
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 1

DBMS Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

What is the goal of relational DBMSs?

Electronic record-keeping:

Fast and convenient access to information.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Why are databases cool?

 3 reasons:

 Normal forms

 1NF, 2NF, 3NF, BCNF, …

 E/R model

 SQL

 But…it’s better to understand the technology!!

 So, why is Database technology so cool?

 Database Systems: 6 different things

Slide 2- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

1 – Data Layouts

Slide 2- 4

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

2 – Data Structures

Slide 2- 5

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

3 – Algorithms

Slide 2- 6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

4 - Hardware

Slide 2- 7

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

5 – Systems

Slide 2- 8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

6 - Users

Slide 2- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

11

How do DBs work?

Pictorially:

DBMS

data

and meta-data =

catalog =

data dictionary

select *

from student

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

12

How do DBs work?

%isql mydb

sql>create table student (

 ssn fixed;

 name char(20));

/mydb

student

ssn name

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

How do DBs work?

sql>insert into student values

(123, “Smith”);

sql>select * from student;
student

ssn name

123 Smith

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

How do DBs work - cont’d

More than one tables - joins
Eg., roster (names only) for ‘db’

sql> select name

 from student, takes

 where student.ssn = takes.ssn

 and takes.c-id = ‘db’

student

ssn name

takes

ssn c-id grade

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Views - a powerful tool!

what and why?

 suppose dtsouma is allowed to see only ssn’s

and GPAs, but not individual grades

 -> VIEWS!

 Views = ‘virtual tables’

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Views

sql> create view fellowship as (

 select ssn, avg(grade)

 from takes group by ssn);

takes

ssn c-id grade

123 ai 4

123 os 3

234 ai 3

ssn avg(grade)

123 3.5

234 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

15-415 - C.

Faloutsos
17

Views

sql> select * from fellowship;

ssn avg(grade)

123 3.5

234 3

takes

ssn c-id grade

123 ai 4

123 os 3

234 ai 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

Three-Schema Architecture

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products,

but has been useful in explaining database

system organization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

Data Independence

 Logical Data Independence:

 Can change the conceptual schema without
having to change the external schemas and their
associated application programs.

 Physical Data Independence:

 The capacity to change the internal schema
without having to change the conceptual schema.

 For example, the internal schema may be changed
when certain file structures are reorganized or new
indexes are created to improve database
performance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

Data Independence (continued)

 When a schema at a lower level is changed, only

the mappings between this schema and higher-

level schemas need to be changed in a DBMS

that fully supports data independence.

 The higher-level schemas themselves are

unchanged.

 Hence, the application programs need not be

changed since they refer to the external schemas.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical

storage structures and access paths (e.g indexes).

 Typically uses a physical data model.

 how are these tables stored, how many bytes / attribute etc

 Conceptual schema at the conceptual level to describe the

structure and constraints for the whole database for a

community of users.

 Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the

various user views.

 Usually uses the same data model as the conceptual schema.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

The three-schema architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 23

Three-Schema Architecture

 Mappings among schema levels are needed to

transform requests and data.

 Programs refer to an external schema, and are

mapped by the DBMS to the internal schema for

execution.

 Data extracted from the internal DBMS level is

reformatted to match the user’s external view (e.g.

formatting the results of an SQL query for display

in a Web page)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

Data Models

 Data Model:

 A set of concepts to describe the structure of a database,

the operations for manipulating these structures, and

constraints that the database should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data

types) as well as groups of elements (e.g. entity, record,

table), and relationships among such groups

 Constraints specify some restrictions on valid data; these

constraints must be enforced at all times

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users
perceive data.

 (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored
in the computer. These are usually specified in an ad-hoc
manner through DBMS design and administration manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used by
many commercial DBMS implementations (e.g. relational
data models used in many commercial systems).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 26

Schemas versus Instances

 Database Schema:

 The description of a database.

 Includes descriptions of the database structure,
data types, and the constraints on the database.

 Schema Diagram:

 An illustrative display of (most aspects of) a
database schema.

 Schema Construct:

 A component of the schema or an object within
the schema, e.g., STUDENT, COURSE.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 27

Schemas versus Instances

 Database State:

 The actual data stored in a database at a

particular moment in time. This includes the

collection of all the data in the database.

 Also called database instance (or occurrence or

snapshot).

 The term instance is also applied to individual

database components, e.g. record instance, table

instance, entity instance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 28

Example of a Database Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 29

Example of a database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 30

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These

include the relational language SQL

 May be used in a standalone way or may be

embedded in a programming language

 Low Level or Procedural Languages:

 These must be embedded in a programming

language

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 31

DBMS Interfaces

 Stand-alone query language interfaces

 Example: Entering SQL queries at the DBMS

interactive SQL interface (e.g. SQL*Plus in

ORACLE)

 Programmer interfaces for embedding DML in

programming languages

 User-friendly interfaces

 Menu-based, forms-based, graphics-based, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 32

Database System Utilities

 To perform certain functions such as:

 Loading data stored in files into a database.

Includes data conversion tools.

 Backing up the database periodically on tape.

 Reorganizing database file structures.

 Report generation utilities.

 Performance monitoring utilities.

 Other functions, such as sorting, user monitoring,

data compression, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 33

Other Tools

 Data dictionary / repository:

 Used to store schema descriptions and other

information such as design decisions, application

program descriptions, user information, usage

standards, etc.

 Active data dictionary is accessed by DBMS

software and users/DBA.

 Passive data dictionary is accessed by

users/DBA only.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture

 [Users]

 DBMS

 query processor

 storage manager

 [Files]

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture

 query processor

 DML compiler

 embedded DML pre-compiler

 DDL interpreter

 Query evaluation engine

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture (cont’d)

 storage manager

 authorization and integrity manager

 transaction manager

 buffer manager

 file manager

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture (cont’d)

 Files

 data files

 data dictionary = catalog (= meta-data)

 indices

 statistical data

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 DBA doing a DDL (data definition language)

operation, eg.,

create table student ...

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

15-415 - C.

Faloutsos
40

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 casual user, asking for an update, eg.:

update student

set name to ‘smith’

where ssn = ‘345’

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 app. programmer, creating a report, eg

main(){

....

exec sql “select * from student”

...

}

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive
app.

pgmr
casual DBA users

pgm

(src)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 ‘naive’ user, running the previous app.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive
app.

pgmr
casual DBA users

pgm

(src)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 49

A Physical Centralized Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 50

Logical two-tier client server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 51

DBMS Server

 Provides database query and transaction services to the
clients

 Relational DBMS servers are often called SQL servers,
query servers, or transaction servers

 Applications running on clients utilize an Application
Program Interface (API) to access server databases via
standard interface such as:

 ODBC: Open Database Connectivity standard

 JDBC: for Java programming access

 Client and server must install appropriate client module
and server module software for ODBC or JDBC

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 52

Three-tier client-server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 53

Classification of DBMSs

 Based on the data model used

 Traditional: Relational, Network, Hierarchical.

 Emerging: Object-oriented, Object-relational.

 Other classifications

 Single-user (typically used with personal
computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with one
database)
vs. distributed (uses multiple computers, multiple
databases)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 54

Variations of Distributed DBMSs

(DDBMSs)

 Homogeneous DDBMS

 Heterogeneous DDBMS

 Federated or Multidatabase Systems

 Distributed Database Systems have now come to

be known as client-server based database

systems because:

 They do not support a totally distributed

environment, but rather a set of database servers

supporting a set of clients.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 55

Cost considerations for DBMSs

 Cost Range: from free open-source systems to
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, PostgreSQL,
others

 Commercial DBMS offer additional specialized modules,
e.g. time-series module, spatial data module, document
module, XML module

 These offer additional specialized functionality when
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or blades

 Different licensing options: site license, maximum number
of concurrent users (seat license), single user, etc.

