: f =100

o What are the costs in parallelization?

Cost of Parallelization

Normalized execution time

1000 1 high communication
medium communication
- _-._ ' ‘
light communication
'1 -DD T T T T .I T T T I.
0 4 8 12 16 20 24 28 32

number of nodes

Z
>
frd] Iz
(I

- 11 79 58] (36

Advantages of scaling “up

g 30-

z .

3 25 | 9.

£ 7,

5@ 20 - %%_

5 © A

o & 15 1 msqb

g e &

Q@ Q@

o = 10 -

E > ’jghi Communication

g ——

@ 0 : , e |é—\

* 512 1024 2048 4192

Cluster size (number of cores)
So why not?

Why does commodity beat exotic?

Moving Data Around

10,000,000.0
1,000,000.0
100,000.0 i /
10,0000 - - :
1,000.0 /\\x,\\// B o

1000 / -
10.0 N

1.0 :'
0.1 - [T | |
Local DRAM Local Disk Rack DRAM Rack Disk Datacenter Datacenter
DRAM Disk
Latency (us) ------==-nn---
Bandwidth (MB/sec)
Capacity (GB)

Source: Barroso and Urs Hélzle (2013)

5

=8| (D0
ANgR

Seeks vs. Scans

o Consider a 1 TB database with 100 byte records

e We want to update 1 percent of the records

o Scenario 1: random access

e Each update takes ~30 ms (seek, read, write)
e 108 updates = ~35 days

o Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

o Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

“Big Ideas”

-2,

WO,

o Scale “out”, not “up”

95 - 0>

ANgR

e Limits of SMP and large shared-memory machines
o Move processing to the data

e Cluster have limited bandwidth

o Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable
o Seamless scalability

e From the mythical man-month to the tradable machine-hour

MapReduce

W AH,
\z* /"'4!04:0
AN

What is MapReduce?

o Programming model for expressing distributed
computations at a massive scale

1

QNOL: £7

o Execution framework for organizing and performing such
computations

o Open-source implementation called Hadoop

" =[a/a]a]5)

Typical Large-Data Problem

o lIterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate feS\{‘éduCe

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)

Roots in Functional Programming

Jl . UI, —m
Jl . UI, N\
Jl . UI, V
>--—B g/
Jl . UI, qV

Map
Fold

Challenges Sa)

1.

W AH,
\Z** /"41042)
AN

1

B/ 7m0\ \Y
-0 A ol 1 -
LY A= g

; IS

QNOL: £7

P2

Cheap nodes fail, especially if you have many

e Mean time between failures for 1 node = 3 years
e Mean time between failures for 1000 nodes = 1 day
e Solution: Build fault-tolerance into system

Commodity network = low bandwidth

e Solution: Push computation to the data

Programming distributed systems is hard

e Solution: Data-parallel programming model: users write “map” &
“reduce” functions, system distributes work and handles faults

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v'>*
reduce (k’, v') — <k”, v’>*
e All values with the same key are sent to the same reducer

o The execution framework handles everything else...

What'’s “everything else”?

k, \&

i [

ks N Ve

a

map

!
B: B

map

!

¢ E

¢ B

\

map

!

2 B

¢ B

Shuffle and Sort: aggregate

1|5

|

reduce

!
A

|

2|7

b |

values by keys

N\

map

!

¢ B

reduce

!

. B

2

3

6|8

|

reduce

!
A

MapReduce “Runtime”

2,

N

o Handles scheduling

/984 ,'»<|\\:A

ANgR

e Assigns workers to map and reduce tasks
o Handles “data distribution”

e Moves processes to data
o Handles synchronization

e Gathers, sorts, and shuffles intermediate data
o Handles errors and faults

e Detects worker failures and restarts

o Everything happens on top of a distributed FS

MapReduce

o Programmers specify two functions:
map (k, v) — <k’, v'>*
reduce (k’, v') — <k”, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

k, NA

i [

< [. I

/|

map

'
E:B:

combine

!
B: B

partition

map

!

¢ E

¢ B

combine

K

!

partition

map

!

B

¢ B

combine

!

2 [

¢ B

partition

b |

b |

N\

map

!

¢ E

combine

!

¢ E

partition

Shuffle and Sort: aggregate values by keys

1|5

|

reduce

!
A

B < IHBIBRE
reduce reduce

!

-, B

!
A

Two more details...

o Barrier between map and reduce phases

e But we can begin copying intermediate data earlier

o Keys arrive at each reducer in sorted order

e No enforced ordering across reducers

W AH,
\Z** /"41042)
AN

1

QNOL: £7

ANgR

W AH,
\Z** /"41042)
AN

1

QNOL: £7

MapReduce Execution

o Single master controls job execution on multiple slaves

o Mappers preferentially placed on same node or same rack
as their input block

e Minimizes network usage

o Mappers save outputs to local disk before serving them to
reducers

e Allows recovery if a reducer crashes
e Allows having more reducers than nodes

User

Program
I (1) submit
(2) sgbedﬁle map 2) ;Eh@dule reduce
A’,’)
worker >
li .
spli)
D , (3) read _ file O
split 2 (4) local write
split 3 g
split 4 output
file 1
worker —>
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)

““Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):

int sum = O;

for each v in values:
sum +=v;
Emit(term, value);

Word Count Execution

Input Map Shuffle & Sort Reduce
ﬂ the, 1 ﬂ
) brown, 1
the quick fox, 1 brown, 2
brown fox fox, 2
Reduce }——» ’
how, 1
nhow, 1
the, 3
the fox ate |
the mouse
:zx' : ate, 1 ate, 1
br‘ow;L 1 mouse, 1 Reduce }—} cow, 1
how now mouse. 1
brown cow quick, 1

Word Count with Combiner

Input

A

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map & Combine Shuffle & Sort

the, 1
brown, 1
fox, 1

how, 1
now, 1
brown, 1

ate, 1
mouse, 1

Reduce

Reduce }——»

Reduce }——P

Output

Wz

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1

quick, 1

W AH
~z~“«\\fk‘ /"'ﬂv‘(%’v
TV‘.'}L,A L

Search Example

o Input: (lineNumber, line) records

o Output: lines matching a given pattern

o Map:
if(line matches pattern):
output(line)

o Reduce: identify function
e Alternative: no reducer (map-only job)

Y AH,
SK=Aor
VAT oy RN

Sort Example
o Input: (key, value) records

o Output: same records, sorted by key

o Map: identity function [A-M]

o Reduce: identify function

bee
cow
elephant

aardvark,
elephant

o Trick: Pick partitioning
function h such that

ki<ks, => h(k;)<h(k;)

sheep, yak

W AH,
S
AT =\Z

Inverted Index Example

o Input: (filename, text) records

o Output: list of files containing each word

o Map:
foreach word in text.split():
output(word, filename)

o Combine: uniquify filenames for each word

o Reduce:
def reduce(word, filenames):
output(word, sort(filenames))

Inverted Index Example

ﬂhamlet.tx‘r

to be or
not to be

A 12th_+xt

be not
afraid of
greatness

to, hamlet.txt
be, hamlet.txt

or, hamlet.txt \

not, hamlet.txt

be, 12th.txt

not, 12th.txt /
afraid, 12th.txt

of, 12th.txt

greatness, 12th.txt

A

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)

X\ AH
\Z** /"41042)
A" 2
o 2) 2\

1

L e N\
Nk .
KPS Z“ RIS

‘ AS

Most Popular Words Example

QNOL: £7

o Input: (filename, text) records

o Output: top 100 words occurring in the most files

o Two-stage solution:

e Job 1:

» Create inverted index, giving (word, list(file)) records
e Job 2:

« Map each (word, list(file)) to (count, word)
« Sort these records by count as in sort job

o Optimizations:

e Map to (word, 1) instead of (word, file) in Job 1
e Countfiles in job 1's reducer rather than job 2’s mapper
e Estimate count distribution in advance and drop rare words

Fault Tolerance in MapReduce

1. If a task crashes:

e Retry on another node

» OK for a map because it has no dependencies

* OK for reduce because map outputs are on disk

e If the same task fails repeatedly, fail the job or ignore that
Input block (user-controlled)

» Note: For these fault tolerance features to work, your
map and reduce tasks must be side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:
e Re-launch its current tasks on other nodes
e Re-run any maps the node previously ran

* Necessary because their output files were lost along with
the crashed node

0 By,
N A%
\b"lv’, .3.7/‘

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

e Launch second copy of task on another node (“speculative
execution”)
e Take the output of whichever copy finishes first, and kill the

other

o Surprisingly important in large clusters

e Stragglers occur frequently due to failing hardware, software
bugs, misconfiguration, etc
e Single straggler may noticeably slow down a job

Takeaways

o By providing a data-parallel programming model,
MapReduce can control job execution in useful ways:
e Automatic division of job into tasks
e Automatic placement of computation near data
e Automatic load balancing
e Recovery from failures & stragglers

o User focuses on application, not on complexities of
distributed computing

Hadoop Components

o Distributed file system (HDFS)

e Single namespace for entire cluster
e Replicates data 3x for fault-tolerance

o MapReduce framework

e EXxecutes user jobs specified as “map” and “reduce”
functions

e Manages work distribution & fault-tolerance

0 By,
N =Y
\b‘.'l;;* SN2

1

QNOL: £7

ANgR

W AH,
\Z** /"41042)
AN

1

(R /mN? A7
S A) 1 -
PN A2 S
& AT

MapReduce Implementations

QNOL: £7

o Google has a proprietary implementation in C++

e Bindings in Java, Python

o Hadoop is an open-source implementation in Java

e Development led by Yahoo, now an Apache project
e Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,

e The de facto big data processing platform
e Large and expanding software ecosystem

o Lots of custom research implementations

e For GPUs, cell processors, etc.

”a]ag_r}

2 \({@

Compute Nodes

What'’s the problem here?

Distributed File System

o Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

o Why?

e Not enough RAM to hold all the data in memory
e Disk access is slow, but disk throughput is reasonable

o A distributed file system is the answer

e GFS (Google File System) for Google’s MapReduce
e HDFS (Hadoop Distributed File System) for Hadoop

W AH,
\Z** /"41042)
AN

1

QNOL: £7

GFS: Assumptions

o Commodity hardware over “exotic” hardware

e Scale “out”, not “up”
o High component failure rates

e |nexpensive commodity components fail all the time
o “Modest” number of huge files

e Multi-gigabyte files are common, if not encouraged
o Files are write-once, mostly appended to

e Perhaps concurrently

o Large streaming reads over random access

e High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions

o Files stored as chunks
e Fixed size (64MB)

o Reliability through replication
e Each chunk replicated across 3+ chunkservers

o Single master to coordinate access, keep metadata
e Simple centralized management

o No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

e Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

o Terminology differences:

e GFS master = Hadoop namenode
e GFS chunkservers = Hadoop datanodes

o Differences:

e Different consistency model for file appends
e Implementation
e Performance

For the most part, we’ll use Hadoop terminology..

W AH
=,
A ‘“?‘).& ¥ 7

U,

N2
b o

/3
VS

aNOL - £

d 1526
ANgR

Q

AH,
\\\“\ "'4{04’0

ol g
N
95 - 0>

Hadoop Distributed File System

o Files split into 64MB blocks

Namenode

o Blocks replicated across several
datanodes (usually 3)

o Single namenode stores metadata
(file names, block locations, etc)

o Optimized for large files,
sequential reads

o Files are append-only

Datanodes

Namenode Responsibilities

o Managing the file system namespace:

e Holds file/directory structure, metadata, file-to-block mapping,
access permissions, etc.

o Coordinating file operations:

e Directs clients to datanodes for reads and writes
e No data is moved through the namenode

o Maintaining overall health:

e Periodic communication with the datanodes
e Block re-replication and rebalancing
e Garbage collection

W AH,
\z* /"'4!04:0
AN

1

QNOL: £7

ANgR

HDFS Architecture

HDFS namenode

Application

v

File namespace

HDFS Client <
A

[foo/bar
block 3df2

HDFS datanode

Linux file system

Sl

Adapted from (Ghemawat et al., SOSP 2003)

HDFS datanode

Linux file system

Sl

Putting everything together...

namenode job submission node

namenode daemon jobtracker

-
-
- i N

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system

Sequoia

96 racks (12x8) BG/Q 5D Torus Fabric
QDR Infiniband
Ethernet

98,304 compute nodes
768 1/0O nodes

" Lustre '
- QDR IB
SAN Expansion to other

SCF IB clusters

OO .
¢ Ethernet Login Nodes
[TIIILLT] - (32)
—II Login Nodes
LAC (2)
OO it
OO Nodes

Lustre MDS &
0SS Nodes

AYAYAYA

To other SCF

clusters, file systems,
HPSS, etc.

Source: LLNL

