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The Big Data era



What is Big Data?
o Big data is like teenage sex:

e everyone talks about it

e nobody really knows how to do it

rﬁ Dan Ariely
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Big data is like teenage sex: everyone talks about it, nobody really knows
how to do it, everyone thinks everyone else is doing it, so everyone claims

they are doing it._.

e everyone thinks everyone else is doing it
e SO everyone claims they are doing it...

--Dan Ariely, Professor at Duke University
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Big Data Definition

o No single standard definition...

“Big Data” is data whose scale, diversity, and complexity
require new architecture, techniques, algorithms, and
analytics to manage it and extract value and hidden
knowledge from it...



Characteristics of Big Data:
1-Scale (Volume)

o Data Volume

e 44x increase from 2009 2020
e From 0.8 zettabytes to 35zb

o Data volume is increasing exponentially

terabytes petabytes exabytes zettabytes

the amount of data stored by the average company today

Twitter: Tweets Per Day

Exponential increase in
collected/generated data
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The Digital Universe 2009-2020

Growing
o
2008 "+ Factor Of 44
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Data storage growth
8 In millions of petabytes
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Characteristics of Big Data:
2-Complexity (Varity)

o Various formats, types, and
structures

o Text, numerical, images, audio,
video, sequences, time series, social
media data, multi-dim arrays, etc...

o Static data vs. streaming data

o A single application can be
generating/collecting many types of
ata

To extract knowledge=>» all these types of
data need to linked together
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Characteristics of Big Data:
3-Speed (Velocity)
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o Data is begin generated fast and need to be processed
fast

o Online Data Analytics

o Late decisions = missing opportunities
o Examples

e E-Promotions: Based on your current location, your purchase

history, what you like =» send promotions right now for store next to
you

e Healthcare monitoring: sensors monitoring your activities and
body =» any abnormal measurements require immediate reaction



Big Data: 3V’s

Big Data = Transactions + Interactions + Observations

BIG DATA
Sensors / RFID / Devices User Generated Content
Pe S Mobile Web Sentiment TP
User Click Stream
; Spatial & GPS Coordinates
Web logs WEB AVB testing
/T External Demographics
Offer history Dynamic Pricing
\ | Affiliate N ; Business Data Feeds
Ditfferent types of st . 4
and unstructuned dats Gigabym Segmentation h ng HD Video, Audio, Images
Offer details Speech to Text
Complexity ureh e -~ Customer Touches Behavioral Targeting ProductService Logs
Megabytes urc Support Contacts Dynamic Funnels
Payment reco SMSIMMS

Increasing Data Variety--

Source: Contents of above graphic created in partnership with Teradata, Inc.

Speed Volume




Extended Big Data Characteristics: 6V °
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o Volume: In a big data environment, the amounts of data collected and

processed are much larger than those stored in typical relational
databases.

Variety: Big data consists of a rich variety of data types.

Velocity: Big data arrives to the organization at high speeds and from
multiple sources simultaneously.

Veracity: Data quality issues are particularly challenging in
a big data context.

Visibility/Visualization: After big data being processed, we
need a way of presenting the data in a manner that's
readable and accessible.

Value: Ultimately, big data is meaningless if it does not
provide value toward some meaningful goal.



Veracity (Quality & Trust)
o Data = quantity + quality
o When we talk about big data, we typically mean its
guantity:

e What capacity of a system provides to cope with the sheer size of
the data?

e |s a query feasible on big data within our available resources?

e How can we make our gqueries tractable on big data?
o ...

o Can we trust the answers to our gueries?

e Dirty data routinely lead to misleading financial reports, strategic

business planning decision = loss of revenue, credibility and
customers, disastrous consequences

o The study of data quality is as important as data quantity



Data in real-life is often dirty
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Visibility/Visualization

o Visible to the process of big data management

o Big Data — visibility = Black Hole?

= | 759,788
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CloarSto: QlikView Wy Business Objects


http://dataconomy.com/chicago-city-big-data/
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Value P

o Big data is meaningless if it does not provide value toward
some meaningful goal



Big Data: 6V in Summary

Big Data N,/ OpenData
Volume Velocity Variety Veracity
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Transforming Energy and Utilities through Big Data & Analytics. By Anders
Quitzau@IBM
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o Variability

e Variability refers to data whose meaning is constantly changing.
This is particularly the case when gathering data relies on
language processing.

o Viscosity

e This term is sometimes used to describe the latency or lag time in
the data relative to the event being described. We found that this
IS Just as easily understood as an element of Velocity.

o Virality

e Defined by some users as the rate at which the data spreads; how
often it is picked up and repeated by other users or events.

o Volatility

e Big data volatility refers to how long is data valid and how long
should it be stored. You need to determine at what point is data no
longer relevant to the current analysis.

o More V’s in the future ...

1
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Harnessing Big Data

). Das
U aQ l'n Mot‘
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- " o Real Time Analytic
— ¢ _) v Processing (RTAP) to
© improve business response
( Dataat - \\
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O rest :
Q Analysis of current data v
to improve business Stream
Reporting and human transactions Computing 2010
analysis on historical
data Data
Warehousin,
Operational g 2000
Databases
1970 i b
1968
Relational RTAP

Hierarchical

database oo OLAP
wwem QLTP
o OLTP: Online Transaction Processing (DBMSSs)
o OLAP: Online Analytical Processing (Data Warehousing)
o RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)
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The Model Has Changed...

o The Model of Generating/Consuming Data has Changed

Old Model:

New Model:
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Challenges in Handling Big Data

Big Data Boom

oo

In millions of petabytes
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Data storage growth

(One petabyte = 1,024 terabytes)
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Big data challenge

Lack of softwaref |

technology | 30%

Lack of analytic skills
|

Insufficient budget 5%
Already using 11%

‘ 28%

Sources: IDC, DataXu

o The Bottleneck is in technology

e New architecture, algorithms, techniques are needed

o Also in technical skills

e Experts in using the new technology and dealing with big data
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Google

(5/2014)

Had : 365 PB, 330K
YAHOO! oo 51

®

Hadoop: 10K nodes,
150 PB

150K cores,

ey
(4/2014)

300 PB data in Hive +
facebook

600 TB/day (4/2014)
S3: 2T objects, 1. 1M

request/second (4/2013)

amazon
web services™

wegemmeys 040K ought to be

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS

P ad 1=
400B pages,
10+ PB
(2/2014)

JPMorganChase ()

150 PB on 50k+ servers
running 15k apps (6/2011)

LHC: ~15 PB a year

CERN
\

NS

LSST: 6-10 PB a year
(72020)

SKA: 0.3 - 1.5 EB
per year (2020)




No data like more data!

s/knowledge/data/g;
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(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

How do we get here if we’re not Google?



What to do with more data?

o Answering guestions

e Pattern matching on the Web
e Works amazingly well

Who shot Abraham Lincoln? — X shot Abraham Lincoln

o Learning relations

e Start with seed instances
e Search for patterns on the Web
e Using patterns to find more instances

Wolfgang Amadeus Mozart (1756 - 1791)
Einstein was born in 1879

Birthday-of(Mozart, 1756)

Birthday-of(Einstein, 1879)
PERSON (DATE —

PERSON was born in DATE

(Brill et al., TREC 2001; Lin, ACM TOIS 2007)
(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; ... )
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What is cloud computing?
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Just a buzzword?

o Before clouds...

e P2P computing
e Grids
e HPC

o Cloud computing means many different things:

e Large-data processing
e Rebranding of web 2.0
e Ultility computing

e Everything as a service



X\ AH
\Z*\\\* /"41042)
A" 2
o 2) 2\

1

PN\
RS .
(R @) 5

(2 >

Rebranding of web 2.0

QNOL: £7

o Rich, interactive web applications

e Clouds refer to the servers that run them
e AJAX as the de facto standard (for better or worse)
e Examples: Facebook, YouTube, Gmail, ...

o “The network is the computer”: take two

e User data is stored “in the clouds”
e Rise of the netbook, smartphones, etc.
e Browser is the OS



Utility Computing

o What?

e Computing resources as a metered service (“pay as you go”)
e Ability to dynamically provision virtual machines

o Why?

e Cost: capital vs. operating expenses

e Scalability: “infinite” capacity

e Elasticity: scale up or down on demand
o Does it make sense?

e Benefits to cloud users
e Business case for cloud providers

I think there is a
world market for
about five computers.




App App App

App App App 0OS 0OS oS
Operating System [ Hypervisor }
Hardware Hardware

Traditional Stack Virtualized Stack



Cloud computing market

Software as a service Everything is a service
Platform as a service

Infrastructure as a service

Hardware provider



Everything as a Service

o Utility computing = Infrastructure as a Service (laaS)

e Why buy machines when you can rent cycles?
e Examples: Amazon’'s EC2, Rackspace

o Platform as a Service (PaaS)

e Give me nice APl and take care of the maintenance, upgrades, ...
e Example: Google App Engine

o Software as a Service (SaaS)

e Justrun it for mel!
e Example: Gmail, Salesforce



How do we scale up?



Divide and Conquer

U

/

“worker”

\

Iy
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“Work”

|

Wy

“worker”
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W3

\

I

Partition

|
|

Combine
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Parallelization Challenges

QNOL- £
a0

o How do we assign work units to workers?

o What if we have more work units than workers?
o What if workers need to share partial results?

o How do we aggregate partial results?

o How do we know all the workers have finished?

o What if workers die?

What is the common theme of all of these problems?
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Synchronization!

o Parallelization problems arise from:

e Communication between workers (e.g., to exchange state)
e Access to shared resources (e.g., data)

o Thus, we need a synchronization mechanism



Managing Multiple Workers

o Difficult because

e We don’t know the order in which workers run
e We don’t know when workers interrupt each other
e We don’'t know the order in which workers access shared data

o Thus, we need:

e Semaphores (lock, unlock)
e Conditional variables (wait, notify, broadcast)
e Barriers

o Sitill, lots of problems:

e Deadlock, livelock, race conditions...
e Dining philosophers, sleeping barbers, cigarette smokers...

o Moral of the story: be careful!



Current Tools

o Programming models

vy

e Shared memory (pthreads) e

\ 4

Memory

e Message passing (MPI) VYV Y

P, P, P, P, P,

o Design Patterns

e Master-slaves
e Producer-consumer flows
e Shared work queues

producer consumer
ol |

producer consumer

master

A

l}l‘lll}

slaves

T

L LLL

L L

4 L
|
||
— e il
L
v vy

work queue



What’s the point?
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o It's all about the right level of abstraction

e The von Neumann architecture has served us well, but is no longer
appropriate for the multi-core/cluster environment

o Hide system-level details from the developers

e NoO more race conditions, lock contention, etc.
o Separating the what from how

e Developer specifies the computation that needs to be performed
e Execution framework (“runtime”) handles actual execution

The datacenter is the computer!



Building Blocks

Source: Barroso and Urs Holzle (2009)



Storage Hierarchy

One Server

DRAM: 16 GB, 100 ns, 20 GB/s
Disk: 2T B, 10 ms, 200 MB/s
Flash: 128 GB, 100 us, 1 GB/s

Local Rack (80 servers)
DRAM: 1TB, 300 us, 100 MB/s
Disk: 160TB, 11 ms, 100 MB/s

S
Dgé’éﬂiﬂm S Flash: 207TB, 400 us, 100 MB/s
L DRA s

Cluster (30 racks)

DRAM: 30TB, 500 us, 10 MB/s

Disk: 4.80PB, 12 ms, 10 MB/s
e, Flash: 600TB, 600 us, 10 MB/s

Source: Barroso and Urs Hélzle (2013)



Storage Hierarchy
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Source: Barroso and Urs Hélzle (2013)




Storage Hierarchy
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.
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Source: Barroso and Urs Hélzle (2013)




Anatomy of a Datacenter

Computer Air Handling Unit (CRAC)

. UP To 30 Ton Sensible Caml Per Unit

» Air Discharge Can Be Up Downflow Configuration

» Downflow Configuration Used With Raised Floor To Create
A Pressunized Supply Air Plenum With Floor Supply Diffuscrs

Individual Colocation Computer Cabinets
* Typ. Cabinet Footprint (28"W x 36"D x 84"H)
« Typical Capacities Of 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU)
» Typical Capacitics Up To 225 kVA Per Unit
« Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)
Emergency Diesel Generators
« Total Generator Capacity = Total Electrical Load To Building
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
+ Can Be Located Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Attenuating Enclosures

Fuel Oil Storage Tanks

» Tank Capacity Dependant On Length
Of Generator Operation

« Can Be Located Underground Or At

o
Grade Or Indoors

Colocation Sulte;

* Modular Configuration For
Flexible Suite Sq.Ft. Areas. ) Y . -
* Suites Consist Of Multiple Cabincts With ~ : e * Uninterruptible Power Supply Modules
Secured Partitions (Cages, Walls, Etc.) : * Up To 1000 kVA Per Module
« Cabinets And Battery Strings Or Rotary Flywheels
* Multiple Redundancy Configurations Can Be Designed

//Electrlcal Primary Switchgear

-~ * Includes Incoming Service And Distribution

> » Direct Distribution To Mechanical Equipment

* Distribution To Secondary Electrical Equipment Via UPS

Hest Rejoction Toviens Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Uni
. lers, Air Cooled Chillers, Etc. ¢ Used To Pump Condenser/Chilled Water Between Drycoolers Inits
5 3:,”{"20 400 Ton Capacity Per Usit « Additional Equipment Includes Expansion Tank, Glycol Feed System

« Mounted At Grade Or On Roof * N+1 Design (Standby Pump)

* N+1 Design

Source: Barroso and Urs Hélzle (2013)



Anatomy of a Datacenter

Ceiling Ceiling
il Vet ey pia,
Liquid v+ tE ¢ - Liquid
SuPpILCRAC — LRack - | Rack ‘l . | ack Lpack by [ 1 CRAC IS_U[;ply
Ie—unit 15 | | {;j@ ' | Unit =
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Floor Sl Fomm—— e orSIab

Source: Barroso and Urs Holzle (2013)
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Scaling “up?” vs. “out”

o No single machine is large enough

e Smaller cluster of large SMP machines vs. larger cluster of
commodity machines (e.g., 16 128-core machines vs. 128 16-core

machines)
o Nodes need to talk to each other!

e Intra-node latencies: ~100 ns
e Inter-node latencies: ~100 us

o Let’'s model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Holzle (2009)
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Modeling Communication Costs
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o Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster
e n nodes (ignore cores for now)

1 ms +fx[100 ns x (1/n) + 100 us x (1 - 1/n)]

* Light communication: f =1
* Medium communication: f =10
* Heavy communication: f =100

o What are the costs in parallelization?



Cost of Parallelization

Normalized execution time

1000 1 high communication
medium communication
- _-._ ' ‘
light communication
'1 -DD T T T T .I T T T I.
0 4 8 12 16 20 24 28 32

number of nodes
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So why not?

Why does commodity beat exotic?



Moving Data Around

10,000,000.0
1,000,000.0
100,000.0 i /
10,0000 - - :
1,000.0 /\\x,\\// B o

1000 / -
10.0 N

1.0 :'
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Local DRAM Local Disk Rack DRAM Rack Disk Datacenter Datacenter
DRAM Disk
Latency (us) ------==-nn---
Bandwidth (MB/sec)
Capacity (GB)

Source: Barroso and Urs Hélzle (2013)
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Seeks vs. Scans

o Consider a 1 TB database with 100 byte records

e We want to update 1 percent of the records

o Scenario 1: random access

e Each update takes ~30 ms (seek, read, write)
e 108 updates = ~35 days

o Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

o Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list



“Big Ideas”
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o Scale “out”, not “up”

95 - 0>
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e Limits of SMP and large shared-memory machines
o Move processing to the data

e Cluster have limited bandwidth

o Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable
o Seamless scalability

e From the mythical man-month to the tradable machine-hour



MapReduce
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What is MapReduce?

o Programming model for expressing distributed
computations at a massive scale

1

QNOL: £7

o Execution framework for organizing and performing such
computations

o Open-source implementation called Hadoop

" =[a/a]a]5)




Typical Large-Data Problem

o lIterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate feS\{‘éduCe

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)



Roots in Functional Programming
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Cheap nodes fail, especially if you have many

e Mean time between failures for 1 node = 3 years
e Mean time between failures for 1000 nodes = 1 day
e Solution: Build fault-tolerance into system

Commodity network = low bandwidth

e Solution: Push computation to the data

Programming distributed systems is hard

e Solution: Data-parallel programming model: users write “map” &
“reduce” functions, system distributes work and handles faults




MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v'>*
reduce (k’, v') — <k”, v’>*
e All values with the same key are sent to the same reducer

o The execution framework handles everything else...

What'’s “everything else”?
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MapReduce “Runtime”
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o Handles scheduling
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e Assigns workers to map and reduce tasks
o Handles “data distribution”

e Moves processes to data
o Handles synchronization

e Gathers, sorts, and shuffles intermediate data
o Handles errors and faults

e Detects worker failures and restarts

o Everything happens on top of a distributed FS



MapReduce

o Programmers specify two functions:
map (k, v) — <k’, v'>*
reduce (k’, v') — <k”, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic
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Two more details...

o Barrier between map and reduce phases

e But we can begin copying intermediate data earlier

o Keys arrive at each reducer in sorted order

e No enforced ordering across reducers
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MapReduce Execution

o Single master controls job execution on multiple slaves

o Mappers preferentially placed on same node or same rack
as their input block

e Minimizes network usage

o Mappers save outputs to local disk before serving them to
reducers

e Allows recovery if a reducer crashes
e Allows having more reducers than nodes



User

Program
I (1) submit
(2) sgbedﬁle map 2) ;Eh@dule reduce
A’,’ )
worker >
li .
spli )
D , (3) read _ file O
split 2 (4) local write
split 3 g
split 4 output
file 1
worker —>
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)



““Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):

int sum = O;

for each v in values:
sum +=v;
Emit(term, value);




Word Count Execution

Input Map Shuffle & Sort  Reduce
ﬂ the, 1 ﬂ
) brown, 1
the quick fox, 1 brown, 2
brown fox fox, 2
Reduce }——» ’
how, 1
nhow, 1
the, 3
the fox ate |
the mouse
:zx' : ate, 1 ate, 1
br‘ow;L 1 mouse, 1 Reduce }—} cow, 1
how now mouse. 1
brown cow quick, 1




Word Count with Combiner

Input

A

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map & Combine Shuffle & Sort

the, 1
brown, 1
fox, 1

how, 1
now, 1
brown, 1

ate, 1
mouse, 1

Reduce

Reduce }——»

Reduce }——P

Output

Wz

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1

quick, 1
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Search Example

o Input: (lineNumber, line) records

o Output: lines matching a given pattern

o Map:
if(line matches pattern):
output(line)

o Reduce: identify function
e Alternative: no reducer (map-only job)
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Sort Example
o Input: (key, value) records

o Output: same records, sorted by key

o Map: identity function [A-M]

o Reduce: identify function

bee
cow
elephant

aardvark,
elephant

o Trick: Pick partitioning
function h such that

ki<ks, => h(k;)<h(k;)

sheep, yak
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Inverted Index Example

o Input: (filename, text) records

o Output: list of files containing each word

o Map:
foreach word in text.split():
output(word, filename)

o Combine: uniquify filenames for each word

o Reduce:
def reduce(word, filenames):
output(word, sort(filenames))



Inverted Index Example

ﬂhamlet.tx‘r

to be or
not to be

A 12th_+xt

be not
afraid of
greatness

to, hamlet.txt
be, hamlet.txt

or, hamlet.txt \

not, hamlet.txt

be, 12th.txt

not, 12th.txt /
afraid, 12th.txt

of, 12th.txt

greatness, 12th.txt

A

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)




X\ AH
\Z*\\\* /"41042)
A" 2
o 2) 2\

1

L e N\
Nk .
KPS Z“ RIS

‘ AS

Most Popular Words Example
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o Input: (filename, text) records

o Output: top 100 words occurring in the most files

o Two-stage solution:

e Job 1:

» Create inverted index, giving (word, list(file)) records
e Job 2:

« Map each (word, list(file)) to (count, word)
« Sort these records by count as in sort job

o Optimizations:

e Map to (word, 1) instead of (word, file) in Job 1
e Countfiles in job 1's reducer rather than job 2’s mapper
e Estimate count distribution in advance and drop rare words



Fault Tolerance in MapReduce

1. If a task crashes:

e Retry on another node

» OK for a map because it has no dependencies

* OK for reduce because map outputs are on disk

e If the same task fails repeatedly, fail the job or ignore that
Input block (user-controlled)

» Note: For these fault tolerance features to work, your
map and reduce tasks must be side-effect-free



Fault Tolerance in MapReduce

2. If a node crashes:
e Re-launch its current tasks on other nodes
e Re-run any maps the node previously ran

* Necessary because their output files were lost along with
the crashed node
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Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

e Launch second copy of task on another node (“speculative
execution”)
e Take the output of whichever copy finishes first, and kill the

other

o Surprisingly important in large clusters

e Stragglers occur frequently due to failing hardware, software
bugs, misconfiguration, etc
e Single straggler may noticeably slow down a job



Takeaways

o By providing a data-parallel programming model,
MapReduce can control job execution in useful ways:
e Automatic division of job into tasks
e Automatic placement of computation near data
e Automatic load balancing
e Recovery from failures & stragglers

o User focuses on application, not on complexities of
distributed computing



Hadoop Components

o Distributed file system (HDFS)

e Single namespace for entire cluster
e Replicates data 3x for fault-tolerance

o MapReduce framework

e EXxecutes user jobs specified as “map” and “reduce”
functions

e Manages work distribution & fault-tolerance
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MapReduce Implementations
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o Google has a proprietary implementation in C++

e Bindings in Java, Python

o Hadoop is an open-source implementation in Java

e Development led by Yahoo, now an Apache project
e Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,

e The de facto big data processing platform
e Large and expanding software ecosystem

o Lots of custom research implementations

e For GPUs, cell processors, etc.

”a]ag_r}
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Compute Nodes

What'’s the problem here?



Distributed File System

o Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

o Why?

e Not enough RAM to hold all the data in memory
e Disk access is slow, but disk throughput is reasonable

o A distributed file system is the answer

e GFS (Google File System) for Google’s MapReduce
e HDFS (Hadoop Distributed File System) for Hadoop
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GFS: Assumptions

o Commodity hardware over “exotic” hardware

e Scale “out”, not “up”
o High component failure rates

e |nexpensive commodity components fail all the time
o “Modest” number of huge files

e Multi-gigabyte files are common, if not encouraged
o Files are write-once, mostly appended to

e Perhaps concurrently

o Large streaming reads over random access

e High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)



GFS: Design Decisions

o Files stored as chunks
e Fixed size (64MB)

o Reliability through replication
e Each chunk replicated across 3+ chunkservers

o Single master to coordinate access, keep metadata
e Simple centralized management

o No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

e Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)




From GFS to HDFS

o Terminology differences:

e GFS master = Hadoop namenode
e GFS chunkservers = Hadoop datanodes

o Differences:

e Different consistency model for file appends
e Implementation
e Performance

For the most part, we’ll use Hadoop terminology..
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Hadoop Distributed File System

o Files split into 64MB blocks

Namenode

o Blocks replicated across several
datanodes (usually 3)

o Single namenode stores metadata
(file names, block locations, etc)

o Optimized for large files,
sequential reads

o Files are append-only

Datanodes



Namenode Responsibilities

o Managing the file system namespace:

e Holds file/directory structure, metadata, file-to-block mapping,
access permissions, etc.

o Coordinating file operations:

e Directs clients to datanodes for reads and writes
e No data is moved through the namenode

o Maintaining overall health:

e Periodic communication with the datanodes
e Block re-replication and rebalancing
e Garbage collection
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HDFS Architecture

HDFS namenode

Application

v

File namespace

HDFS Client <
A

[foo/bar
block 3df2

HDFS datanode

Linux file system

Sl

Adapted from (Ghemawat et al., SOSP 2003)

HDFS datanode

Linux file system

Sl




Putting everything together...

namenode job submission node

namenode daemon jobtracker

-
-
- i N

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system




Sequoia

96 racks (12x8) BG/Q 5D Torus Fabric
QDR Infiniband
Ethernet

98,304 compute nodes
768 1/0O nodes

" Lustre '
- QDR IB
SAN Expansion to other

SCF IB clusters

OO .
¢ Ethernet Login Nodes
[TIIILLT] - (32)
—II Login Nodes
LAC (2)
OO it
OO Nodes

Lustre MDS &
0SS Nodes

AYAYAYA

To other SCF

clusters, file systems,
HPSS, etc.

Source: LLNL



