
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 1

DBMS Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

What is the goal of relational DBMSs?

Electronic record-keeping:

Fast and convenient access to information.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Why are databases cool?

 3 reasons:

 Normal forms

 1NF, 2NF, 3NF, BCNF, …

 E/R model

 SQL

 But…it’s better to understand the technology!!

 So, why is Database technology so cool?

 Database Systems: 6 different things

Slide 2- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

1 – Data Layouts

Slide 2- 4

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

2 – Data Structures

Slide 2- 5

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

3 – Algorithms

Slide 2- 6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

4 - Hardware

Slide 2- 7

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

5 – Systems

Slide 2- 8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

6 - Users

Slide 2- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

11

How do DBs work?

Pictorially:

DBMS

data

and meta-data =

catalog =

data dictionary

select *

from student

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

12

How do DBs work?

%isql mydb

sql>create table student (

 ssn fixed;

 name char(20));

/mydb

student

ssn name

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

How do DBs work?

sql>insert into student values

(123, “Smith”);

sql>select * from student;
student

ssn name

123 Smith

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

How do DBs work - cont’d

More than one tables - joins
Eg., roster (names only) for ‘db’

sql> select name

 from student, takes

 where student.ssn = takes.ssn

 and takes.c-id = ‘db’

student

ssn name

takes

ssn c-id grade

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Views - a powerful tool!

what and why?

 suppose dtsouma is allowed to see only ssn’s

and GPAs, but not individual grades

 -> VIEWS!

 Views = ‘virtual tables’

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Views

sql> create view fellowship as (

 select ssn, avg(grade)

 from takes group by ssn);

takes

ssn c-id grade

123 ai 4

123 os 3

234 ai 3

ssn avg(grade)

123 3.5

234 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

15-415 - C.

Faloutsos
17

Views

sql> select * from fellowship;

ssn avg(grade)

123 3.5

234 3

takes

ssn c-id grade

123 ai 4

123 os 3

234 ai 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

Three-Schema Architecture

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products,

but has been useful in explaining database

system organization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

Data Independence

 Logical Data Independence:

 Can change the conceptual schema without
having to change the external schemas and their
associated application programs.

 Physical Data Independence:

 The capacity to change the internal schema
without having to change the conceptual schema.

 For example, the internal schema may be changed
when certain file structures are reorganized or new
indexes are created to improve database
performance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

Data Independence (continued)

 When a schema at a lower level is changed, only

the mappings between this schema and higher-

level schemas need to be changed in a DBMS

that fully supports data independence.

 The higher-level schemas themselves are

unchanged.

 Hence, the application programs need not be

changed since they refer to the external schemas.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical

storage structures and access paths (e.g indexes).

 Typically uses a physical data model.

 how are these tables stored, how many bytes / attribute etc

 Conceptual schema at the conceptual level to describe the

structure and constraints for the whole database for a

community of users.

 Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the

various user views.

 Usually uses the same data model as the conceptual schema.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

The three-schema architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 23

Three-Schema Architecture

 Mappings among schema levels are needed to

transform requests and data.

 Programs refer to an external schema, and are

mapped by the DBMS to the internal schema for

execution.

 Data extracted from the internal DBMS level is

reformatted to match the user’s external view (e.g.

formatting the results of an SQL query for display

in a Web page)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

Data Models

 Data Model:

 A set of concepts to describe the structure of a database,

the operations for manipulating these structures, and

constraints that the database should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data

types) as well as groups of elements (e.g. entity, record,

table), and relationships among such groups

 Constraints specify some restrictions on valid data; these

constraints must be enforced at all times

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users
perceive data.

 (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored
in the computer. These are usually specified in an ad-hoc
manner through DBMS design and administration manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used by
many commercial DBMS implementations (e.g. relational
data models used in many commercial systems).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 26

Schemas versus Instances

 Database Schema:

 The description of a database.

 Includes descriptions of the database structure,
data types, and the constraints on the database.

 Schema Diagram:

 An illustrative display of (most aspects of) a
database schema.

 Schema Construct:

 A component of the schema or an object within
the schema, e.g., STUDENT, COURSE.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 27

Schemas versus Instances

 Database State:

 The actual data stored in a database at a

particular moment in time. This includes the

collection of all the data in the database.

 Also called database instance (or occurrence or

snapshot).

 The term instance is also applied to individual

database components, e.g. record instance, table

instance, entity instance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 28

Example of a Database Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 29

Example of a database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 30

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These

include the relational language SQL

 May be used in a standalone way or may be

embedded in a programming language

 Low Level or Procedural Languages:

 These must be embedded in a programming

language

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 31

DBMS Interfaces

 Stand-alone query language interfaces

 Example: Entering SQL queries at the DBMS

interactive SQL interface (e.g. SQL*Plus in

ORACLE)

 Programmer interfaces for embedding DML in

programming languages

 User-friendly interfaces

 Menu-based, forms-based, graphics-based, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 32

Database System Utilities

 To perform certain functions such as:

 Loading data stored in files into a database.

Includes data conversion tools.

 Backing up the database periodically on tape.

 Reorganizing database file structures.

 Report generation utilities.

 Performance monitoring utilities.

 Other functions, such as sorting, user monitoring,

data compression, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 33

Other Tools

 Data dictionary / repository:

 Used to store schema descriptions and other

information such as design decisions, application

program descriptions, user information, usage

standards, etc.

 Active data dictionary is accessed by DBMS

software and users/DBA.

 Passive data dictionary is accessed by

users/DBA only.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture

 [Users]

 DBMS

 query processor

 storage manager

 [Files]

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture

 query processor

 DML compiler

 embedded DML pre-compiler

 DDL interpreter

 Query evaluation engine

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture (cont’d)

 storage manager

 authorization and integrity manager

 transaction manager

 buffer manager

 file manager

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overall system architecture (cont’d)

 Files

 data files

 data dictionary = catalog (= meta-data)

 indices

 statistical data

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 DBA doing a DDL (data definition language)

operation, eg.,

create table student ...

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

15-415 - C.

Faloutsos
40

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 casual user, asking for an update, eg.:

update student

set name to ‘smith’

where ssn = ‘345’

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive app. pgmr casual DBA users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 app. programmer, creating a report, eg

main(){

....

exec sql “select * from student”

...

}

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive
app.

pgmr
casual DBA users

pgm

(src)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some examples:

 ‘naive’ user, running the previous app.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DDL int. DML proc.

query eval.

app. pgm(o)

trans. mgr

emb. DML

buff. mgr file mgr

data meta-data

query

proc.

storage

mgr.

naive
app.

pgmr
casual DBA users

pgm

(src)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 49

A Physical Centralized Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 50

Logical two-tier client server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 51

DBMS Server

 Provides database query and transaction services to the
clients

 Relational DBMS servers are often called SQL servers,
query servers, or transaction servers

 Applications running on clients utilize an Application
Program Interface (API) to access server databases via
standard interface such as:

 ODBC: Open Database Connectivity standard

 JDBC: for Java programming access

 Client and server must install appropriate client module
and server module software for ODBC or JDBC

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 52

Three-tier client-server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 53

Classification of DBMSs

 Based on the data model used

 Traditional: Relational, Network, Hierarchical.

 Emerging: Object-oriented, Object-relational.

 Other classifications

 Single-user (typically used with personal
computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with one
database)
vs. distributed (uses multiple computers, multiple
databases)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 54

Variations of Distributed DBMSs

(DDBMSs)

 Homogeneous DDBMS

 Heterogeneous DDBMS

 Federated or Multidatabase Systems

 Distributed Database Systems have now come to

be known as client-server based database

systems because:

 They do not support a totally distributed

environment, but rather a set of database servers

supporting a set of clients.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 55

Cost considerations for DBMSs

 Cost Range: from free open-source systems to
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, PostgreSQL,
others

 Commercial DBMS offer additional specialized modules,
e.g. time-series module, spatial data module, document
module, XML module

 These offer additional specialized functionality when
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or blades

 Different licensing options: site license, maximum number
of concurrent users (seat license), single user, etc.

