
Design	and	Implementation	of	
the	SuperCollider	Interpreter

Brian	Heim
IEM	Graz
2018-06-16

Overview

• Compilers	&	interpreters	crash	course
• SuperCollider	interpreter	design
• Compilation	pipeline
• Primitives
• Stack
• Byte	code

Part	I
Compilers	&	Interpreters

Crash	Course

Compilers	&	Interpreters

•A	compiler is	a	translator,	typically	from	text	to	
machine	instructions
• Typically,	to	assembly	code,	which	is	then	translated	by	an	
assembler to	machine	code
•Machine	code	=	actual	instructions	for	CPU
• Assembly	code	=	very	light	abstraction	over	machine	code

•Compiled	languages:	C,	C++,	Swift,	Rust

Compilers	&	Interpreters

• An	interpreter is	a	compiler	whose	output	language	is	
virtual	machine	code
• This	is	not	the	only	definition	of	interpreter,	but	it’s	the	one	I	like

• A	virtual	machine (VM)	is	a	program	that	emulates	a	CPU
• Think	of	it	as	a	layer	between	the	programming	language	and	
the	underlying	OS/chip	architecture
• The	VM	knows	how	to	execute	the	compiler’s	virtual	
instructions	as	machine	code	instructions
•May	be	a	separate	process	or	a	function	call

• Interpreted	languages:	Python,	SuperCollider,	JavaScript

Compilers	&	Interpreters

•What	about	Java?
• Java	can	be	both	compiled	and	interpreted	(as	Java	
byte	code),	depending	on	the	implementation
•Using	the	JIT	compiler,	Java	byte	code	in	a	program	
may	be	translated	to	machine	code,	at	run-time!
• This	makes	frequently-used	pieces	of	code	run	faster

Compilers	&	Interpreters

•Compared	to	compiled	languages,	interpreted	
languages:
• Are	easier	to	write
• Run	slower
• Compile	faster
•May	be	more	appropriate	for	a	highly	specialized	domain

Language	Design:	Types
• Strong	vs	weak	typing:

• Strong	typingmeans	you	will	get	a	compiler	(or	runtime)	error	when	trying	to	use	one	type	as	another
• Weak	typingmeans	you	will	only	sometimes,	or	never
• Automatic	conversions	from	integer	to	floating	point	in	C	are	an	example	of	weak	typing

• Static	vs	dynamic	(“duck”)	typing
• With	a	static	type	system,	the	types	of	all	expressions	are	known	at	compile	time
• With	a	dynamic	type system,	the	runtime	will	need	to	make	checks	on	the	the	types	of	objects	and	variables

• This	is	called	Run-Time	Type	Information	(RTTI)
• C	and	Haskell	are	statically	typed;	C++	is	dynamically	typed	(using	virtual	classes)

• Compiled	vs	interpreted
• Paradigm

• Imperative
• Object-oriented
• Functional
• Logic-based

• Garbage	collected?
• Safety	vs	speed

Language	Design:	Types

• Strong	vs	weak	typing:
• Strong	typingmeans	you	will	get	a	compiler	(or	runtime)	error	when	trying	to	use	
one	type	as	another

• Weak	typingmeans	you	will	only	sometimes,	or	never
• Automatic	conversions	from	integer	to	floating	point	in	C	are	an	example	of	weak	
typing

• Static	vs	dynamic	(“duck”)	typing
• With	a	static	type	system,	the	types	of	all	expressions	are	known	at	compile	time
• With	a	dynamic	type system,	the	runtime	will	need	to	make	checks	on	the	the	types	
of	objects	and	variables
• This	is	called	Run-Time	Type	Information	(RTTI)

• C	and	Haskell	are	statically	typed;	C++	is	dynamically	typed	(using	virtual	classes)

Language	Design:	Paradigms
• Languages	can	fit	one	or	more	of	several	design	paradigms

• Languages	that support	more	than	one	category	are	called	multi-paradigm
• Imperative:	most	closely	models	how	a	CPU	runs

• Statements	are	written	in	order	from	top	to	bottom
• Ex.:	C,	Fortran

• Object-oriented:	state	is	bundled	with	the	functions	that	operate	on	it
• Objects	“own”	and	“encapsulate”	how	their	internal	state	should	behave
• Ex.:	SuperCollider,	Java,	C++

• Functional:	no	state	or	side-effects
• All	functions	are	pure,	meaning	the	same	inputs	always	produce	the	same	outputs
• Typically	heavy	use	of	recursion
• Ex.:	Haskell,	ML,	C++	(sometimes)

• Logic-based:	programs	are	written	as	declarative	logical	statements
• The	compiler	figures	out	the	rest,	like	magic!
• Ex.:	Prolog

Language	Design:	Other	considerations

• Garbage	collection
• In	a	garbage	collected	language,	the	runtime	tracks	all	allocated	memory	and	
automatically	disposes	of	it	once	it	can	no	longer	be	referenced	by	the	
running	program
• Ex.:	SuperCollider,	Java,	Python
• This	is	typically	slower	than	memory	managed	languages,	but	is	less	prone	to	
errors	and	easier	to	use

• Speed	vs.	safety	and	simplicity	vs.	robustness	are	the	main	tradeoffs	
in	language	design
• Above	all,	consider	the	intended	purpose	and	expected	users	of	the	language

Compiler	design

Source	code Byte	codeCOMPILER

Compiler	design

Source	code Byte	code

COMPILER

Front-end Back-endIR
[intermediate	
representation]

The	intermediate	representation	is	the	compiler’s	refined	representation	of	the	source	code.	
Typically,	it	is	in	a	tree-based	format.	For	example,	a	statement	like	int i = a + b; contains	
a	lot	of	unimportant	information.	The	compiler	whittles	it	down	to	something	like	shown	on	
the	right.	The	IR	will	also	contain	some	annotations	about	types,	memory	requirements,	and	
other	details	depending	on	the	language.

i

ba

+

Compiler	design	– front-end

Source	code

Front-end

IRLexer ParserTokens

• A	lexer converts	raw	text	into	tokens
• A	parser	uses	the	lexer to	convert	tokens	into	IR
• Typically,	compiler	authors	use	lexer- and	parser-generators

• lex/flex for	lexers
• yacc/bison for	parsers

• Optional	steps:
• Semantic	analysis:	variable	and	function	declaration	order,	function	argument	counts,	etc.

• The	parser	on	its	own	usually	can’t	tell	if	a	statement	like	a = b; is	correct;	that	requires	
knowing	where	‘a’	and	‘b’	are	declared,	if	at	all.

• Type	checking,	for	statically	typed	languages

Compiler	design	– back-end
Back-end

IR ???	~	31	years	of	arcane	C	code	~	??? Byte	code

This	is	what	usually	happens	in	practice.

Compiler	design	– back-end
Back-end

IR Optimizer	passes Byte	codeCode	gen Register	allocation

• Optimization	phases	help	the	code	run	faster	by	performing	inference	(and	sometimes	guesswork)
• Optimization	examples:

• Constant	folding
• Dead	code	elimination
• Dead	branch	elimination
• Function	inlining
• Loop	invariants	

Compiler	design	– back-end:	optimization
Back-end

IR Optimizer	passes Byte	codeCode	gen Register	allocation

• Optimization	phases	help	the	code	run	faster	using	inference	(and	sometimes	guesswork)	on	safe	
transformations
• The	same	program	can	be	represented	by	an	infinite	number	of	combinations	of	instructions.	The	

optimizer’s	job	is	to	find	a	really	good	representation.

Compiler	design	– back-end:	optimization
Back-end

IR Optimizer	passes Byte	codeCode	gen Register	allocation

• Optimization	examples:
• Constant	folding	(5 + 6 => 11)
• Dead	code	elimination

• If	a	variable	is	assigned-to	but	never	used,	it	can	be	eliminated
• Dead	branch	elimination	(if(false))
• Function	inlining

• As	if	the	body	of	a	function	were	written	directly	in	the	body	of	the	calling	function
• Can	eliminate	lots	of	instructions	for	moving	arguments	around

• Loop	invariants
• for (int i = 0; i < 5; ++i) { x = 3; /* … */ }
• ”x	=	3”	can	be	safely	moved	outside	the	loop

Compiler	design	– back-end:	optimization
Back-end

IR Optimizer	passes Byte	codeCode	gen Register	allocation

• Code	gen[eration]	turns	IR	into	“abstract”	assembly	(no	registers	assigned	yet)
• This	makes	it	easier	to	generalize	over	various	instruction	sets
• Optimization	may	also	be	performed	after	this

• Register	allocation assigns	specific	symbols	to	specific	CPU	registers	by	analyzing	the	liveness of	variables
• Registers are	the	32	or	so	pieces	of	memory	the	CPU	can	act	on	directly,	for	example	with	+	or	*	or	&&
• If	two	variables	never	need	to	be	used	at	the	same	time,	their	contents	can	safely	be	stored	in	the	same	

CPU	register
• Instruction	scheduling	– arranging	instructions	in	the	best	possible	ordering	– is	also	done	here

• For	example,	loading	a	value	from	memory	can	take	a	long	time.	If	the	instructions	after	a	load	depend	on	
the	memory	value,	there	will	be	a	stall.

• A	good	compiler	interleaves	instructions	so	that	consecutive	instructions	have	as	few	dependencies	as	
possible	(a	good	CPU	will	do	this	too!)

Compiler	design	– putting	it	all	together

Back-end

Optimizer	passes

Byte	code

Code	gen
Register	allocation
[Liveness	analysis]
[More	optimizing]
[Scheduling]	[Dragons]

Source	code

Front-end

IRLexer ParserTokens

Better	IR
Abstract	
instructions

Part	II
The	SuperCollider	Interpreter

Overview

• Lexer:	handwritten	[PyrLexer.cpp]
• (possibly	modified	from	machine-generated?)

• Parser:	Bison-generated	[lang11d	/	make_parser.sh]
• Separate	modes	for	class	library	parsing	vs.	JIT	compilation

• IR:	tree	of	struct PyrParseNode [PyrParseNode.h]
• Compiled	into	virtual	machine	byte	code	[PyrParseNode.cpp]
• Virtual	machine	[PyrInterpreter3.cpp]

• void Interpret(VMGlobals *g)

• Runtime:	garbage	collector	[GC.cpp],	primitives	calls	
[PyrPrimitive.cpp],	objects	as	slots	[PyrSlot.h]

Parser
classextension : '+' classname '{' methods '}’

{
$$ = (intptr_t)newPyrClassExtNode((PyrSlotNode*)$2, (PyrMethodNode*)$4);
}
;

methods : { $$ = 0; }
| methods methoddef

{ $$ = (intptr_t)linkNextNode((PyrParseNode*)$1, (PyrParseNode*)$2); }
;

• EBNF	(Extended	Backus-Naur	form)	notation	– a	way	of	expressing	
any	context	free	grammar
• Token	types	are	given	as	a	sequence	of	formulas	+	code	snippets
• Several	formulas	can	be	used	to	specify	one	token
• Bison	converts	this	to	C	or	C++	code

Slot
• A	slot	in	SuperCollider	is	the	basic	
representation	of	an	object	[PyrSlot.h]
• Essentially,	a	tagged	union	(value	+	RTTI)
• The	runtime	must	look	at	the	value	of	the	tag	
to	know	what	the	memory	next	to	it	
represents;	it	could	be	a	char,	a	double,	a	
symbol,	or	anything	else.
• The	meaning	of	each	tag	value	is	defined	in	
another	location.

/* in PyrSlot64.h */
typedef struct pyrslot {

long tag;
union {

int64 c; /* char */
int64 i;
double f;
void *ptr;
struct PyrObject *o;
PyrSymbol *s;
struct PyrMethod *om;
struct PyrBlock *oblk;
struct PyrClass *oc;
struct PyrFrame *of;
struct PyrList *ol;
struct PyrString *os;
struct PyrInt8Array *ob;
struct PyrDoubleArray *od;
struct PyrSymbolArray *osym;
struct PyrProcess *op;
struct PyrThread *ot;
struct PyrInterpreter *oi;

} u;
} PyrSlot;

Primitives
• A	primitive in	SuperCollider	is	a	foreign	function	interface	(FFI)	to	C++	
code
• Primitive	names	are	written	with	a	leading	underscore;	e.g.,	
“_SerialPort_Open”

• During	startup,	primitives	are	stored	in	a	map	::	name	->	function
• At	runtime,	the	primitive	name	is	looked	up	in	the	map,	and	the	
corresponding	function	gets	called	with	full	access	to	the	virtual	
machine	state
• Primitive	is	responsible	for	checking	types,	unpacking	slots,	
maintaining	the	virtual	machine	stack

Byte	code
• Byte	codes are	the	instructions	given	to	the	SuperCollider	interpreter
• Range	from	simple	[add	1]	to	complex	[for-loop]
• Many	chosen	to	optimize	for	common	operations,	especially	looping
• Integer.do,	Integer.reverseDo
• Many	unary	and	binary	operations	(log,	tan,	<=,	%)
• Many	array	operations	(collect,	select,	every,	choose)

• Can	get	the	bytecode	listing	for	any	function	by	calling
{ /* ... */ }.def.dumpByteCodes

VM	Stack
• The	SuperCollider	VM	uses	a	virtual	stack	to	maintain	local	variables	
and	pass	arguments	to	function	calls
• The	context	inside	a	function	or	method	body	is	called	a	frame

Byte	code	example	1

(
{
var x = 4, y = 3, z;
x = x + y;
z = x.squared;
z;

}.def.dumpByteCodes
)

BYTECODES:	(11)	
0			30 PushTempZeroVar 'x’
1			31 PushTempZeroVar 'y’
2			E0 SendSpecialBinaryArithMsg '+’
3			80	00				 StoreTempVar 'x’
5			30 PushTempZeroVar 'x’
6			DC							 SendSpecialUnaryArithMsg 'squared’
7			80	02				 StoreTempVar 'z’
9			32 PushTempZeroVar 'z’
10			F2							 BlockReturn

The	next	couple	slides	walk	through	the	compiled	instructions	for	a	simple	block	of	code,	line	by	line.	Each	line	is	
color	coded	to	show	its	corresponding	instructions.	The	bytecodes	are	given	exactly	as	’dumpByteCodes’	shows	them.	
The	numbers	in	the	first	column	are	the	indices	of	the	instructions;	the	instructions	are	given	in	the	second	column	in	
hexidecimal notation.	The	right-hand	column	is	a	brief	description	of	the	instruction.

Note:	The	variables	x,	y,	and	z	are	already	present	and	initialized	by	the	time	the	first	byte	code	is	executed.
Thus,	no	byte	codes	to	list	for	the	first	line.

Byte	code	example	1

(
{
var x = 4, y = 3, z;
x = x + y;
z = x.squared;
z;

}.def.dumpByteCodes
)

BYTECODES:	(11)	
0			30 PushTempZeroVar 'x’
1			31 PushTempZeroVar 'y’
2			E0 SendSpecialBinaryArithMsg '+’
3			80	00				 StoreTempVar 'x’
5			30 PushTempZeroVar 'x’
6			DC							 SendSpecialUnaryArithMsg 'squared’
7			80	02				 StoreTempVar 'z’
9			32 PushTempZeroVar 'z’
10			F2							 BlockReturn

First,	the	interpreter	loads	the	variables	x	and	y	onto	the	stack	so	they	can	be	added	together.	
The	addition	operation	consumes	the	top	two	items	on	the	stack	and	replaces	them	with	the	
result	(3	+	4	=	7).	The	diagrams	on	the	right	show	the	state	of	the	stack	after	each	byte	code.	
In	keeping	with	tradition,	I	have	shown	the	stack	as	growing	downward.

Stack	(1)

x (4)

y	(3)

Stack	(2)

temp (7)

Stack	(0)

x (4)

y	(3)

Byte	code	example	1

(
{
var x = 4, y = 3, z;
x = x + y;
z = x.squared;
z;

}.def.dumpByteCodes
)

BYTECODES:	(11)	
0			30 PushTempZeroVar 'x’
1			31 PushTempZeroVar 'y’
2			E0 SendSpecialBinaryArithMsg '+’
3			80	00				 StoreTempVar 'x’
5			30 PushTempZeroVar 'x’
6			DC							 SendSpecialUnaryArithMsg 'squared’
7			80	02				 StoreTempVar 'z’
9			32 PushTempZeroVar 'z’
10			F2							 BlockReturn

Next,	the	”store”	operation	takes	the	top	of	the	stack	and	stores	it	in	the	variable	x.	This	leaves	
the	stack	empty.

Stack	(3)

Byte	code	example	1

(
{
var x = 4, y = 3, z;
x = x + y;
z = x.squared;
z;

}.def.dumpByteCodes
)

BYTECODES:	(11)	
0			30 PushTempZeroVar 'x’
1			31 PushTempZeroVar 'y’
2			E0 SendSpecialBinaryArithMsg '+’
3			80	00				 StoreTempVar 'x’
5			30 PushTempZeroVar 'x’
6			DC							 SendSpecialUnaryArithMsg 'squared’
7			80	02				 StoreTempVar 'z’
9			32 PushTempZeroVar 'z’
10			F2							 BlockReturn

Now,	x	is	pushed	back	onto	the	top	of	the	stack.	The	top	of	the	stack	is	squared,	which	leaves	
the	result	value	49.	Finally,	49	is	popped	off	the	stack	and	stored	in	z.

Stack	(6)

temp (49)

Stack	(7)

Stack	(5)

x (7)

Byte	code	example	1

(
{
var x = 4, y = 3, z;
x = x + y;
z = x.squared;
z;

}.def.dumpByteCodes
)

BYTECODES:	(11)	
0			30 PushTempZeroVar 'x’
1			31 PushTempZeroVar 'y’
2			E0 SendSpecialBinaryArithMsg '+’
3			80	00				 StoreTempVar 'x’
5			30 PushTempZeroVar 'x’
6			DC							 SendSpecialUnaryArithMsg 'squared’
7			80	02				 StoreTempVar 'z’
9			32 PushTempZeroVar 'z’
10			F2							 BlockReturn

At	the	end	of	the	block,	z	is	pushed	back	onto	the	top	of	the	stack,	which	effectively	makes	it	
the	result	value	of	the	entire	block.	The	instruction	“BlockReturn”	indicates	to	the	interpreter	
that	this	is	the	end	of	the	function,	and	program	execution	returns	to	whoever	called	the	
function.	Note	that	we	could	have	also	simply	written	“x.squared”	instead	of	the	last	two	lines;	
49	would	have	been	left	on	the	top	of	the	stack	and	then	used	as	the	result	value	for	the	block.

Stack	(9)

z	(49)

Byte	code	example	1
BYTECODES:	(11)	
0			30 PushTempZeroVar 'x’
1			31 PushTempZeroVar 'y’
2			E0 SendSpecialBinaryArithMsg '+’
3			80	00 StoreTempVar 'x’
5			30 PushTempZeroVar 'x’
6			DC							 SendSpecialUnaryArithMsg 'squared’
7			80	02 StoreTempVar 'z’
9			32 PushTempZeroVar 'z’
10			F2							 BlockReturn

Internally,	the	compiler	does	not	care	that	the	names	of	these	variables	are	‘x’,	‘y’,	and	‘z’.	It	only	cares	that	
they	are	the	first,	second,	and	third	declared	variables	in	the	local	scope	respectively.	The	bytecodes	that	load	
and	store	variables	encode	this	information	– see	how	the	bytecode	for	”load	x”	is	30,	while	that	for	“load	y”	
is	31.	Similarly,	the	second	byte	of	the	“store”	byte	code	indicates	which	local	variable	is	to	be	stored	to.

This	is	an	optimization	in	the	instruction	set	design	to	make	accessing	local	variables	faster.	For	code	using	
more	than	16	local	variables,	other	byte	codes	are	used.

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

Here	is	a	more	complicated	example	to	illustrate	branching instructions	– any	operation	(such	as	if,	while,	
for,	or	switch)	that	may	cause	execution	to	take	more	than	one	path.

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

Again,	the	two	variables	x	and	y	are	pushed	onto	the	stack;	then	the	binary	comparison	instruction	‘<‘	consumes	them	and	
replaces	them	with	the	result	(4	<	5	=>	true).

JumpIfFalse is	a	special	instruction	that	will	cause	execution	to	jump	somewhere	other	than	the	next	instruction	if	the	top	of	
the	stack	is	the	value	False.	In	this	case,	it	will	jump	7	bytes (not	instructions!)	ahead	from	the	index	of	the	next	instruction;	
the	target	is	in	parentheses	(13).	Note	that	JumpIfFalse consumes	the	top	of	the	stack.

Stack	(0)

x (4)

Stack	(1)

x (4)

y	(5)Stack	(2)

temp (True)

Stack	(3)

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

If	the	top	of	the	stack	was	True	in	the	last	step,	execution	simply	“falls	through”	to	the	next	instruction.	In	the	true	branch	of	
the	if,	the	value	in	y	is	stored	to	x.	However,	note	the	different	instruction	name	– “StoreTempVarX”,	not	”StoreTempVar”.	
This	is	a	different,	“extended”	instruction	that	stores	the	value	but	also	leaves	it	on	the	top	of	the	stack.	We	would	expect
this	if	branch	to	return	the	value	of	‘x’	– but	since	‘y’	has	just	been	assigned	to	it,	both	variables	hold	exactly	the	same	value;	
therefore,	the	interpreter	avoids	unnecessarily	modifying	the	stack	and	returns	‘y’	instead;	a	very	nice	optimization!

Stack	(6)

y (5)

Stack	(7)

y (5)

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

At	the	end	of	this	branch,	the	instruction	JumpFwd causes	execution	to	immediately	jump	5	bytes (not	instructions)	ahead	of	
the	next	instruction’s	index.	In	this	case,	the	target	is	index	18,	the	end	of	the	entire	if statement.	The	value	of	‘y’	is	still	on	
the	stack	here.

Stack	(10)

y (5)

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

In	the	false	branch	of	the	if,	the	value	of	y	is	pushed	to	the	stack,	negated	via	the	“neg”	message,	and	stored	in	x.	Since	the	
next	instruction	is	the	rendezvous	point	for	both	branches,	execution	is	allowed	to	fall	through	to	the	next	instruction.

The	previously	mentioned	“StoreTempVarX”	is	also	used	here	to	store	into	x,	so	the	temporary	result	of	’neg’	is	still	on	the	
stack	at	the	end	of	this	branch.

Stack	(13)

y (5)

Stack	(14)

temp	(-5)

Stack	(15)

temp	(-5)

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

At	the	end	of	the	if statement,	the	result	value	is	unused.	We’re	not	at	the	end	of	the	function	yet,	so	we	need	to	discard	this	
value.	This	is	what	Drop	does:	it	simply	pops	whatever	is	on	the	top	of	the	stack	and	does	nothing	with	it.

Finally,	the	value	of	x	is	pushed	back	onto	the	stack;	depending	on	which	branch	was	taken	it	may	have	one	of	two	values.	
(Although	in	fact,	we	can	use	our	powers	of	human	deduction	to	see	that	it	must	be	5!).

Stack	(18)

Stack	(19-20)

x	(?)	[5]

Byte	code	example	2
(
{

var x = 4, y = 5;
if(x < y) {
x = y;

} {
x = y.neg;

};
x;

}.def.dumpByteCodes
)

BYTECODES:	(21)
0			30 PushTempZeroVar 'x‘
1			31 PushTempZeroVar 'y‘
2			E8							 SendSpecialBinaryArithMsg '<‘
3			F8	00	07	 JumpIfFalse 7		(13)
6			31 PushTempZeroVar 'y‘
7			08	00	00	 StoreTempVarX 'x‘
10			FC	00	05	 JumpFwd 5		(18)
13			31 PushTempZeroVar 'y'
14			D0							 SendSpecialUnaryArithMsg 'neg'
15			08	00	00	 StoreTempVarX 'x'
18			F0							 Drop
19			30 PushTempZeroVar 'x'
20			F2							 BlockReturn

Note:	if	this	was	C	code,	it	would	be	optimized	to:	return 5;

Thank	you!

