Database Indexing Overview

[IMEZ “EpeuvntiLkég¢ KateubUvoeLg otnv
[IAnpopop LKY”

Emre¢epyaocia kai AvaAuon AedoueEvwy
SPRING SEMESTER 2020

Material taken from 15-415 - Database Applications class @Carnegie Mellon

C. Faloutsos

Indexing- overview

primary / secondary indices
index-sequential (ISAM)

B - trees, B+ - trees

Hashing

Indexing

e once the records are stored 1n a file, how do
you search efficiently?

* brute force: retrieve all records, report the
qualifying ones

* better: use indices (pointers) to locate the
records directly

Indexing — main idea:

123
125
234
STUDENT
Ssn Name Address
123 smith main str
234 jones forbes ave

125 tomson main str

Measuring ‘goodness’

range queries?
retrieval time?
insertion / deletion?
space overhead?

reorganization?

Main concepts

 search keys are sorted in the index file and
point to the actual records

* primary vs. secondary indices

* Clustering (sparse) vs non-clustering
(dense) indices

Indexing

Primary key index: on primary key (no duplicates)

123

234

345

456 STUDENT

567 Ssn Name Address
123 smith main str
234 jones forbes ave

678 tomson main str
456 stevens forbes ave
345 smith forbes ave

Indexing

secondary key index: duplicates may exist

forbes ave
main str
Address-index STUDENT
Ssn Name Address
123 smith main str
234 jones forbes ave

345 tomson main str
456 stevens forbes ave
567 smith forbes ave

forbes ave
main str

Postings lists

7

Indexing

secondary key index: typically, with ‘postings lists’

STUDENT

Ssn Name Address
123 smith main str
234 jones forbes ave
345 tomson main str
456 stevens forbes ave
567 smith forbes ave

Main concepts — cont’d

* Clustering (= sparse) index: records are
physically sorted on that key (and not all
key values are needed 1n the index)

* Non-clustering (=dense) index: the opposite

e E.g.

10

123
456

Indexing

Clustering/sparse index on ssn

STUDENT
Ssn Name Address
123 smith main str
234 jones forbes ave
345 tomson main str
456 stevens forbes ave
v 567 smith forbes ave

11

123
234

345
456
567

Indexing

Non-clustering / dense index

Ssn Name Address
345 tomson main str

\ 234 jones forbes ave\
567 smith forbes ave
456 stevens forbes ave

\ 123 smith main str \

12

Summary

 All combinations are possible Dense | Sparse

Primary usual

secondary |usual |rare

» at most one sparse/clustering index
 as many as desired dense indices

« usually: one primary-key index (maybe clustering) and
a few secondary-key indices (non-clustering)

13

Indexing- overview

primary / secondary indices
index-sequential (ISAM)

B - trees, B+ - trees

hashing
— static hashing

— dynamic hashing

14

ISAM

* What if index 1s too large to search
sequentially?

15

123~
3,423

ISAM

block

STUDENT

Ssn Name Address
123 smith main str
234 jones forbes ave
345 tomson___main str
456 stevens forbes ave
567 smith forbes ave

16

ISAM - observations

 1f index 1s too large, store 1t on disk and
keep index-on-the-index

 usually two levels of indices, one first- level
entry per disk block (why?)

17

ISAM - observations

 What about insertions/deletions?

overflows
STUDENT
123 123 ~— S50 Name Addiess.
3,423 456 123 smith __mainstr =1 1,,. neterson: fifth ave. I
] 234 jones forbes ave
345 tomson main str
456 stevens forbes ave
567 smith forbes ave

» overflow chains may become very long - thus:
* shut-down & reorganize

e start with ~80% utilization

18

So far

... Indices (like ISAM) suffer in the
presence of frequent updates

e alternative indexing structure: B - trees

19

B-trees

* the most successful family of index
schemes (B-trees, B™trees, B*-trees)

» Can be used for primary/secondary,
clustering/non-clustering index.

e balanced “n-way” search trees

20

B-trees

Eg., B-tree of order 3:

<6 6 39|
>6 /<9 >9

21

Properties

“block aware” nodes: each node -> disk
page

O(log (N)) for everything! (ins/del/search)
typically, if m = 50 - 100, then 2 - 3 levels

utilization >= 50%, guaranteed; on average
69%

22

Queries

* Algo for exact match query? (eg., ssn=8?)

<6 6 39|
>6 /<9 >9

23

Queries

* Algo for exact match query? (eg., ssn=8?)

<6 IB!E!
>6 /<9 &

24

Queries

* Algo for exact match query? (eg., ssn=8?)

<6 IB!E!
>6 of <9 &

25

Queries

* Algo for exact match query? (eg., ssn=8?)

IB!E!
e

26

Queries

* Algo for exact match query? (eg., ssn=8?)

A
IB!E! H steps (= disk
6 accesses)
Mlmrs M HIHII Mlsm 1
v

27

Queries

* what about range queries? (eg., S<salary<§)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

29

1]

5 |

O O O

Queries

\7\

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

RS ZAN

\13\

* what about range queries? (eg., S<salary<§)

30

Queries

* what about range queries? (eg., S<salary<§)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

IR a
1ESERN H?\ \13H |

O O O

31

B-trees 1n practice

In practice:
<6 6 || 9
>9
\ T~
1] 3] \7\ [13] |
UQ_I L]

Ssn |......

32

B-trees 1n practice
In practice, the formats are:
- leaf nodes: (v1, rpl, v2, rp2, ... vn, rpn)
- Non-leaf nodes: (pl, vl, rpl, p2, v2, rp2, ...)

33

B+ trees - Motivation

B-tree — print keys 1n sorted order:

<6 6 ‘ 9 ‘
>6 /<9 >9

34

B+ trees - Motivation

B-tree needs back-tracking — how to avoid 1t?

35

Solution: BT - trees

facilitate sequential ops
They string all leaf nodes together
AND

replicate keys from non-leaf nodes, to make

sure every key appears at the leaf level

36

B+ trees

<6 6 ‘ 9 ‘
>=6 /<9 =9
6 Lil7 9 |13

37

Conclusions

 all B — tree variants can be used for any
type of index: primary/secondary, sparse
(clustering), or dense (non-clustering)

* All have excellent, O(logN) worst-case
performance for ins/del/search

o It’s the prevailing indexing method

38

(Static) Hashing

Problem: “find EMP record with ssn=123"

What if disk space was free, and time was at
premium?

39

Hashing

A: Brilliant 1dea: key-to-address transformation:

#0 page
N RN
123; Smith; Main str — #123 page
N RN
#999,999,999

40

Hashing

Since space 1s NOT free:

e use M, instead of 999,999,999 slots
 hash function: A(key) = slot-id

#0 page
123; Smith; Main str———_, #123 page

#999,999,999

Hashing

Typically: each hash bucket 1s a page, holding

many records:

#0 page

123; Smith; Main str——————_, #n(123)

42

Hashing

Notice: could have clustering, or non-clustering

versions:
‘Q’ #0 page
))

123: Smith: Main str. ‘\<

~, #h(123)

v Y

43

Hashing

Notice: could have clustering, or non-clustering
Versions:

EMP file
‘Q] #0 page
/\v nEn
— \ 234: Johnson: Forbes ave
#h(123) 123 - _
/ —>| 123: Smith: Main str.
v \ I
M
345; Tompson; Fifth ave

44

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

45

Design decisions - functions

* Goal: uniform spread of keys over hash
buckets

* Popular choices:
— Division hashing

— Multiplication hashing

46

Division hashing

h(x) = (a*x+b) mod M
e ¢g., h(ssn) = (ssn) mod 1,000
— gives the last three digits of ssn

* M: size of hash table - choose a prime
number, defensively (why?)

47

Division hashing

* eg., M=2; hash on driver-license number
(dln), where last digit is ‘gender’ (0/1 = M/F)

* In an army unit with predominantly male
soldiers

» Thus: avoid cases where M and keys have
common divisors - prime M guards against
that!

48

Size of hash table

* eg., 50,000 employees, 10 employee-
records / page

« Q: M=?? pages/buckets/slots

49

Size of hash table

* eg., 50,000 employees, 10 employees/page
« Q: M=?? pages/buckets/slots
 A: utilization ~ 90% and

— M: prime number

Eg., In our case: M= closest prime to
50,000/10/ 0.9 = 5,555

50

Collision resolution

123: Smith; Main str.

N

N

12

v

#0 page

#h(123)

o1

Collision resolution

* Q: what 1s a ‘collision’?
o A: 7?7

* Q: why worry about collisions/overflows?
(recall that buckets are ~90% full)

* A: ‘birthday paradox’

52

Collision resolution

linear probing:

123; Smith; Main str. ‘ >
\

G

:

N

N

m

v

#0 page

#h(123)

53

Collision resolution

re-hashing

h1()

123: Smith: Malin str. ‘ .
h2()

N

N

12

v

#0 page

#h(123)

o4

Collision resolution

separate chaining

<
o=

123; Smith; Main str. ” UL

L=

95

Design decisions - conclusions

» function: division hashing
— h(x) = (a*x+b) mod M
 size M: ~90% util.; prime number.
» collision resolution: separate chaining

— easler to implement (deletions!);
— no danger of becoming full

56

Hashing vs B-trees:

Hashing offers
* speed ! (O(1) avg. search time)

..but:

S7

Hashing vs B-trees:

..but B-trees give:

* key ordering:
— range queries
— proximity queries
— sequential scan

* O(log(N)) guarantees for search, ins./del.
 graceful growing/shrinking

58

