
7ο Φροντιστήριο Δομημένου Προγραμματισμού

Άσκηση 1: Ορίστε ένα struct Student με πεδία: id, name, grade.

Λύση
typedef struct {

int id;

char name[50];

float grade;

} Student;

Επεξήγηση
• Το struct ομαδοποιεί διαφορετικούς τύπους δεδομένων.
• Το typedef μας επιτρέπει να χρησιμοποιούμε το Student χωρίς τη λέξη struct.

Άσκηση 2: Δημιουργήστε έναν φοιτητή και έναν δείκτη που δείχνει σε αυτόν.

Λύση
Student s = {1, "Maria", 8.5};

Student *ptr = &s;

Επεξήγηση

• Ο δείκτης ptr αποθηκεύει τη διεύθυνση του s.
• Η πρόσβαση στα πεδία γίνεται με ptr->grade.

Άσκηση 3: Γράψτε συνάρτηση που εκτυπώνει φοιτητή μέσω δείκτη.

Λύση
void printStudent(Student *s) {

printf("%d %s %.2f\n", s->id, s->name, s->grade);

}

Επεξήγηση
• Χρησιμοποιούμε -> γιατί έχουμε δείκτη.
• Αποφεύγεται η αντιγραφή δεδομένων.

Άσκηση 4: Ορίστε κόμβο λίστας φοιτητών.

Λύση
typedef struct Node {

Student data;

struct Node *next;

} Node;

Επεξήγηση

• Ο δείκτης next δείχνει στον επόμενο κόμβο.
• struct Node * απαιτείται γιατί το struct δεν έχει ολοκληρωθεί ακόμα.

Άσκηση 5: Δημιουργήστε συνάρτηση που δεσμεύει νέο κόμβο.

Λύση
Node *createNode(Student s) {

Node *newNode = malloc(sizeof(Node));

newNode->data = s;

newNode->next = NULL;

return newNode;

}

Επεξήγηση

• Το malloc δεσμεύει δυναμική μνήμη.
• Το next = NULL δηλώνει τέλος λίστας.

Άσκηση 6: Προσθέστε φοιτητή στην αρχή της λίστας.

Λύση
void insertFront(Node **head, Student s) {

Node *newNode = createNode(s);

newNode->next = *head;

*head = newNode;

}

Επεξήγηση
• Χρησιμοποιούμε Node ** για να αλλάξουμε το head.
• Η λίστα ενημερώνεται σωστά.

Άσκηση 7: Εκτυπώστε όλους τους φοιτητές της λίστας.

Λύση
void printList(Node *head) {

while (head != NULL) {

printStudent(&head->data);

head = head->next;

}

}

Επεξήγηση

• Η λίστα διασχίζεται μέχρι το NULL.
• Δεν τροποποιούμε το αρχικό head.

Άσκηση 8: Βρείτε φοιτητή με συγκεκριμένο id.

Λύση
Node *findStudent(Node *head, int id) {

while (head != NULL) {

if (head->data.id == id)

return head;

 head = head->next;

}

return NULL;

}

Επεξήγηση

• Επιστρέφεται δείκτης στον κόμβο.
• Αν δεν βρεθεί, επιστρέφεται NULL.

Άσκηση 9: Διαγράψτε φοιτητή με συγκεκριμένο ID.

Λύση
void deleteStudent(Node **head, int id) {

Node *curr = *head, *prev = NULL;

while (curr != NULL && curr->data.id != id) {

prev = curr;

curr = curr->next;

}

if (curr == NULL) return;

if (prev == NULL)

*head = curr->next;

else

prev->next = curr->next;

free(curr);

}

Επεξήγηση

• Ελέγχουμε αν ο κόμβος είναι πρώτος.
• Απελευθερώνουμε μνήμη με free.

Άσκηση 10: Απελευθερώστε όλη τη λίστα από τη μνήμη.

Λύση
void freeList(Node *head) {

while (head != NULL) {

Node *temp = head;

head = head->next;

free(temp);

}

}

Επεξήγηση
• Αποφεύγουμε memory leaks.
• Κάθε κόμβος απελευθερώνεται ξεχωριστά.

Το παρακάτω πρόγραμμα: Δημιουργεί μια κενή λίστα φοιτητών, Εισάγει φοιτητές στην αρχή της λίστας, Εκτυπώνει
όλους τους φοιτητές, Αναζητά φοιτητή με βάση το ID, Διαγράφει φοιτητή, Απελευθερώνει τη μνήμη

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Ορισμός struct Student

typedef struct {

 int id;

 char name[50];

 float grade;

} Student;

// Ορισμός κόμβου λίστας

typedef struct Node {

 Student data;

 struct Node *next;

} Node;

// Συνάρτηση εκτύπωσης φοιτητή

void printStudent(Student *s) {

 printf("ID: %d | Όνομα: %s | Βαθμός: %.2f\n",

 s->id, s->name, s->grade);

}

// Δημιουργία νέου κόμβου

Node *createNode(Student s) {

 Node *newNode = (Node *)malloc(sizeof(Node));

 if (newNode == NULL) {

 printf("Σφάλμα δέσμευσης μνήμης\n");

 exit(1);

 }

 newNode->data = s;

 newNode->next = NULL;

 return newNode;

}

// Εισαγωγή στην αρχή της λίστας

void insertFront(Node **head, Student s) {

 Node *newNode = createNode(s);

 newNode->next = *head;

 *head = newNode;

}

// Εκτύπωση ολόκληρης λίστας

void printList(Node *head) {

 printf("\n--- Λίστα Φοιτητών ---\n");

 while (head != NULL) {

 printStudent(&head->data);

 head = head->next;

 }

}

// Αναζήτηση φοιτητή με ID

Node *findStudent(Node *head, int id) {

 while (head != NULL) {

 if (head->data.id == id)

 return head;

 head = head->next;

 }

 return NULL;

}

// Διαγραφή φοιτητή με ID

void deleteStudent(Node **head, int id) {

 Node *curr = *head;

 Node *prev = NULL;

 while (curr != NULL && curr->data.id != id) {

 prev = curr;

 curr = curr->next;

 }

 if (curr == NULL) {

 printf("Ο φοιτητής με ID %d δεν βρέθηκε.\n", id);

 return;

 }

 if (prev == NULL) {

 *head = curr->next; // διαγραφή πρώτου κόμβου

 } else {

 prev->next = curr->next;

 }

 free(curr);

 printf("Ο φοιτητής με ID %d διαγράφηκε.\n", id);

}

// Απελευθέρωση λίστας

void freeList(Node *head) {

 while (head != NULL) {

 Node *temp = head;

 head = head->next;

 free(temp);

 }

}

// main

int main() {

 Node *head = NULL; // κενή λίστα

 Student s1 = {1, "Maria", 8.5};

 Student s2 = {2, "Nikos", 7.2};

 Student s3 = {3, "Eleni", 9.1};

 insertFront(&head, s1);

 insertFront(&head, s2);

 insertFront(&head, s3);

 printList(head);

 // Αναζήτηση φοιτητή

 int searchId = 2;

 Node *found = findStudent(head, searchId);

 if (found != NULL) {

 printf("\nΒρέθηκε φοιτητής:\n");

 printStudent(&found->data);

 } else {

 printf("\nΟ φοιτητής με ID %d δεν βρέθηκε.\n", searchId);

 }

 // Διαγραφή φοιτητή

 deleteStudent(&head, 1);

 printList(head);

 // Καθαρισμός μνήμης

 freeList(head);

 return 0;

}

