
Introduction to Big Data,

MAP/REDUCE, Hadoop, HDFS

D. Tsoumakos

Data Analysis and Processing

2020

Department of Informatics

Ionian University

Material adapted from slides by Jimmy Lin, The iSchool – University of Maryland

And from www.cloudcomputingchina.com

The Big Data era

What is Big Data?

 Big data is like teenage sex:

 everyone talks about it

 nobody really knows how to do it

 everyone thinks everyone else is doing it

 so everyone claims they are doing it...

 --Dan Ariely, Professor at Duke University

Big Data Definition

 No single standard definition…

“Big Data” is data whose scale, diversity, and complexity

require new architecture, techniques, algorithms, and

analytics to manage it and extract value and hidden

knowledge from it…

4

Characteristics of Big Data:

1-Scale (Volume)

 Data Volume

 44x increase from 2009 2020

 From 0.8 zettabytes to 35zb

 Data volume is increasing exponentially

5

Exponential increase in

collected/generated data

Characteristics of Big Data:

2-Complexity (Varity)

 Various formats, types, and
structures

 Text, numerical, images, audio,
video, sequences, time series, social
media data, multi-dim arrays, etc…

 Static data vs. streaming data

 A single application can be
generating/collecting many types of
data

6

To extract knowledge all these types of

data need to linked together

Characteristics of Big Data:

3-Speed (Velocity)

 Data is begin generated fast and need to be processed
fast

 Online Data Analytics

 Late decisions missing opportunities

 Examples

 E-Promotions: Based on your current location, your purchase
history, what you like send promotions right now for store next to
you

 Healthcare monitoring: sensors monitoring your activities and
body any abnormal measurements require immediate reaction

7

Big Data: 3V’s

8

Extended Big Data Characteristics: 6V

 Volume: In a big data environment, the amounts of data collected and
processed are much larger than those stored in typical relational
databases.

 Variety: Big data consists of a rich variety of data types.

 Velocity: Big data arrives to the organization at high speeds and from
multiple sources simultaneously.

 Veracity: Data quality issues are particularly challenging in
a big data context.

 Visibility/Visualization: After big data being processed, we
need a way of presenting the data in a manner that’s
readable and accessible.

 Value: Ultimately, big data is meaningless if it does not
provide value toward some meaningful goal.

Veracity (Quality & Trust)

 Data = quantity + quality

 When we talk about big data, we typically mean its
quantity:

 What capacity of a system provides to cope with the sheer size of
the data?

 Is a query feasible on big data within our available resources?

 How can we make our queries tractable on big data?

 . . .

 Can we trust the answers to our queries?

 Dirty data routinely lead to misleading financial reports, strategic
business planning decision loss of revenue, credibility and
customers, disastrous consequences

 The study of data quality is as important as data quantity

Data in real-life is often dirty

500,000 dead people

retain active Medicare

cards

81 million National Insurance

numbers but only 60 million

eligible citizens

98000 deaths each year,

caused by errors in

medical data

Visibility/Visualization

 Visible to the process of big data management

 Big Data – visibility = Black Hole?

 Big data visualization tools:

A visualization of Divvy bike rides across Chicago

http://dataconomy.com/chicago-city-big-data/

Value

 Big data is meaningless if it does not provide value toward

some meaningful goal

Big Data: 6V in Summary

Transforming Energy and Utilities through Big Data & Analytics. By Anders

Quitzau@IBM

Other V’s

 Variability

 Variability refers to data whose meaning is constantly changing.
This is particularly the case when gathering data relies on
language processing.

 Viscosity

 This term is sometimes used to describe the latency or lag time in
the data relative to the event being described. We found that this
is just as easily understood as an element of Velocity.

 Virality

 Defined by some users as the rate at which the data spreads; how
often it is picked up and repeated by other users or events.

 Volatility

 Big data volatility refers to how long is data valid and how long
should it be stored. You need to determine at what point is data no
longer relevant to the current analysis.

 More V’s in the future …

Harnessing Big Data

 OLTP: Online Transaction Processing (DBMSs)

 OLAP: Online Analytical Processing (Data Warehousing)

 RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)

16

Who is generating Big Data?

Homeland Security

Real Time Search

Social

eCommerce

User Tracking &

Engagement

Financial Services

The Model Has Changed…

 The Model of Generating/Consuming Data has Changed

18

Old Model: Few companies are generating data, all others are consuming data

New Model: all of us are generating data, and all of us are consuming data

Challenges in Handling Big Data

 The Bottleneck is in technology

 New architecture, algorithms, techniques are needed

 Also in technical skills

 Experts in using the new technology and dealing with big data

19

20

How much data?

Hadoop: 10K nodes,
150K cores, 150 PB
(4/2014)

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS
(5/2014)

300 PB data in Hive +
600 TB/day (4/2014)

400B pages,
10+ PB
(2/2014)

LHC: ~15 PB a year

LSST: 6-10 PB a year
(~2020) 640K ought to be

enough for
anybody.

150 PB on 50k+ servers
running 15k apps (6/2011)

S3: 2T objects, 1.1M
request/second (4/2013)

SKA: 0.3 – 1.5 EB

per year (~2020)

Hadoop: 365 PB, 330K
nodes (6/2014)

No data like more data!

(Banko and Brill, ACL 2001)

(Brants et al., EMNLP 2007)

s/knowledge/data/g;

How do we get here if we’re not Google?

What to do with more data?

 Answering questions

 Pattern matching on the Web

 Works amazingly well

 Learning relations

 Start with seed instances

 Search for patterns on the Web

 Using patterns to find more instances

Who shot Abraham Lincoln? X shot Abraham Lincoln

Birthday-of(Mozart, 1756)

Birthday-of(Einstein, 1879)

Wolfgang Amadeus Mozart (1756 - 1791)

Einstein was born in 1879

PERSON (DATE –

PERSON was born in DATE

(Brill et al., TREC 2001; Lin, ACM TOIS 2007)

(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; …)

Emergence of the 4th
Paradigm

Data-intensive e-Science Maximilien Brice, © CERN

Science

Engineering
The unreasonable effectiveness of

data

Count and normalize!

Source: Wikipedia (Three Gorges Dam)

Commerce

Know thy customers

Data Insights Competitive
advantages

Source: Wikiedia (Shinjuku, Tokyo)

What is cloud computing?

Just a buzzword?

 Before clouds…

 P2P computing

 Grids

 HPC

 …

 Cloud computing means many different things:

 Large-data processing

 Rebranding of web 2.0

 Utility computing

 Everything as a service

Rebranding of web 2.0

 Rich, interactive web applications

 Clouds refer to the servers that run them

 AJAX as the de facto standard (for better or worse)

 Examples: Facebook, YouTube, Gmail, …

 “The network is the computer”: take two

 User data is stored “in the clouds”

 Rise of the netbook, smartphones, etc.

 Browser is the OS

Utility Computing

 What?

 Computing resources as a metered service (“pay as you go”)

 Ability to dynamically provision virtual machines

 Why?

 Cost: capital vs. operating expenses

 Scalability: “infinite” capacity

 Elasticity: scale up or down on demand

 Does it make sense?

 Benefits to cloud users

 Business case for cloud providers

I think there is a
world market for
about five computers.

Enabling Technology: Virtualization

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Cloud computing market

Hardware provider

Cloud technology enabler

Infrastructure as a service

Platform as a service

Software as a service Everything is a service

Everything as a Service

 Utility computing = Infrastructure as a Service (IaaS)

 Why buy machines when you can rent cycles?

 Examples: Amazon’s EC2, Rackspace

 Platform as a Service (PaaS)

 Give me nice API and take care of the maintenance, upgrades, …

 Example: Google App Engine

 Software as a Service (SaaS)

 Just run it for me!

 Example: Gmail, Salesforce

How do we scale up?

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Parallelization Challenges

 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers die?

What is the common theme of all of these problems?

Synchronization!

 Parallelization problems arise from:

 Communication between workers (e.g., to exchange state)

 Access to shared resources (e.g., data)

 Thus, we need a synchronization mechanism

Managing Multiple Workers

 Difficult because

 We don’t know the order in which workers run

 We don’t know when workers interrupt each other

 We don’t know the order in which workers access shared data

 Thus, we need:

 Semaphores (lock, unlock)

 Conditional variables (wait, notify, broadcast)

 Barriers

 Still, lots of problems:

 Deadlock, livelock, race conditions...

 Dining philosophers, sleeping barbers, cigarette smokers...

 Moral of the story: be careful!

Current Tools

 Programming models

 Shared memory (pthreads)

 Message passing (MPI)

 Design Patterns

 Master-slaves

 Producer-consumer flows

 Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
e

m
o

ry

master

slaves

producer consumer

producer consumer

work queue

What’s the point?

 It’s all about the right level of abstraction

 The von Neumann architecture has served us well, but is no longer

appropriate for the multi-core/cluster environment

 Hide system-level details from the developers

 No more race conditions, lock contention, etc.

 Separating the what from how

 Developer specifies the computation that needs to be performed

 Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

Building Blocks

Source: Barroso and Urs Hölzle (2009)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter

Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter

Source: Barroso and Urs Hölzle (2013)

Scaling “up” vs. “out”

 No single machine is large enough

 Smaller cluster of large SMP machines vs. larger cluster of

commodity machines (e.g., 16 128-core machines vs. 128 16-core

machines)

 Nodes need to talk to each other!

 Intra-node latencies: ~100 ns

 Inter-node latencies: ~100 s

 Let’s model communication overhead…

Source: analysis on this an subsequent slides from Barroso and Urs Hölzle (2009)

Modeling Communication Costs

 Simple execution cost model:

 Total cost = cost of computation + cost to access global data

 Fraction of local access inversely proportional to size of cluster

 n nodes (ignore cores for now)

• Light communication: f =1

• Medium communication: f =10

• Heavy communication: f =100

 What are the costs in parallelization?

1 ms + f [100 ns (1/n) + 100 s (1 - 1/n)]

Cost of Parallelization

Advantages of scaling “up”

So why not?
Why does commodity beat exotic?

Moving Data Around

Source: Barroso and Urs Hölzle (2013)

Seeks vs. Scans

 Consider a 1 TB database with 100 byte records

 We want to update 1 percent of the records

 Scenario 1: random access

 Each update takes ~30 ms (seek, read, write)

 108 updates = ~35 days

 Scenario 2: rewrite all records

 Assume 100 MB/s throughput

 Time = 5.6 hours(!)

 Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

“Big Ideas”

 Scale “out”, not “up”

 Limits of SMP and large shared-memory machines

 Move processing to the data

 Cluster have limited bandwidth

 Process data sequentially, avoid random access

 Seeks are expensive, disk throughput is reasonable

 Seamless scalability

 From the mythical man-month to the tradable machine-hour

MapReduce

What is MapReduce?

 Programming model for expressing distributed

computations at a massive scale

 Execution framework for organizing and performing such

computations

 Open-source implementation called Hadoop

Typical Large-Data Problem

 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for

these two operations

(Dean and Ghemawat, OSDI 2004)

g g g g g

f f f f f Map

Fold

Roots in Functional Programming

Challenges

1. Cheap nodes fail, especially if you have many

 Mean time between failures for 1 node = 3 years

 Mean time between failures for 1000 nodes = 1 day

 Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth

 Solution: Push computation to the data

3. Programming distributed systems is hard

 Solution: Data-parallel programming model: users write “map” &

“reduce” functions, system distributes work and handles faults

MapReduce

 Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’’, v’’>*

 All values with the same key are sent to the same reducer

 The execution framework handles everything else…

What’s “everything else”?

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce “Runtime”

 Handles scheduling

 Assigns workers to map and reduce tasks

 Handles “data distribution”

 Moves processes to data

 Handles synchronization

 Gathers, sorts, and shuffles intermediate data

 Handles errors and faults

 Detects worker failures and restarts

 Everything happens on top of a distributed FS

MapReduce

 Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’’, v’’>*

 All values with the same key are reduced together

 The execution framework handles everything else…

 Not quite…usually, programmers also specify:

partition (k’, number of partitions) → partition for k’

 Often a simple hash of the key, e.g., hash(k’) mod n

 Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*

 Mini-reducers that run in memory after the map phase

 Used as an optimization to reduce network traffic

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

Two more details…

 Barrier between map and reduce phases

 But we can begin copying intermediate data earlier

 Keys arrive at each reducer in sorted order

 No enforced ordering across reducers

MapReduce Execution

 Single master controls job execution on multiple slaves

 Mappers preferentially placed on same node or same rack

as their input block

 Minimizes network usage

 Mappers save outputs to local disk before serving them to

reducers

 Allows recovery if a reducer crashes

 Allows having more reducers than nodes

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

“Hello World”: Word Count

Map(String docid, String text):

 for each word w in text:

 Emit(w, 1);

Reduce(String term, Iterator<Int> values):

 int sum = 0;

 for each v in values:

 sum += v;

 Emit(term, value);

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1
fox, 1

quick, 1

the, 1

fox, 1
the, 1

how, 1

now, 1
brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1
fox, 1

quick, 1

the, 2

fox, 1

how, 1

now, 1
brown, 1

ate, 1

mouse, 1

cow, 1

Search Example

 Input: (lineNumber, line) records

 Output: lines matching a given pattern

 Map:

 if(line matches pattern):
 output(line)

 Reduce: identify function

 Alternative: no reducer (map-only job)

pig

sheep

yak

zebra

aardvark

ant

bee

cow

elephant

Sort Example

 Input: (key, value) records

 Output: same records, sorted by key

 Map: identity function

 Reduce: identify function

 Trick: Pick partitioning

function h such that

k1<k2 => h(k1)<h(k2)

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,
elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

Inverted Index Example

 Input: (filename, text) records

 Output: list of files containing each word

 Map:

 foreach word in text.split():
 output(word, filename)

 Combine: uniquify filenames for each word

 Reduce:
 def reduce(word, filenames):
 output(word, sort(filenames))

Inverted Index Example

to be or
not to be afraid, (12th.txt)

be, (12th.txt, hamlet.txt)
greatness, (12th.txt)

not, (12th.txt, hamlet.txt)
of, (12th.txt)

or, (hamlet.txt)
to, (hamlet.txt)

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

Most Popular Words Example

 Input: (filename, text) records

 Output: top 100 words occurring in the most files

 Two-stage solution:

 Job 1:

• Create inverted index, giving (word, list(file)) records

 Job 2:

• Map each (word, list(file)) to (count, word)

• Sort these records by count as in sort job

 Optimizations:

 Map to (word, 1) instead of (word, file) in Job 1

 Count files in job 1’s reducer rather than job 2’s mapper

 Estimate count distribution in advance and drop rare words

Fault Tolerance in MapReduce

1. If a task crashes:

 Retry on another node

• OK for a map because it has no dependencies

• OK for reduce because map outputs are on disk

 If the same task fails repeatedly, fail the job or ignore that

input block (user-controlled)

 Note: For these fault tolerance features to work, your

map and reduce tasks must be side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:

 Re-launch its current tasks on other nodes

 Re-run any maps the node previously ran

• Necessary because their output files were lost along with

the crashed node

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

 Launch second copy of task on another node (“speculative

execution”)

 Take the output of whichever copy finishes first, and kill the

other

 Surprisingly important in large clusters

 Stragglers occur frequently due to failing hardware, software

bugs, misconfiguration, etc

 Single straggler may noticeably slow down a job

Takeaways

 By providing a data-parallel programming model,

MapReduce can control job execution in useful ways:

 Automatic division of job into tasks

 Automatic placement of computation near data

 Automatic load balancing

 Recovery from failures & stragglers

 User focuses on application, not on complexities of

distributed computing

Hadoop Components

 Distributed file system (HDFS)

 Single namespace for entire cluster

 Replicates data 3x for fault-tolerance

 MapReduce framework

 Executes user jobs specified as “map” and “reduce”

functions

 Manages work distribution & fault-tolerance

MapReduce Implementations

 Google has a proprietary implementation in C++

 Bindings in Java, Python

 Hadoop is an open-source implementation in Java

 Development led by Yahoo, now an Apache project

 Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,

…

 The de facto big data processing platform

 Large and expanding software ecosystem

 Lots of custom research implementations

 For GPUs, cell processors, etc.

How do we get data to the workers?

Compute Nodes

NAS

SAN

What’s the problem here?

Distributed File System

 Don’t move data to workers… move workers to the data!

 Store data on the local disks of nodes in the cluster

 Start up the workers on the node that has the data local

 Why?

 Not enough RAM to hold all the data in memory

 Disk access is slow, but disk throughput is reasonable

 A distributed file system is the answer

 GFS (Google File System) for Google’s MapReduce

 HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

 Commodity hardware over “exotic” hardware

 Scale “out”, not “up”

 High component failure rates

 Inexpensive commodity components fail all the time

 “Modest” number of huge files

 Multi-gigabyte files are common, if not encouraged

 Files are write-once, mostly appended to

 Perhaps concurrently

 Large streaming reads over random access

 High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions

 Files stored as chunks

 Fixed size (64MB)

 Reliability through replication

 Each chunk replicated across 3+ chunkservers

 Single master to coordinate access, keep metadata

 Simple centralized management

 No data caching

 Little benefit due to large datasets, streaming reads

 Simplify the API

 Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

 Terminology differences:

 GFS master = Hadoop namenode

 GFS chunkservers = Hadoop datanodes

 Differences:

 Different consistency model for file appends

 Implementation

 Performance

For the most part, we’ll use Hadoop terminology…

Hadoop Distributed File System

 Files split into 64MB blocks

 Blocks replicated across several

datanodes (usually 3)

 Single namenode stores metadata

(file names, block locations, etc)

 Optimized for large files,

sequential reads

 Files are append-only

Namenode

Datanodes

1

2

3

4

1

2

4

2

1

3

1

4

3

3

2

4

File1

Namenode Responsibilities

 Managing the file system namespace:

 Holds file/directory structure, metadata, file-to-block mapping,

access permissions, etc.

 Coordinating file operations:

 Directs clients to datanodes for reads and writes

 No data is moved through the namenode

 Maintaining overall health:

 Periodic communication with the datanodes

 Block re-replication and rebalancing

 Garbage collection

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace

/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

Source: LLNL

