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The Big Data era 



What is Big Data? 

 Big data is like teenage sex:  

 everyone talks about it  

 nobody really knows how to do it  

 everyone thinks everyone else is doing it  

 so everyone claims they are doing it... 

 --Dan Ariely, Professor at Duke University 

 

 

 

 



Big Data Definition 

 No single standard definition… 

 

“Big Data” is data whose scale, diversity, and complexity 

require new architecture, techniques, algorithms, and 

analytics to manage it and extract value and hidden 

knowledge from it… 
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Characteristics of Big Data:  

1-Scale (Volume) 

 Data Volume 

 44x increase from 2009 2020 

 From 0.8 zettabytes to 35zb 

 Data volume is increasing exponentially  
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Exponential increase in 

collected/generated data 



Characteristics of Big Data:  

2-Complexity (Varity) 

 Various formats, types, and 
structures 

 Text, numerical, images, audio, 
video, sequences, time series, social 
media data, multi-dim arrays, etc… 

 Static data vs. streaming data   

 A single application can be 
generating/collecting many types of 
data   
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To extract knowledge all these types of 

data need to linked together 



Characteristics of Big Data:  

3-Speed (Velocity) 

 Data is begin generated fast and need to be processed 
fast 

 Online Data Analytics 

 Late decisions  missing opportunities 

 Examples 

 E-Promotions: Based on your current location, your purchase 
history, what you like  send promotions right now for store next to 
you 

 

 Healthcare monitoring: sensors monitoring your activities and 
body   any abnormal measurements require immediate reaction 
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Big Data: 3V’s 

8 



Extended Big Data Characteristics: 6V 

 Volume: In a big data environment, the amounts of data collected and 
processed are much larger than those stored in typical relational 
databases. 

 Variety: Big data consists of a rich variety of data types. 

 Velocity: Big data arrives to the organization at high speeds and from 
multiple sources simultaneously. 

 

 Veracity: Data quality issues are particularly challenging in 
a big data context. 

 Visibility/Visualization: After big data being processed, we 
need a way of presenting the data in a manner that’s 
readable and accessible.  

 Value: Ultimately, big data is meaningless if it does not 
provide value toward some meaningful goal. 



Veracity (Quality & Trust) 

 Data  =  quantity +  quality 

 When we talk about big data, we typically mean its 
quantity: 

 What capacity of a system provides to cope with the sheer size of 
the data? 

 Is a query feasible on big data within our available resources? 

 How can we make our queries tractable on big data? 

 . . .  

 Can we trust the answers to our queries? 

 Dirty data routinely lead to misleading financial reports, strategic 
business planning decision  loss of revenue, credibility and 
customers, disastrous consequences 

 The study of data quality is as important as data quantity 

 



Data in real-life is often dirty 

500,000 dead people 

retain active Medicare 

cards 

81 million National Insurance 

numbers but only 60 million 

eligible citizens 

98000 deaths each year, 

caused by errors in 

medical data 



Visibility/Visualization 

 Visible to the process of big data management 

 Big Data – visibility = Black Hole? 

 

 

 

 

 

 

 

 

 Big data visualization tools: 

A visualization of Divvy bike rides across Chicago 

http://dataconomy.com/chicago-city-big-data/


Value 

 Big data is meaningless if it does not provide value toward 

some meaningful goal 



Big Data: 6V in Summary 

Transforming Energy and Utilities through Big Data & Analytics. By Anders 

Quitzau@IBM 



Other V’s 

 Variability 

 Variability refers to data whose meaning is constantly changing. 
This is particularly the case when gathering data relies on 
language processing.  

 Viscosity   

 This term is sometimes used to describe the latency or lag time in 
the data relative to the event being described.  We found that this 
is just as easily understood as an element of Velocity. 

 Virality   

 Defined by some users as the rate at which the data spreads; how 
often it is picked up and repeated by other users or events. 

 Volatility 

 Big data volatility refers to how long is data valid and how long 
should it be stored. You need to determine at what point is data no 
longer relevant to the current analysis. 

 More V’s in the future … 



Harnessing Big Data 

 OLTP: Online Transaction Processing   (DBMSs) 

 OLAP: Online Analytical Processing   (Data Warehousing) 

 RTAP: Real-Time Analytics Processing  (Big Data Architecture & technology) 
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Who is generating Big Data? 

Homeland Security 

Real Time Search 

Social 

eCommerce 

User Tracking & 

Engagement 

Financial Services  



The Model Has Changed… 

 The Model of Generating/Consuming Data has Changed 
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Old Model: Few companies are generating data, all others are consuming data  

New Model: all of us are generating data, and all of us are consuming data  



Challenges in Handling Big Data 

 The Bottleneck is in technology 

 New architecture, algorithms, techniques are needed 

 Also in technical skills 

 Experts in using the new technology and dealing with big data  

19 



20 



How much data? 

Hadoop: 10K nodes, 
150K cores, 150 PB 
(4/2014) 

Processes 20 PB a day (2008) 
Crawls 20B web pages a day (2012) 
Search index is 100+ PB (5/2014) 
Bigtable serves 2+ EB, 600M QPS 
(5/2014) 

300 PB data in Hive +  
600 TB/day (4/2014) 

400B pages, 
10+ PB 
(2/2014) 

LHC: ~15 PB a year 
 

LSST: 6-10 PB a year  
(~2020) 640K ought to be 

enough for 
anybody. 

150 PB on 50k+ servers  
running 15k apps (6/2011) 

S3: 2T objects, 1.1M 
request/second (4/2013) 

SKA: 0.3 – 1.5 EB  

per year (~2020) 

Hadoop: 365 PB, 330K 
nodes (6/2014) 



No data like more data! 

(Banko and Brill, ACL 2001) 

(Brants et al., EMNLP 2007) 

s/knowledge/data/g; 

How do we get here if we’re not Google? 



What to do with more data? 

 Answering questions 

 Pattern matching on the Web 

 Works amazingly well 

 

 Learning relations 

 Start with seed instances 

 Search for patterns on the Web 

 Using patterns to find more instances 

Who shot Abraham Lincoln?  X shot Abraham Lincoln 

Birthday-of(Mozart, 1756) 

Birthday-of(Einstein, 1879) 

Wolfgang Amadeus Mozart (1756 - 1791) 

Einstein was born in 1879 

PERSON (DATE – 

PERSON was born in DATE 

(Brill et al., TREC 2001; Lin, ACM TOIS 2007) 

(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; … ) 



Emergence of the 4th 
Paradigm 

Data-intensive e-Science Maximilien Brice, © CERN 

Science 



Engineering 
The unreasonable effectiveness of 

data 

Count and normalize! 

Source: Wikipedia (Three Gorges Dam) 



Commerce 

Know thy customers 

Data  Insights  Competitive 
advantages  

Source: Wikiedia (Shinjuku, Tokyo) 



What is cloud computing? 



Just a buzzword? 

 Before clouds… 

 P2P computing 

 Grids 

 HPC 

 … 

 Cloud computing means many different things: 

 Large-data processing 

 Rebranding of web 2.0 

 Utility computing 

 Everything as a service 



Rebranding of web 2.0 

 Rich, interactive web applications 

 Clouds refer to the servers that run them 

 AJAX as the de facto standard (for better or worse) 

 Examples: Facebook, YouTube, Gmail, … 

 “The network is the computer”: take two 

 User data is stored “in the clouds” 

 Rise of the netbook, smartphones, etc. 

 Browser is the OS 

 



Utility Computing 

 What? 

 Computing resources as a metered service (“pay as you go”) 

 Ability to dynamically provision virtual machines 

 Why? 

 Cost: capital vs. operating expenses 

 Scalability: “infinite” capacity 

 Elasticity: scale up or down on demand 

 Does it make sense? 

 Benefits to cloud users 

 Business case for cloud providers 

 

I think there is a 
world market for 
about five computers. 



Enabling Technology: Virtualization 

Hardware 

Operating System 

App App App 

Traditional Stack 

Hardware 

OS 

App App App 

Hypervisor 

OS OS 

Virtualized Stack 



Cloud computing market 

Hardware provider 

Cloud technology enabler 

Infrastructure as a service 

Platform as a service 

Software as a service Everything is a service 



Everything as a Service 

 Utility computing = Infrastructure as a Service (IaaS) 

 Why buy machines when you can rent cycles? 

 Examples: Amazon’s EC2, Rackspace 

 Platform as a Service (PaaS) 

 Give me nice API and take care of the maintenance, upgrades, … 

 Example: Google App Engine 

 Software as a Service (SaaS) 

 Just run it for me! 

 Example: Gmail, Salesforce 

 



How do we scale up? 



Divide and Conquer 

“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker” “worker” “worker” 

Partition 

Combine 



Parallelization Challenges 

 How do we assign work units to workers? 

 What if we have more work units than workers? 

 What if workers need to share partial results? 

 How do we aggregate partial results? 

 How do we know all the workers have finished? 

 What if workers die? 

What is the common theme of all of these problems? 



Synchronization! 

 Parallelization problems arise from: 

 Communication between workers (e.g., to exchange state) 

 Access to shared resources (e.g., data) 

 Thus, we need a synchronization mechanism 

 



Managing Multiple Workers 

 Difficult because 

 We don’t know the order in which workers run 

 We don’t know when workers interrupt each other 

 We don’t know the order in which workers access shared data 

 Thus, we need: 

 Semaphores (lock, unlock) 

 Conditional variables (wait, notify, broadcast) 

 Barriers 

 Still, lots of problems: 

 Deadlock, livelock, race conditions... 

 Dining philosophers, sleeping barbers, cigarette smokers... 

 Moral of the story: be careful! 



Current Tools 

 Programming models 

 Shared memory (pthreads) 

 Message passing (MPI) 

 Design Patterns 

 Master-slaves 

 Producer-consumer flows 

 Shared work queues 

 

Message Passing 

P1 P2 P3 P4 P5 

Shared Memory 

P1 P2 P3 P4 P5 

M
e

m
o

ry
 

master 

slaves 

producer consumer 

producer consumer 

work queue 



What’s the point? 

 It’s all about the right level of abstraction 

 The von Neumann architecture has served us well, but is no longer 

appropriate for the multi-core/cluster environment 

 Hide system-level details from the developers 

 No more race conditions, lock contention, etc. 

 Separating the what from how 

 Developer specifies the computation that needs to be performed 

 Execution framework (“runtime”) handles actual execution 

 

The datacenter is the computer! 



Building Blocks 

Source: Barroso and Urs Hölzle (2009) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2013) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2013) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2013) 



Anatomy of a Datacenter 

Source: Barroso and Urs Hölzle (2013) 



Anatomy of a Datacenter 

Source: Barroso and Urs Hölzle (2013) 



Scaling “up” vs. “out” 

 No single machine is large enough 

 Smaller cluster of large SMP machines vs. larger cluster of 

commodity machines (e.g., 16 128-core machines vs. 128 16-core 

machines) 

 Nodes need to talk to each other! 

 Intra-node latencies: ~100 ns 

 Inter-node latencies: ~100 s 

 Let’s model communication overhead… 

Source: analysis on this an subsequent slides from Barroso and Urs Hölzle (2009) 



Modeling Communication Costs 

 Simple execution cost model: 

 Total cost = cost of computation + cost to access global data 

 Fraction of local access inversely proportional to size of cluster 

 n nodes (ignore cores for now) 

 

 

• Light communication: f =1 

• Medium communication: f =10 

• Heavy communication: f =100 

 What are the costs in parallelization? 

1 ms + f  [100 ns  (1/n) + 100 s  (1 - 1/n)] 



Cost of Parallelization 



Advantages of scaling “up” 

So why not? 
Why does commodity beat exotic? 



Moving Data Around 

Source: Barroso and Urs Hölzle (2013) 



Seeks vs. Scans 

 Consider a 1 TB database with 100 byte records 

 We want to update 1 percent of the records 

 Scenario 1: random access 

 Each update takes ~30 ms (seek, read, write) 

 108 updates = ~35 days 

 Scenario 2: rewrite all records 

 Assume 100 MB/s throughput 

 Time = 5.6 hours(!) 

 Lesson: avoid random seeks! 

Source: Ted Dunning, on Hadoop mailing list 



“Big Ideas” 

 Scale “out”, not “up” 

 Limits of SMP and large shared-memory machines 

 Move processing to the data 

 Cluster have limited bandwidth 

 Process data sequentially, avoid random access 

 Seeks are expensive, disk throughput is reasonable 

 Seamless scalability 

 From the mythical man-month to the tradable machine-hour 



MapReduce 



What is MapReduce? 

 Programming model for expressing distributed 

computations at a massive scale 

 Execution framework for organizing and performing such 

computations 

 Open-source implementation called Hadoop 



Typical Large-Data Problem 

 Iterate over a large number of records 

 Extract something of interest from each 

 Shuffle and sort intermediate results 

 Aggregate intermediate results 

 Generate final output 

Key idea: provide a functional abstraction for 

these two operations 

(Dean and Ghemawat, OSDI 2004) 



g g g g g 

f f f f f Map 

Fold 

Roots in Functional Programming 



Challenges 

1. Cheap nodes fail, especially if you have many 

 Mean time between failures for 1 node = 3 years 

 Mean time between failures for 1000 nodes = 1 day 

 Solution: Build fault-tolerance into system 

 

2. Commodity network = low bandwidth 

 Solution: Push computation to the data 

 

3. Programming distributed systems is hard 

 Solution: Data-parallel programming model: users write “map” & 

“reduce” functions, system distributes work and handles faults 



MapReduce 

 Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’’, v’’>* 

 All values with the same key are sent to the same reducer 

 The execution framework handles everything else… 

What’s “everything else”? 



map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce “Runtime” 

 Handles scheduling 

 Assigns workers to map and reduce tasks 

 Handles “data distribution” 

 Moves processes to data 

 Handles synchronization 

 Gathers, sorts, and shuffles intermediate data 

 Handles errors and faults 

 Detects worker failures and restarts 

 Everything happens on top of a distributed FS 



MapReduce 

 Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’’, v’’>* 

 All values with the same key are reduced together 

 The execution framework handles everything else… 

 Not quite…usually, programmers also specify: 

partition (k’, number of partitions) → partition for k’ 

 Often a simple hash of the key, e.g., hash(k’) mod n 

 Divides up key space for parallel reduce operations 

combine (k’, v’) → <k’, v’>* 

 Mini-reducers that run in memory after the map phase 

 Used as an optimization to reduce network traffic 



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 



Two more details… 

 Barrier between map and reduce phases 

 But we can begin copying intermediate data earlier 

 Keys arrive at each reducer in sorted order 

 No enforced ordering across reducers 



MapReduce Execution 

 Single master controls job execution on multiple slaves 

 

 Mappers preferentially placed on same node or same rack 

as their input block 

 Minimizes network usage 

 

 Mappers save outputs to local disk before serving them to 

reducers 

 Allows recovery if a reducer crashes 

 Allows having more reducers than nodes 

 



split 0 

split 1 

split 2 

split 3 

split 4 

worker 

worker 

worker 

worker 

worker 

Master 

User 

Program 

output 

file 0 

output 

file 1 

(1) submit 

(2) schedule map (2) schedule reduce 

(3) read 
(4) local write 

(5) remote read 
(6) write 

Input 

files 

Map 

phase 

Intermediate files 

(on local disk) 

Reduce 

phase 

Output 

files 

Adapted from (Dean and Ghemawat, OSDI 2004) 



“Hello World”: Word Count 

Map(String docid, String text): 

     for each word w in text: 

          Emit(w, 1); 

 

Reduce(String term, Iterator<Int> values): 

     int sum = 0; 

     for each v in values: 

          sum += v; 

          Emit(term, value); 

 



Word Count Execution 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 
fox, 1 

quick, 1 

the, 1 

fox, 1 
the, 1 

how, 1 

now, 1 
brown, 1 

ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 



Word Count with Combiner 

Input Map & Combine Shuffle & Sort Reduce Output 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 
fox, 1 

quick, 1 

the, 2 

fox, 1 

how, 1 

now, 1 
brown, 1 

ate, 1 

mouse, 1 

cow, 1 



Search Example 

 Input: (lineNumber, line) records 

 Output: lines matching a given pattern 

 

 Map:  

    if(line matches pattern): 
        output(line) 

 

 Reduce: identify function 

 Alternative: no reducer (map-only job) 



pig 

sheep 

yak 

zebra 

aardvark 

ant 

bee 

cow 

elephant 

Sort Example 

 Input: (key, value) records 

 Output: same records, sorted by key 

 

 Map: identity function 

 Reduce: identify function 

 

 Trick: Pick partitioning 

function h such that 

k1<k2 => h(k1)<h(k2) 

Map 

Map 

Map 

Reduce 

Reduce 

ant, bee 

zebra 

aardvark, 
elephant 

cow 

pig 

sheep, yak 

[A-M] 

[N-Z] 



Inverted Index Example 

 Input: (filename, text) records 

 Output: list of files containing each word 

 

 Map:  

      foreach word in text.split(): 
         output(word, filename) 

 

 Combine: uniquify filenames for each word 

 Reduce: 
  def reduce(word, filenames):   
      output(word, sort(filenames)) 

 



Inverted Index Example 

 

to be or 
not to be afraid, (12th.txt) 

be, (12th.txt, hamlet.txt) 
greatness, (12th.txt) 

not, (12th.txt, hamlet.txt) 
of, (12th.txt) 

or, (hamlet.txt) 
to, (hamlet.txt) 

hamlet.txt 

be not 
afraid of 
greatness 

12th.txt 

to, hamlet.txt 
be, hamlet.txt 
or, hamlet.txt 
not, hamlet.txt 
 
 

be, 12th.txt 
not, 12th.txt 
afraid, 12th.txt 
of, 12th.txt 
greatness, 12th.txt 
 
 



Most Popular Words Example 

 Input: (filename, text) records 

 Output: top 100 words occurring in the most files 

 

 Two-stage solution: 

 Job 1: 

• Create inverted index, giving (word, list(file)) records 

 Job 2: 

• Map each (word, list(file)) to (count, word) 

• Sort these records by count as in sort job 

 

 Optimizations: 

 Map to (word, 1) instead of (word, file) in Job 1 

 Count files in job 1’s reducer rather than job 2’s mapper 

 Estimate count distribution in advance and drop rare words 



Fault Tolerance in MapReduce 

1. If a task crashes: 

 Retry on another node 

• OK for a map because it has no dependencies 

• OK for reduce because map outputs are on disk 

 If the same task fails repeatedly, fail the job or ignore that 

input block (user-controlled) 

 Note: For these fault tolerance features to work, your 

map and reduce tasks must be side-effect-free 



Fault Tolerance in MapReduce 

2. If a node crashes: 

 Re-launch its current tasks on other nodes 

 Re-run any maps the node previously ran 

• Necessary because their output files were lost along with 

the crashed node 



Fault Tolerance in MapReduce 

3. If a task is going slowly (straggler): 

 Launch second copy of task on another node (“speculative 

execution”) 

 Take the output of whichever copy finishes first, and kill the 

other 

 

 Surprisingly important in large clusters 

 Stragglers occur frequently due to failing hardware, software 

bugs, misconfiguration, etc 

 Single straggler may noticeably slow down a job 



Takeaways 

 By providing a data-parallel programming model, 

MapReduce can control job execution in useful ways: 

 Automatic division of job into tasks 

 Automatic placement of computation near data 

 Automatic load balancing 

 Recovery from failures & stragglers 

 

 User focuses on application, not on complexities of 

distributed computing 



Hadoop Components 

 Distributed file system (HDFS) 

 Single namespace for entire cluster 

 Replicates data 3x for fault-tolerance 

 

 MapReduce framework 

 Executes user jobs specified as “map” and “reduce” 

functions 

 Manages work distribution & fault-tolerance 



MapReduce Implementations 

 Google has a proprietary implementation in C++ 

 Bindings in Java, Python 

 Hadoop is an open-source implementation in Java 

 Development led by Yahoo, now an Apache project 

 Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, 

… 

 The de facto big data processing platform 

 Large and expanding software ecosystem 

 Lots of custom research implementations 

 For GPUs, cell processors, etc. 

 



How do we get data to the workers? 

Compute Nodes 

NAS 

SAN 

What’s the problem here? 



Distributed File System 

 Don’t move data to workers… move workers to the data! 

 Store data on the local disks of nodes in the cluster 

 Start up the workers on the node that has the data local 

 Why? 

 Not enough RAM to hold all the data in memory 

 Disk access is slow, but disk throughput is reasonable 

 A distributed file system is the answer 

 GFS (Google File System) for Google’s MapReduce 

 HDFS (Hadoop Distributed File System) for Hadoop 



GFS: Assumptions 

 Commodity hardware over “exotic” hardware 

 Scale “out”, not “up” 

 High component failure rates 

 Inexpensive commodity components fail all the time 

 “Modest” number of huge files 

 Multi-gigabyte files are common, if not encouraged 

 Files are write-once, mostly appended to 

 Perhaps concurrently 

 Large streaming reads over random access 

 High sustained throughput over low latency 

GFS slides adapted from material by (Ghemawat et al., SOSP 2003) 



GFS: Design Decisions 

 Files stored as chunks 

 Fixed size (64MB) 

 Reliability through replication 

 Each chunk replicated across 3+ chunkservers 

 Single master to coordinate access, keep metadata 

 Simple centralized management 

 No data caching 

 Little benefit due to large datasets, streaming reads 

 Simplify the API 

 Push some of the issues onto the client (e.g., data layout) 

HDFS = GFS clone (same basic ideas) 



From GFS to HDFS 

 Terminology differences: 

 GFS master = Hadoop namenode 

 GFS chunkservers = Hadoop datanodes 

 Differences: 

 Different consistency model for file appends 

 Implementation 

 Performance 

For the most part, we’ll use Hadoop terminology… 



Hadoop Distributed File System 

 Files split into 64MB blocks 

 Blocks replicated across several 

datanodes (usually 3) 

 Single namenode stores metadata 

(file names, block locations, etc) 

 Optimized for large files, 

sequential reads 

 Files are append-only 

Namenode 

Datanodes 

1 

2 

3 

4 

1 

2 

4 

2 

1 

3 

1 

4 

3 

3 

2 

4 

File1 



Namenode Responsibilities 

 Managing the file system namespace: 

 Holds file/directory structure, metadata, file-to-block mapping, 

access permissions, etc. 

 Coordinating file operations: 

 Directs clients to datanodes for reads and writes 

 No data is moved through the namenode 

 Maintaining overall health: 

 Periodic communication with the datanodes 

 Block re-replication and rebalancing 

 Garbage collection 



Adapted from (Ghemawat et al., SOSP 2003) 

(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state 
(block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace 

/foo/bar 

block 3df2 

Application 

HDFS Client 

HDFS Architecture 

 



Putting everything together… 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 



Source: LLNL 


