


Key Topics in Landscape Ecology

Landscape ecology is a relatively new area of study, which aims to understand the

pattern of interaction of biological and cultural communities within a landscape. This

book brings together leading figures from the field to provide an up-to-date survey of

recent advances, identify key research problems, and suggest a future direction for

development and expansion of knowledge. Providing in-depth reviews of the

principles and methods for understanding landscape patterns and changes, the book

illustrates concepts with examples of innovative applications from different parts of

the world. Forming a current “state-of-the-science” for the science of landscape

ecology, this book forms an essential reference for graduate students, academics,

professionals, and practitioners in ecology, environmental science, natural resource

management, and landscape planning and design.

J ianguo ( J ingle ) Wu is Professor of Ecology, Evolution, and Environmental

Science at Arizona State University, Tempe, Arizona, USA. His research interests

include landscape ecology, urban ecology, and sustainability science, focusing on

hierarchical patch dynamics, pattern–process–scale relationships, spatial scaling,

land-use change and its effects on ecosystem processes, and biodiversity and ecosystem

functioning. He has published more than 120 scientific papers which involve mostly

dryland ecosystems in North America and China. His professional service includes

Program Chair of the 2001 Annual Symposium of the US Association of

the/International Association of Landscape Ecology (US-IALE), Councillor-at-Large of

US-IALE (2001–3), and Chair of the Asian Ecology Section of the Ecological Society of

America (1999–2000). He is currently the editor-in-chief of the international journal

Landscape Ecology.

Richard Hobbs is Professor of Environmental Science at Murdoch University,

Western Australia, and has research interests in restoration ecology and landscape

ecology. These focus on the conservation and management of altered landscapes,

particularly the agricultural area of southwestern Australia. He is a fellow of the

Australian Academy of Science and has been listed by ISI as one of the most highly

cited researchers in ecology and environmental science. His professional services

include President of the International Association for Landscape Ecology (1999–2003)

and President of the Ecological Society of Australia (1998–1999). He is currently the

editor-in-chief of the journal Restoration Ecology.



Cambridge Studies in Landscape Ecology

Series Editors
Professor John Wiens Colorado State University
Dr Peter Dennis Macaulay Land Use Research Institute
Dr Lenore Fahrig Carleton University
Dr Marie-Jose Fortin University of Toronto
Dr Richard Hobbs Murdoch University, Western Australia
Dr Bruce Milne University of New Mexico
Dr Joan Nassauer University of Michigan
Professor Paul Opdam ALTERRA, Wageningen

Cambridge Studies in Landscape Ecology presents synthetic and comprehensive
examinations of topics that reflect the breadth of the discipline of landscape ecology.
Landscape ecology deals with the development and changes in the spatial structure
of landscapes and their ecological consequences. Because humans are so tightly tied to
landscapes, the science explicitly includes human actions as both causes and
consequences of landscape patterns. The focus is on spatial relationships at a variety of
scales, in both natural and highly modified landscapes, on the factors that create
landscape patterns, and on the influences of landscape structure on the functioning of
ecological systems and their management. Some books in the series develop
theoretical or methodological approaches to studying landscapes, while others deal
more directly with the effects of landscape spatial patterns on population dynamics,
community structure, or ecosystem processes. Still others examine the interplay
between landscapes and human societies and cultures.

The series is aimed at advanced undergraduates, graduate students, researchers and
teachers, resource and land-use managers, and practitioners in other sciences that deal
with landscapes.

The series is published in collaboration with the International Association for
Landscape Ecology (IALE), which has Chapters in over 50 countries. IALE aims to
develop landscape ecology as the scientific basis for the analysis, planning and
management of landscapes throughout the world. The organization advances
international cooperation and interdisciplinary synthesis through scientific, scholarly,
educational and communication activities.

Also in Series
Issues and Perspectives in Landscape Ecology
Edited by John A. Wiens, Michael R. Moss
978-0-521-83053-9 (hardback)
978-0-521-53754-4 (paperback)

Ecological Networks and Greenways
Edited by Rob H. G. Jongman, Gloria Pungetti
978-0-521-82776-8 (hardback)
978-0-521-53502-1 (paperback)

Transport Processes in Nature
William A. Reiners, Kenneth L. Driese
978-0-521-80049-5 (hardback)
978-0-521-80484-4 (paperback)

Integrating Landscape Ecology into Natural Resource Management
Edited by Jianguo Liu, William W. Taylor
978-0-521-78015-5 (hardback)
978-0-521-78433-7 (paperback)



edited by

j ianguo wu
arizona state univers ity

r ichard j . hobbs
murdoch univers ity

Key Topics in Landscape
Ecology



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-85094-0

ISBN-13    978-0-521-61644-7

ISBN-13 978-0-511-29560-7

© Cambridge University Press 2007

2007

Information on this title: www.cambridge.org/9780521850940

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

ISBN-10    0-511-29560-X

ISBN-10    0-521-85094-0

ISBN-10    0-521-61644-1

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (MyiLibrary)

eBook (MyiLibrary)

hardback



Contents

List of contributors page x
Preface xiii

part i Introduction
1 Perspectives and prospects of landscape ecology 3

richard hobbs and j ianguo wu
1.1 Introduction 3

1.2 Key issues and research topics in landscape ecology 4

1.3 Concluding remarks 8

References 8

part ii Key topics and perspectives
2 Adequate data of known accuracy are critical to advancing

the field of landscape ecology 11

louis r . i verson
2.1 Introduction 11

2.2 Data advances in past two decades 11

2.3 Current status 13

2.4 What we will have soon 16

2.5 Issues of data quality 16

2.6 Needs in data acquisition and quality 21

2.7 Policy issues related to data acquisition and quality 31

2.8 Conclusions 31

References 31

3 Landscape pattern analysis: key issues and challenges 39

harbin l i and j ianguo wu
3.1 Introduction 39

3.2 General classification of LPA methods 40

v



vi Contents

3.3 Key components of spatial pattern in relation to LPA 41

3.4 Statistical and ecological assumptions of LPA methods 44

3.5 Behavior of LPA methods 49

3.6 Limitations and challenges of LPA 52

3.7 Concluding remarks 57

Acknowledgments 59

References 59

4 Spatial heterogeneity and ecosystem processes 62

monica g . turner and jeffrey a . cardille
4.1 Introduction 62

4.2 Understanding the spatial heterogeneity of process rates 63

4.3 Influence of land-use legacies 65

4.4 Lateral fluxes in landscape mosaics 68

4.5 Linking species and ecosystems 70

4.6 Concluding comments 71

Acknowledgments 72

References 73

5 Landscape heterogeneity and metapopulation dynamics 78

lenore fahrig
5.1 Introduction 78

5.2 Levins’ metapopulation model 78

5.3 Spatially realistic metapopulation models 80

5.4 PVA tools based on the metapopulation framework 82

5.5 Landscape population models 83

5.6 Conclusions 89

Acknowledgments 89

References 89

6 Determining pattern–process relationships in
heterogeneous landscapes 92

robert h. gardner , james d. forester , and
roy e . plotnick
6.1 Introduction 92

6.2 Methods 93

6.3 Results 100

6.4 Conclusions and recommendations 107

Acknowldgements 111

References 111

7 Scale and scaling: a cross-disciplinary perspective 115

j ianguo wu
7.1 Introduction 115

7.2 Concepts of scale and scaling 116



Contents vii

7.3 Scale effects, MAUP, and “ecological fallacy” 119

7.4 Theory and methods of scaling 124

7.5 Discussion and conclusions 134

Acknowledgments 136

References 136

8 Optimization of landscape pattern 143

john hof and curtis flather
8.1 Introduction 143

8.2 State-of-the-science in spatial optimization 144

8.3 Critical research questions 151

8.4 Conclusion 157

References 158

9 Advances in detecting landscape changes at multiple scales:
examples from northern Australia 161

john a . ludwig
9.1 Introduction 161

9.2 Examples of detecting landscape changes from

northern Australia 162

9.3 Key challenges 164

9.4 Summary 169

Acknowledgments 170

References 170

10 The preoccupation of landscape research with land
use and land cover 173

marc antrop
10.1 Introduction 173

10.2 Method 175

10.3 Results 176

10.4 Discussion 184

10.5 Conclusions: key issues for further integration

in landscape ecology 188

References 189

11 Applying landscape-ecological principles to regional
conservation: the WildCountry Project in Australia 192

brendan g. mackey, michael e . soul é , henry
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Alterra Green World Research, Department of
Landscape Ecology, Wageningen, the
Netherlands
Bärbel Tress
Department of Geography and Environment,
University of Aberdeen, Aberdeen, AB24 3UF,
United Kingdom

Gunther Tress
Department of Geography and Environment,
University of Aberdeen, Aberdeen, AB24 3UF,
United Kingdom
Monica G. Turner
Department of Zoology, University of
Wisconsin, Madison, WI 53706, USA
Claire C. Vos
Alterra Green World Research, Department of
Landscape Ecology, Wageningen, the
Netherlands
Jann E. Williams
Centre for Sustainable Regional Communities,
La Trobe University, Bendigo, Victoria 3552,
Australia
John C. Z. Woinarski
Biodiversity Section, Natural Systems,
Department of Infrastructure, Planning and
Environment, PO Box 496, Palmerston, NT
0831, Australia
Jianguo Wu
School of Life Sciences and Global Institute of
Sustainability, Arizona State University,
Tempe, AZ 85287, USA





Preface

Landscapes are diverse, complex, beautiful, and inspirational. Spatial hetero-
geneity is the most salient feature that characterizes all landscapes. While
the physical environment exhibits various spatial patterns on different scales,
biological organisms are organized into populations and communities across
landscapes. Like other biological organisms, humans live and act on land-
scapes, and thus have influenced, and been influenced by, landscapes. Unlike
other biological organisms, however, humans represent an unparalleled force
that has profoundly altered the structure and function of landscapes and even
the entire biosphere.Anumber ofworldwide environmental problems, such as
land degradation, biodiversity loss, and global climate change, clearly attest to
this destructive power of anthropogenic activities. Most, if not all, of the press-
ing ecological and environmental problems that humanity is faced with today
are directly related to human alterations of landscapes. In most cases, humans
strive to increase their appropriation of ecosystem goods and services from
landscapes while compromising the abilities of ecosystems to perform other
functionalities and resulting in serious ecological and socioeconomic conse-
quences. Thus, landscape ecology is essential not only for understanding how
Nature works in spatially heterogeneous environments, but also for providing
practical guidelines and solutions for maintaining and developing sustainable
landscapes.

Landscape ecology has made tremendous progress in theory and practice
in recent decades. In the same time, as a rapidly developing discipline it is
faced with new problems and challenges. For example, the diversification of
ideasandapproaches in landscapeecology,whichweconsider ismostlyhealthy
and inevitable, has caused confusions among landscape ecologists as to what
the identity or scientific core of this field is. Also, while all landscape ecol-
ogists seem to agree that landscape ecology should be interdisciplinary or

xiii



xiv Preface

transdisciplinary, little consensus can be found in terms of what interdisci-
plinarity and transdisciplinarity mean and how they should be achieved.

To address these problems and promote the further development of land-
scape ecology, Jianguo Wu, then Program Chair of the US Association of the
International Association of Landscape Ecology (US-IALE), organized a spe-
cial session entitled “Top 10 List for Landscape Ecology in the twenty-first
Century” at the 16th Annual Symposium of US-IALE at Arizona State Uni-
versity, Tempe, Arizona in April 2001. A group of prominent landscape ecol-
ogists worldwide were invited to present their views on the most important
research topics, questions, and challenges in the field. Richard Hobbs, then
President of IALE, presented an overview of the outcomes of this symposium
at the European Landscape Ecology Congress in Stockholm and Tartu, Estonia
in July2001. Afterwards, J.WuandR.Hobbsdevelopeda synthesispaperbased
on the diverse perspectives presented at the “Top 10 List Symposium” (Wu, J.
andR.Hobbs.2002. Key issues and researchpriorities in landscape ecology:An
idiosyncratic synthesis. Landscape Ecology 17, 355–65). While the “Top 10 List”
was successful in identifying key issues and research topics, an important next
step was to have in-depth discussions to examine the state-of-the-science and
future directions in each subject area. This was precisely the objective of the
symposium on “Key Issues and Research Priorities in Landscape Ecology” at
the 2003 World Congress of IALE in Darwin, Australia in July 2003, partic-
ipated by a group of well-established landscape ecologists and organized by
J. Wu and R. Hobbs. This book is based on selected presentations at the
Darwin symposium, with additional invited contributions.

The book focuses on the prevailing perspectives and prospects of land-
scape ecology across geographic and cultural boundaries. It covers the the-
ory, methodology, and applications of landscape ecology. The chapters have
in-depth discussions of the major achievements, key questions, and future
directions in a series of important research topics in landscape ecology.
Someof themexploreholistic, interdisciplinary approaches anddescribe inno-
vative applications of landscape ecology principles in conservation, manage-
ment,planning, anddesign.Webelieve that identifyingkeyresearchproblems,
synthesizing major advances, and pointing out future directions are necessary
for promoting concerted development of landscape ecology and enhancing its
“identity.” We do not believe that any individual is in the position to dictate
what landscape ecology is or direct where landscape ecology should go. Land-
scape ecology, as a new paradigm, has to be defined and developed by the com-
munity of landscape ecologists andpractitioners.Wehope that, as awhole, this
book reflects the collective viewof the state-of-the-scienceof landscapeecology.

We are most grateful to all the contributors to this book, who are not only
first-rate landscape ecologists, but also the most wonderful colleagues to work



Preface xv

with. To ensure the quality of the book, all chapters were peer-reviewed. We
sincerely thank all those who participated in the review process, including:
Jack Ahern, Gary Brierley, John M. Briggs, Peter Cale, Marie-Josee Fortin,
G. Darrel Jenerette, Rob Jongman, Ted Lefroy, Kirk A. Moloney, Michael R.
Moss, Jari Niemelä, R. Gil Pontius, Jr., Kurt Riitters, Denis Saunders, Santi-
ago Saura, AustinTroy,HeleneWagner, JamesD.Wickham, andXinyuan (Ben)
Wu. Our sincere appreciation also goes to Alan Crowden at Cambridge Univer-
sity Press who saw the book through from concept to reality. Finally, we thank
Yongfei Bai and Kaesha Neil at the Landscape Ecology and Modeling Labora-
tory (LEML) of Arizona State University for their assistance with reformatting
the references throughout the book.

We believe that this book will be of interest to a wide audience, including
graduate students, academic professionals, and practitioners in ecology, envi-
ronmental science, landscapeplanninganddesign, andresourcemanagement.
In addition to its value as a reference for a variety of research and application
purposes, this book could be used for graduate-level courses, or a supplemen-
tary text forundergraduate-level courses, in landscapeecologyandrelated sub-
ject areas. To help the readers to better understand the contents of the book
and to stay abreast with what’s going on in the forefront of landscape ecolog-
ical research, a web site will be dynamically maintained to provide additional
materials related to the book (e.g., color figures, chapter abstracts, and related
key publications) and information on continuing discussions on the key issues
in landscape ecology. The web address is http://LEML.asu.edu/Landscape-
Ecology/.

This book is dedicated to thenext generationof landscape ecologists, andwe
wish them luck with the exciting and challenging times ahead.
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richard hobbs and j ianguo wu

1

Perspectives and prospects of
landscape ecology

1.1 Introduction

Landscape ecology has rapidly established itself as an interdisciplinary
research field worldwide in the past few decades. However, diversification in
perspectives and approaches has apparently caused some concerns with the
“identity” of the field in recent years. For example, Wiens (1999) stated that
“landscape ecology continues to suffer from something of an identity crisis,”
while Moss (1999) warned that landscape ecology’s “healthy, youthful devel-
opment will be cut off before it matures if it does not recognize and develop
its own distinctive core and focus.” As landscape ecologists, we feel that we
should not be particularly worried about the identity or the fate of the field. Its
identity is to some extent self-defining through the activities that people call-
ing themselves landscape ecologists undertake, and its fate will be determined
by its utility and its ability toprovide techniques, approaches, and applications
which help tackle the complex environmental management challenges facing
humanity.However,wedo think that, after twodecades of rapiddevelopments
in both theory and practice, landscape ecology can benefit from a forward-
looking introspection.

For example, several questions may be asked to address some of the concerns
and challenges this field now faces. What is the identity of landscape ecology
that it is losing or that has never been established? Given the multidisciplinary
origins and goals of the field, is it possible for landscape ecology to have “its
own distinctive core and focus?” If so, what would it be? How should we solid-
ify the interdisciplinarityor transdisciplinarityof landscapeecology?Theseare
grandquestionswhoseanswersmaybe still quite elusive.Thus, thisbook isnot
intended to provide all the answers. Rather, it addresses a series of key issues

Key Topics in Landscape Ecology, ed. J. Wu and R. Hobbs.
Published by Cambridge University Press. C©Cambridge University Press 2007.
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4 richard hobbs and j ianguo wu

and perspectives in contemporary landscape ecology identified by a group of
leading scientists around the world. By closely examining these key topics, we
hope that this book will contribute to the development of landscape ecology,
and help resolve the grand questions posed above.

1.2 Key issues and research topics in landscape ecology

The chapters in this book were collected together to explore a set of key
issues synthesizedbyWuandHobbs (2002) fromasymposiumwhich sought to
drawout from leading landscape ecologistswhat these issueswere.Many ideas
from the group of 17 people was condensed to a long list of items (Table. 1.1),
from which Wu and Hobbs (2002) further identified six key issues to be con-
sidered: (1) interdisciplinarity or transdisciplinarity, (2) integration between
basic research and applications, (3) conceptual and theoretical development,
(4) education and training, (5) international scholarly communication and col-
laborations, and (6) outreachandcommunicationwith thepublic anddecision-
makers.

Wu and Hobbs (2002) also identified ten key research areas dealing with
these issues: (1) ecological flows in landscape mosaics, (2) causes, processes,
and consequences of land use and land cover change, (3) nonlinear dynam-
ics and landscape complexity, (4) scaling, (5) methodological development, (6)
relating landscape metrics to ecological processes, (7) integrating humans and
their activities into landscape ecology, (8) optimization of landscape pattern,
(9) landscape conservation and sustainability, and (10) data acquisition and
accuracy assessment.

The chapters in this book collectively cover most of these issues and research
areas. The subject matter varies from questions regarding the collection and
analysisofdata foruse in landscapeecological studies, throughthe intersection
between landscape ecology, ecosystemecology andconservationbiology, to the
broader application of landscape ecology in complex social–ecological systems
in inter- and transdisciplinary settings. Hence this book provides a microcosm
of the current state of play in landscape ecology: a lot of activity in the area of
acquiring and interpreting spatial ecological data and an equivalent amount
of effort in the broader aspects which interface ecology with management and
planning.

There has been a lot of introspection in landscape ecology about what the
subject is all about. It is apparent from the chapters in this book that this
is still evident. In the subject as a whole, there seems to be something of a
schism between the more biophysically oriented school and the arm that deals
with the interface between science, planning and management. The first sees
landscape ecology primarily as a means of dealing with spatial patterning and
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table 1 .1 . A list of major research topics in landscape ecology based on suggestions by
a group of leading landscape ecologists from around the world at the 16th Annual
Symposium of the US Regional Association of the International Association for Landscape
Ecology, held at Arizona State University, Tempe in April 2001a

Development of theory and principles
� Landscape mosaics and ecological flows
� Land transformations
� Landscape sustainability
� Landscape complexity

Landscape metrics
� Norms or standards for metric selection, change detection, etc.
� Integration of metrics with holistic landscape properties
� Relating metrics to ecological processes
� Sensitivity to scale change

Ecological flows in landscape mosaics
� Flows of organisms, material, energy, and information
� Effects of connectivity, edges, and boundaries
� Spread of invading species
� Spatial heterogeneity and ecosystem processes
� Disturbances and patch dynamics

Optimization of landscape pattern
� Optimization of land-use pattern
� Optimal management
� Optimal design and planning
� New methods for spatial optimization

Metapopulation theory
� Integration of the view of landscape mosaics
� Integration of economic theory of land-use change and cellular automata

Scaling
� Extrapolating information across heterogeneous landscapes
� Development of scaling theory and methods
� Derivation of empirical scaling relations for landscape pattern and processes

Complexity and nonlinear dynamics of landscapes
� Landscapes as spatially extended complex systems
� Landscapes as complex adaptive systems
� Thresholds, criticality, and phase transitions
� Self-organization in landscape structure and dynamics

Land-use and land-cover change
� Biophysical and socioeconomic drivers and mechanisms
� Ecological consequences and feedbacks
� Long-term landscape changes driven by economies and climate changes

(cont.)
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table 1 .1 . (cont.)

Spatial heterogeneity in aquatic systems
� The relationship between spatial pattern and ecological processes in lakes, rivers,

and oceans
� Terrestrial and aquatic comparisons

Landscape-scale experiments
� Experimental landscape systems
� Field manipulative studies
� Scale effects in experimental studies

New methodological developments
� Integration among observation, experimentation, and modeling
� New statistical and modeling methods for spatially explicit studies
� Interdisciplinary and transdisciplinary approaches

Data collection and accuracy assessment
� Multiple-scale landscape data
� More emphasis on collecting data on organisms and processes
� Data quality control
� Metadata and accuracy assessment

Fast changing and chaotic landscapes
� Rapidly urbanizing landscapes
� War zones
� Other highly dynamic landscapes

Landscape sustainability
� Developing operational definitions and measures that integrate ecological, social,

cultural, economic, and aesthetic components
� Practical strategies for creating and maintaining landscape sustainability

Human activities in landscapes
� The role of humans in shaping landscape pattern and processes
� Effects of socioeconomic and cultural processes on landscape structure and

functioning

Holistic landscape ecology
� Landscape ecology as an anticipative and prescriptive environmental science
� Development of holistic and systems approaches

a See Wu and Hobbs 2002 for more details.
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heterogeneity and building this on the foundation of ecosystem and popula-
tion ecology. The second sees landscape ecology primarily as the necessary sci-
entific underpinning for spatial planning andmanagement of landscapes, par-
ticularly in human-dominated settings. This dichotomy could simplistically
be interpreted as a North American versus European divide, but that would
be too simplistic since there are many European landscape ecologists working
primarily on the biophysical aspects and equivalently, many North Americans
dealing with the planning and management issues. In addition, there are
others, such as the Australians, who perhaps take a pragmatic middle road
which combines both aspects.

Is this dichotomy a problem? The obvious answer is that it should not be,
since both approaches are necessary and can be highly complementary. It is
only a problem if adherents of either approach fail to appreciate the value and
context of the other. Clearly, landscape planning has to rely on the acquisition
andanalysis of complex spatial data. Similarly, tobeuseful, spatial dataneed to
feed into the planning and management process. Landscape ecology’s key role,
therefore, is to provide an umbrella for all of these endeavors so that people
withdifferentobjectives andbackgrounds can interact anddevelopapproaches
which are more than the sum of the parts.

In recent years this umbrella functionhas succeeded inpart, but has perhaps
not yet achieved all it can. Landscape ecology could be accused of lacking the
unifyingdirectionofmoremission-orientedsciences suchas conservationbiol-
ogyor restorationecology (Hobbs1997). Landscapeecology conferences attract
people who are interested in landscapes – any and all aspects of landscapes are
covered, from the hard-core spatial ecology through to the more humanities-
based landscape history, aesthetics, design, and so on. Often there is still a
clash of cultures, with apparently little common ground between the numeri-
cal and the spiritual and aesthetic. This is perhaps inevitable, but is not neces-
sarily a terminal problem. Its solution lies in the acceptance of the breadth of
issues and approaches involved in understanding how landscapes work. It lies
in greater communication among researchers and practitioners from different
disciplines and backgrounds. It lies in fostering that communication through
mechanisms such as workshops and meetings, joint supervision of Ph.D. stu-
dents, and joint faculty appointments between ecology and landscape design
departments.Wehavehadaneraof increasedspecializationandfragmentation
of effort, which has led us to the current state of the world: the future has to be
based more in integrative and transdisciplinary approaches if we wish to find
effective ways of steering the world in a more sustainable direction. Landscape
ecology provides much of value for those wishing to better conserve or manage
the planet and its inhabitants.
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1.3 Concluding remarks

Landscape ecology must, therefore, continue to develop along the lines
identified in the chapters in this book.Weneed continued improvement in our
ability to collect and interpret spatialdata.Weneedtoensure that effectivemet-
rics are developed which aid in this interpretation. We need to develop stream-
lined ways of feeding complex spatial data into land-use planning and man-
agement decisions. And to do all this, we need to find ways of conducting our
research in inter- and transdisciplinary settings which actually work. This set
of requirements is surely enough to stimulate the field of landscape ecology to
continue to develop its intellectual rigor and to mature as a science. The vari-
ous chapters in this book explore the current status of endeavors in each of the
areas outlined above, and we hope that they faithfully indicate the vigor and
promise currently being shown within landscape ecology.
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2

Adequate data of known accuracy are critical
to advancing the field of landscape ecology

2.1 Introduction

The scienceof landscape ecology is especiallydependentonhigh-quality
data because often it focuses on broad-scale patterns and processes and deals in
the long term. Likewise, high quality data are necessary as the basis for build-
ingpolicy.When issues, such as climate change, can induce international polit-
ical and economic consequences, it becomes clear that providing high-quality,
long-term data is paramount. It is not an accident that this chapter is posi-
tioned near the front of this book. Of the priority research topics presented in
this book, this is the most pervasive across other topics because the availability
of high-quality data limits progress in other realms. Be it historic land-usedata
needed to understand the dynamics of land-use change, the independent data
of varying scales needed to assess scaling phenomena or test new metrics, the
socioeconomic/cultural data needed to integrate humans into landscape ecol-
ogy, or the biological and population data needed to evaluate ecological flows,
the quality of raw data, metadata, and derived data products is critical to the
core of landscape ecology. For each of these key topics and perspectives, the
availability and quality of data will affect research results and practical recom-
mendations.

2.2 Data advances in past two decades

It has been two decades since the 1983 workshop that many say estab-
lished the landscape ecology field in North America (Risser et al. 1984). It was
attended by many who have and still contribute to the field (e.g., Barrett,
Botkin, Costanza, Forman, Godron, Golley, Hoekstra, Karr, Levin, Merriam,
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Published by Cambridge University Press. C©Cambridge University Press 2007.
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O’Neill, Parton, Risser, Sharpe, Shugart, Steinitz, Thomas, Wiens, and also a
rookie named Iverson). From a scanty list of databases available, this group
identified several databases with spatial components useful in landscape ecol-
ogy: aerial photos; Landsat MSS; biological sampling schemes; and statisti-
cal measures of demography. They also identified several problems requiring
attention: merging data from multiple sources with various levels of precision,
resolution, and timing; choosing display formats appropriate for various uses
and without distortions; the need for systematic or stratified field sampling in
a heterogeneous universe; and decisions about the appropriate resolution for a
particular problem. Researchers still struggle with these problems.

It may be useful to remind ourselves, especially our younger readers, where
wewere technologicallywith respect todata acquisitionandmanipulation two
decades ago. I will relay what it was like for me. I was hired by Paul Risser in
late 1982 to help develop the Illinois Lands Unsuitable for Mining Program
to ensure lands of particular value were deemed “unsuitable” for surface min-
ing. Risser had the foresight to identify that the new technology called “GIS”
might be appropriate to do analysis of multiple mapped features. We hired
Environmental Systems Research Institute (ESRI) to help us, and we became
ESRI client number 12. Risser also believed it important that the GIS tech-
nology be made available to scientists, not just computer geeks. So I and my
colleagues of various scientific bents spent three weeks in Redlands, CA train-
ing with the developers (ArcInfo 2.1 at the time), and the company president,
Jack Dangermond, would take us during break to the orange orchard on the
property to pick a few oranges. Subsequently, Illinois was the first state with
full, integrated vectorGIS at1:500K. Prior to this time,mostGISworkwasper-
formed with raster processing, using paper print-outs with different symbols
for different classes within the matrix. Often entire walls were plastered with
theseprint-outs toget theoverall viewof thestudyarea.Severalpeople fromthe
Oak Ridge National Laboratory were creating and manipulating county-level
data sets for the conterminous United States (Klopatek et al. 1979, Olson et al.
1980).

ArcInfo 2.1 was vector, but the hardware and software was limited. For
data, we had a statewide digitized map of pre-European settlement vegetation
(Anderson 1970) and the Land Use Data Acquisition (LUDA) data from the US
Geological Survey (Anderson et al. 1976), vintage late 1970s. With these, we
could assess long-term vegetation changes (Iverson and Risser 1987) and the
attributes related to these landscapes (Iverson 1988). At that time, a simple
overlay process would run all night; in fact, my colleagues forbade me to run
those overlay batch jobs during the day because the shared computer system
(which filled a room) would slow to a crawl or crash with more than a few jobs
running simultaneously. I “divided” the state into many chunks because the
software could not handle so many arcs.
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Other characteristics of the time include the absence of ArcView, GRID,
FRAGSTATS, CDs, zip drives, disk drives bigger than 300 MB (and these occu-
pied 1 m3). We had just advanced to 1.4 MB diskettes, and nine-track tapes
were the main means of data dispersal. There was no internet and no email.
With remote sensing, there was no SPOT, MODIS, radar, hyperspectral data, or
any other satellite data besides Landsat MSS and the beginning, experimental
phase of Landsat TM and AVHRR. I was privileged to be an early NASA prin-
cipal investigator, funded to use forest plot data, TM, and AVHRR in scaling
forest cover (Iverson et al. 1989a,b) and productivity (Cook et al. 1987, 1989).
However,wehad touse small pieces of the Landsat scenes, often only512×512

pixels.
Civilian GPS units became available in the late 1980s. There were few satel-

lites and few base stations so we had only a few hours of sufficient satellites
and we had to do differential post-processing from a station more than 200km
away.Of course, selective availabilitywas thenormuntilMay2000. Therewere
essentially no spatial statistics or metrics for landscapes other than basic patch
area/perimeter metrics. When Krummel et al. (1987) published on the value of
the fractal, it opened the door to a flood of landscape metrics, including many
by the same group in the following year (O’Neill et al. 1988). Gardner et al.
(1987) also first published on neutral models to help assess landscape pattern.
GIS-based habitat or suitability models had appeared earlier (e.g., Hopkins
1977, Spanner et al. 1983, Iverson and Perry 1985, Donovan et al. 1987, Risser
and Iverson 1988), but spatially explicit simulation models did not begin to
emerge until the later 1980s (e.g., Turner 1988, Turner et al. 1989, Costanza
et al. 1990). We have, indeed, come a long way in the way we acquire and
process data.

2.3 Current status

Technology and data sources have perhaps advanced at the scale of com-
puter speed according to Moore’s Law, which states that the number of transis-
tors incomputer chipswilldoubleevery18months (Moore1965).However, the
peopleavailable toanalyze thesedatadonotdoubleat this rate, so theworkload
for all landscape ecologists must necessarily nearly double every 18 months as
well. (Not really, but it seems like it sometimes.) Nonetheless, data and ways
to acquire data are plentiful, though not always of the nature desired, so that
retrofitting with surrogate data is often necessary. A few of the recent advances
in data and tools to analyze them are discussed below.

2.3.1 More powerful computers and associated technology

Moore’s Law has generally held true over the past two decades, result-
ing in a phenomenal sustained rate of development and an increase in capacity
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for processing pixels. For example, Riitters et al. (2000, 2002) and Riitters
and Wickham (2003) have assessed global patterns at 1km and conterminous
United States patterns at 30m resolution.

2.3.2 Small data recorder technology

Small data loggers now can be attached to a plethora of devices to allow
long-term data recording of various environmental attributes. For example,
our group has used them to determine soil and air temperatures, by land-
scape position, during and in the months following prescribed fires (Iverson
and Hutchinson 2002, Iverson et al. 2004b). With these sensors, researchers
can spatially locate temperature profiles, map and analyze them across land-
scapes, and animate the actual fire behavior through time (e.g., see animation
foundathttp://www.fs.fed.us/ne/delaware/4153/ffs/zaleski burn.html).These
devices are being used in more diverse and creative ways to acquire data long
term and in spatially disparate locations – both very important for landscape
ecology.

2.3.3 GPS/GIS on hand-held computers

With the same trend of shrinking computer components comes
advances in hand-held computers. GPS and GIS software now can be used
effectively on palm-sized units, thus permitting much wider access of the
technology to field biologists and others who otherwise have plenty of field
equipment to lug around.

2.3.4 Software in image analysis, spatial statistics, modeling,
pattern metrics, GIS

Software development has been rapid and diverse as well. The field of
data mining and machine learning has been rapidly developing (e.g., Breiman
1996,2001). Spatial statisticshavebeenareal focus for sometime (e.g.,Cliff and
Ord1981, Burrough1987, Legendre andFortin1989, Cressie1991). Analytical
techniques not only have been developed by and for landscape ecologists (e.g.,
McGarigal, this volume), but also borrowed and modified from other fields.

2.3.5 Remote sensing sensors

Manysensorsareorbiting thatweren’t adecadeago (Table2.1).Thepixel
sizeshavegotten considerably smaller – nowoften1mor less – and the amount
of data being transmitted daily to Earth is measured in petabytes (10

15 bytes).
Several countries are involved in developing the sensors and operating the
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table 2 .1 . Current satellites

Satellite Country Launch

Best

resolution (m) Typea

Landsat 7 US 1999 15 Mid-Opt

EO-1 US 2000 10 Mid-Opt

SPOT-2 France 1990 10 Mid-Opt

SPOT-4 France 1998 10 Mid-Opt

SPOT-5 France 2002 2.5 Mid-Opt

CBERS-1 China/Brazil 1999 20 Mid-Opt

Ziyuan-ZY-2A China 2000 9 Mid-Opt

Ziyuan-ZY-2B China 2002 3 Mid-Opt

KOMPSAT-1 Korea 1999 6.6 Mid-Opt

Proba (hyperspectral) ESA 2001 18 Mid-Opt

UoSat 12 Singapore 1999 10 Mid-Opt

DMC AlSat-1 Algeria 2002 32 Mid-Opt

ASTER US 1999 15 Mid-Opt

ERS-2 ESA 1995 30 Mid-Rad

ENVISAT ESA 2002 30 Mid-Rad

RadarSat 1 Canada 1995 8.5 Mid-Rad

AVHRR US 1978 1000 Low-Opt

MODIS US 1999 250 Low-Opt

Landsat MSS US 1972 79 Low-Opt

IKONOS US 1999 1 High-Opt

QuickBird-2 US 2001 0.6 High-Opt

EROS A1 Israel 2000 1.8 High-Opt

IRS TESS India 2001 1 High-Opt

Helios-1A France 1995 1 High-Opt

Helios-1B France 1999 1 High-Opt

a Low-Mid-High = resolution class, Opt = optical sensor, Rad = Radar sensor

From: William Stoney, Mitretek Systems.

satellites. Many of the highest-resolution satellites are commercial, while the
coarser sensors are publicly operated and more utilized in research. For exam-
ple, the MODIS sensor, with pixels 250–1000m, is providing numerous maps,
includingestimatedgrossprimaryproductivity, leaf area index, and fractionof
photosynthetic active radiation on a regular basis (e.g., Running 2002, Zhang
et al. 2003).

2.3.6 Data clearing houses

Data is becoming more freely available as government and multi-
government agencies and nongovernment organizations are anxious to have
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table 2 .2 . Example data clearing houses available on the Internet

Site Common type of data Organization

www.natureserve.org Biodiversity NatureServe

edc.usgs.gov Environmental US Geological Survey

www.wcmc.org.uk/cis/ Biodiversity World Conservation Monitoring

Centre

www.grid.unep.ch General United Nations Environmental

Program

gcmd.gsfc.nasa.gov/ Remotely Sensed US National Atmospheric Space

Administration

www.gbif.org Biodiversity Global Biodiversity Information

Facility

fsgeodata.fs.fed.us Forests, Environment US Forest Service

geodata.gov General US Government

www.nbii.gov/ Biological Resources National Biological Information

Infrastructure

all data, but especially publicly supported data, available to maximize effi-
ciency (as long as national or environmental security is not compromised). As
such, several data clearing houses are on the internet to allow free download of
data. Some examples are listed in Table 2.2.

2.4 What we will have soon

We should expect the recent trends in data acquisition will continue.
National security reviews since September 11, 2001, have reduced the scope of
high-resolution data available on the Internet, but otherwise, the trends will
lead to better hardware, software, and data availability. Remote data collection
via sensors attached to data recorders on the ground or satellites in the sky will
pave the way for almost unimaginable sources of data on our landscapes over
the long term.As an example of likelynear-futuredata sources,WilliamStoney
(personal communication) has compiled a list of more than 50 mid- and high-
resolution sensors targeted for activation within the next few years (Table 2.3).

2.5 Issues of data quality

A better understanding of spatial data quality requires abandonment of
two basic beliefs that have been the bane of GIS since the beginning: (1) infor-
mation shown on maps and captured into a GIS is always correct and essen-
tially void of uncertainty, and (2) numerical information from computers is
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table 2 .3 . Sensors targeted for activation by 2007
a

Satellite Country Sponsora

Best

resolution (m) Typeb

OrbView 3 US Com 1 High-Opt

IKONUS.X US Com 0.5 High-Opt

QuickBird.X US Com 0.5 High-Opt

OrbView X US Com 0.5 High-Opt

EROS B1 Israel Com 0.5 High-Opt

EROS B2 Israel Com 0.5 High-Opt

EROS B3 Israel Com 0.5 High-Opt

EROS B4 Israel Com 0.5 High-Opt

IRS Cartosat 2 India Gov 1 High-Opt

Pleiades-1 France Gov 0.7 High-Opt

Pleiades-2 France Gov 0.7 High-Opt

Helios-2A France Mil <1 High-Opt

Helios-2B France Mil <1 High-Opt

IGS-01 Japan Mil 1 High-Opt

IGS-02 Japan Mil 1 High-Opt

Resurs DK-1 Russia Gov 0.4 High-Opt

Resurs DK-2 Russia Gov 0.4 High-Opt

Resurs DK-3 Russia Gov 0.4 High-Opt

KOMPSAT-2 Korea Gov 1 High-Opt

TerraSAR X Germany Gov 1 High-Rad

TerraSAR L Germany Gov 1 High-Rad

SAR-Lupo-1 Germany Mil 1 High-Rad

SAR-Lupo-2 Germany Mil 1 High-Rad

COSMO-Skymed-1 Italy Gov 1 High-Rad

COSMO-Skymed-2 Italy Gov 1 High-Rad

COSMO-Skymed-3 Italy Gov 1 High-Rad

COSMO-Skymed-4 Italy Gov 1 High-Rad

IGS-R1 Japan Mil 1 to 3 High-Rad

IGS-R2 Japan Mil 1 to 3 High-Rad

Resurs DK-2 Russia Gov 1 High-Rad

Resurs DK-3 Russia Gov 1 High-Rad

LCDM-A US Com 7.5 Mid-Opt

LCDM-B US Com 7.5 Mid-Opt

RapidEye-A Germany Com 6.5 Mid-Opt

RapidEye-B Germany Com 6.5 Mid-Opt

RapidEye-C Germany Com 6.5 Mid-Opt

RapidEye-D Germany Com 6.5 Mid-Opt

IRS ResourceSat-1 India Gov 6 Mid-Opt

(cont.)
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table 2 .3 . (cont.)

Satellite Country Sponsora

Best

resolution (m) Typeb

IRS ResourceSat-2 India Gov 6 Mid-Opt

CBERS-2 China/Brazil Gov 20 Mid-Opt

DMC China DMC China Gov 4 Mid-Opt

CBERS-3 China/Brazil Gov 5 Mid-Opt

CBERS-4 China/Brazil Gov 5 Mid-Opt

RocSat2 Taiwan Gov 2 Mid-Opt

ALOS Japan Gov 2.5 Mid-Opt

DMC NigeriaSat-1 Nigeria Gov 32 Mid-Opt

DMC ThaiPhat Thailand Gov 36 Mid-Opt

DMC BilSat Turkey Gov 12 Mid-Opt

DMC UK UK Gov 32 Mid-Opt

TopSat UK Gov 2.5 Mid-Opt

DMC VinSat-1 Vietnam Gov 4 Mid-Opt

RadarSat 2 Canada Gov 3 Mid-Rad

ALOS Japan Gov 7 Mid-Rad

a Com = Commercial; Gov = Government; Mil = Military
b Low-Mid-High = resolution class, Opt = optical sensor, Rad = Radar sensor

From William Stoney, Mitretek Systems.

somehow endowed with inherent authority (Shi et al. 2002b). This blind accep-
tance of GIS data is its Achilles heel and could undermine the entire tech-
nology (Goodchild 1998). Maps present a clarified, simplified view of a world
that is actually complex and confusing. People prefer this simplified view, and
explicit attention to uncertainty muddles this perspective. Nonetheless, it is
especially important to pay attention to uncertainty in spatial data because
of its importance in decision-making. Decision-makers usually don’t want to
know about uncertainty and they view GIS as an attractive simplicity. How-
ever, courts are likely to hold that a GIS user should make reasonable efforts
to deal with uncertainty and they are likely to take a dim view of regulations or
decisions based on GIS data in which issues of uncertainty have been ignored.
Therefore, avoiding the issue of uncertainty will hurt the credibility of the
profession.

2.5.1 Sources of uncertainty in spatial data

Burrough and McDonnell (1998) state that most GIS procedures
assume that: (1) source data are uniform, (2) digitizing is infallible, (3) map
overlay is simply intersecting boundaries and reconnecting line network,
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(4) boundaries can be sharply defined and drawn, (5) all algorithms operate in a
fully deterministic way, and (6) class intervals defined for “natural” reasons are
the best for all mapped attributes. Of course, these implications are rarely true
in landscape ecological studies and must be rectified. Much of the uncertainty
can be traced to the original capture and automation of the data. It is especially
important to have consistency and proper error checking when a large corpo-
rate database is being developed and will be used by many people (Lund and
Thomas 1995). Here are some sources of spatial data error (adapted from Stine
and Hunsaker 2001):

� Geometric error: When data are collected on the Earth (a sphere), and
transferred to a map (a plane), there are inaccuracies in projecting the
locations.

� Attribute error: In measuring an attribute at a point, there may be bias or
error in the measuring tool or the person taking the measurement. This
error is especially prominent in categorical variables when interpreting
class membership (e.g., which vegetation type is this?).

� Locational/boundary uncertainty: Positions, through a variety of reasons
(e.g., digitizing errors, GPS errors, field-to-map errors), are commonly
misrepresented relative to their true positions. These positional errors
can matter to a greater or lesser extent depending on the attribute
of interest. For example, Lewis and Hutchinson (2000) assessed the
impact of positional error for estimates of slope angle and elevation,
and found that small positional errors among three maps led to a
highly correlated estimate for elevation (R2 = 0.95–0.98) but not for
slope (R2 = 0.18–0.32). Boundaries of many ecological units are fuzzy,
so their depictions as lines of no width in a GIS will carry significant
uncertainty.

� Physical changes of attributes over time: Nearly all biologically relevant vari-
ables on landscapes changeover time, yetmostGIS systemsholddata for
only one time stamp. Landscape ecologists can learn much from stack-
ing two or more time stamps and analyzing the changes, but caution is
required tomake sure that errors in each of the time stamps are properly
handled (Walsh et al. 1987).

� Data compatibility: When combining data of different qualities, there are
new errors introduced. For example, in the case of combining two dates
of satellite data, if one is Landsat MSS and the other is Landsat TM,
the differences in spatial and spectral resolution can be important. Or,
if slope aspect is derived from two digital elevation models of different
spatial resolution, the estimates are likely to be quite different.

� Errors in interpreting and manipulating data: This error source includes sev-
eral data processes that can introduce error, such as class aggregations,
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changing map projections, and conversions between raster and vector
data.

� Inability to accurately detect attribute of interest: In many cases, landscape
ecologists are not able to measure the variables of interest, but instead
use surrogates that hopefully are correlated to the attribute of interest.
For example, in the United States, the Heinz Report on the State of the
Nation’s Ecosystems (Heinz Center 2002) uses 102 indicators on ecosys-
tem status, yet only 32 percent of the indicators have adequate data for
assessment. The remainder have to be estimated from surrogates or not
assessed at all.

2.5.2 Considering uncertainty in landscape models

Landscape ecologists frequently are using models to better under-
stand the system in which they work and to evaluate the influence of an
altered condition (Sklar and Hunsaker 2001). Several ecological phenomena
have spatially explicit characteristics important to consider in the models,
including environmental gradients, migration, immigration and emigration,
metapopulation dynamics, competition, fire behavior, and biogeochemical
cycling (Stine and Hunsaker 2001). These models are subject to several sources
of uncertainty, most of which can be traced to uncertainty in data collec-
tion, data processing, model structure, human intervention, and natural vari-
ability (Li and Wu 2006). Of these five, only model structure is unique to
the development of landscape models. Within model structure, there are
five places where error can influence model outputs (Sklar and Hunsaker
2001):

(1) Inputs – the scale of simulated events and states shouldmatch the scale of
events and states of the data used by the model. For example, a habitat
model is much different from a global climate model and data inputs
should be matched to the questions being asked.

(2) Initial conditions – every model requires identification of the conditions
at a particular point in time and across the entire modeled space as the
model starts. Often these conditions must be estimated, with associated
uncertainty, through interpolation and interpretation of point data.

(3) Forcing functions – these are the inputs needed to move the simulation to
the next time step. Inputs collected temporally, such as temperature or
precipitation, often are used as drivers in the simulation, and errors in
these functions can significantly affect the outputs. Themost significant
uncertainty results from missing data so that, in our example, widely
dispersed meteorological stations may present problems, especially for
fine-scale simulations.
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(4) Calibration parameters – the mathematical structure that defines rules,
processes, statistical relationships, or state change in the model, to max-
imize observed and simulated resemblance. These relationshipswill not
be perfectly modeled, so errors are imbedded in the outputs.

(5) Verification components – observational and simulated data again are com-
pared, but the observational data have not been used in the model devel-
opment. Again, errors are similar to those of calibration except that
time increases uncertainty and error is cumulative with time in model
outputs.

In general, there is a tradeoff in that the more complex the model, the more
potential for learning and prediction, but the less accurate (more uncertain)
the outputs. There are four categories of dynamic landscape models (Sklar and
Hunsaker 2001):

(1) Transitional probability models – not mechanistic, but rely on maps from
two or more dates to calculate historical trends, which then can be
applied forward.

(2) Gradient models – for modeling landscapes with obvious upstream and
downstream components.

(3) Process-basedmosaicmodels– distributespatternacross the landscapeusing
site-specific biogeochemicalmechanisms to control energy andmaterial
flows.

(4) Individual-based models – focus on behavior rules for an individual or
an assemblage of individuals as a function of spatial constraints and
opportunities.

Sklar and Hunsaker (2001) also discuss the causes of uncertainty in each of
these model types.

2.6 Needs in data acquisition and quality

In thepages following, I present14 topics related todata acquisitionand
quality which I believe need additional research or effort to advance the credi-
bility and value of the field of landscape ecology and its role in society. There is
no particular order to this list. Many of these ideas have been gleaned or mod-
ified from other sources, including Mowrer and Congalton (2000), Hunsaker
et al. (2001), Wu and Hobbs (2002), and Shi et al. (2002a).

2.6.1 Strengthen capacity to collect ground information

World citizens, public officials, and academic institutions need to devise
a way to populate the world with many ‘ologists carrying GPS units, preferably
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in the context of long-term landscape monitoring programs, and to orga-
nize the acquired data into hierarchical, GIS databases. Basic biological data
on organisms and communities is still needed! Natural historians have been
diminishing in number, and when coupled with increasing information and
spatial location requirements in this spatially aware age, ground-observed
information is lacking for accurate spatial processing. These kinds of data are
critical for research on biological invasions, conservation planning and mon-
itoring, sustainability, cause and effects of stressors, change analysis, systems
and complexity analysis, and model development and validation.

Associated with the collection of basic biological data is the nearly equally
important role of automating, managing, and serving up the data. There
are several organizations doing this to various degrees. The state of Illinois,
USA, began automating and distributing information on distributions, ecol-
ogy, taxonomy, and wildlife and human interactions for more than 3200 plant
species in the 1980s (Iverson et al. 1997b, Iverson and Prasad 1998a, Iverson
and Prasad 1999). The National Biological Information Infrastructure, the
World Conservation Monitoring Centre, NatureServe, and the Global Biodi-
versity Information Facility are four other servers of this kind of information
(Table 2.2).

2.6.2 Develop key indicators of status and health of landscapes

To efficiently monitor status and trends, scientists need to identify key
indicators within various landscape types that can be readily monitored over
large areas with reasonable costs. As mentioned previously, the “The State
of the Nation’s Ecosystems” report for the United States presented 102 indi-
cators, but only a third have adequate data and many require research on
effective monitoring strategies (Heinz Center 2002). Other indicators could
be developed, especially those that may be more regional in character. Many
other projects have been conducted to assess status and trends of particular
locations or landscape components (e.g., Iverson et al. 1989b, Illinois Depart-
ment of Energy and Natural Resources 1994, Mac et al. 1998, Shifley and Sul-
livan 2002), but all have been limited in scope and reliability by the selected
indicators and the available data.

2.6.3 Design efficient, multi-tiered sampling designs

It remains a challenge to sample across large regions in a way that pro-
vides information at multiple scales, while permitting the inference of the
effects of spatial heterogeneity. For instance, many soil and vegetation vari-
ables have substantial spatial variability within a few meters, yet we are trying
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soil type
High : 82

Low : 3

Integrated Moisture Index Value

sample points

f igure 2 .1
Integrated Moisture Index at 2m resolution, vegetation sample points at 50m
spacing, and soil polygons at about 100m resolution for a study site in southern
Ohio, USA

to make repeatable, large-area assessments. For example, in Ohio a map of 1m
digital elevation modeled for integrated moisture index shows very high local
variability (Fig. 2.1), also reported for soil nitrogen availability (Boerner et al.
2000). What is the best way to extend and use this type of information across
large areas? Innovative sampling methods are needed, using creative combina-
tions of current and new methods in field sampling, experimentation, remote
sensing, statistics, and modeling. Projects like BIGFOOT (Burrows et al. 2002)
combine flux towers with multiple ground and remote sensing instruments to
extenddetailed informationacross largeareas.Earlier, forestplotdata,Landsat
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TM, and AVHRR data were used to map forest cover (Iverson et al. 1989a,b,
1994) and productivity (Cook et al. 1987, 1989). In these and similar projects,
however, more research is needed to uncover methods to clearly distinguish
“noise” from the fine-scale heterogeneity that can be attributed to measured
phenomena.

2.6.4 Design and implement global landscape monitoring programs

Society needs to implement global monitoring programs now. The tools
are currently available to begin. The incentives are high to do assessments of
status and change, for these ecological processes and functions are critical to
life itself! Initially, this program should be largely driven by (nearly) free satel-
lite data, which are multiple in scale and with a time series of data. For exam-
ple, we now have Landsat MSS data back to 1972, Landsat TM back to ∼1982,
AVHRR back to ∼1978, and SPOT (Satellite Pour l’ Observation de la Terre) back to
1986. These programs have sufficient data to establish such a program. As dis-
cussed previously, the satellite data streams are available now and are increas-
ing dramatically. Today’s hardware and software can handle the huge data
sizes. The program should be interdisciplinary and be able to integrate the
most appropriate methodologies from each discipline. And it should permit
adaptivemanagement so that as the science, the indicators, andpublic opinion
evolve, so can the questions being asked of the program. In the United States,
the proposed National Ecological Observatory Network (NEON) (Holsinger
et al. 2003) is working toward this goal, but similar efforts are needed
globally.

2.6.5 Develop efficient tools for strategic ground sampling

As stated in Section 2.6.1 above, there are not enough natural histori-
ans collecting data on species, etc., on the ground in a spatially organized way.
There will never be enough. Therefore, strategic methods must be derived to
get the most “bang for the buck” when it comes to sampling species. We need
GIS tools which will better target ground sampling, so field crews will have a
higher probability of encountering the species of interest. In this way, places
rich in threatened and endangered species or invasive species, or biologically
rich communities, could be modeled and then visited for verification. As an
example, Iverson and Prasad (1998a) used a GIS model for 102 Illinois counties
to predict possible plant species richness that had been under-sampled based
ontherichness in thewell-sampledcounties. Similar efforts andstrategieshave
been presented by Palmer et al. (2002) and Ferrier et al. (2002).
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2.6.6 Develop methods to share sensitive ground-specific information

Sometimes ground-specific information, or at least the specific locations
of that information, is sensitive in that it cannot be freely shared without
restriction. This restriction may be deemed necessary to protect national secu-
rity, threatened or endangered organisms, or the rights of private landowners.
It would be great if the information could be shared for research and mon-
itoring purposes, but not cause legal or other problems. We need research
into methods that might allow the ecological information to be gleaned with-
out legal constraints. For example, the US Forest Service Forest Inventory and
Analysis (FIA) program, by law, cannot release coordinates of their plots which
number in the hundred thousands. This restriction greatly limits research on
plant-environment studies. FIA is incorporating a “fuzz and swap” technique
to fuzz locations slightly and to swap attributeswith thenearest similar neigh-
bor, which would at least allow summarizing to coarse-level polygons (Charles
Scott, US Forest Service, personal communication). Somewhat related is the
issue of credit versus data sharing for researchers. Too often researchers are
reluctant to submit their data for meta- or regional analysis because they have
not yet fully published on the data, even though the data were collected with
public funds. Conversely in many instances, the collector(s) of the ground data
is forgotten by the researchers doing the regional analyses.

2.6.7 Enhance and categorize methods to interpolate/extrapolate point-level
data across landscapes

Because it is not possible, or at least practical, to completely sample any
landscape attribute that can’t be sensed remotely via satellite or aerial photo-
graph, there always will be a need for interpolation methods to map attributes
spatially across landscapes from point-sampled data. Attributes needing to be
mapped include species or community distributions, fuels, basal areas, soil
properties, climatic data, and air quality. There are several methods available,
and the list is growing. What tools to use has been a question for a long time
and has been reviewed extensively elsewhere (e.g., Lam 1983, Franklin 1995,
Guisan and Zimmerman 2000, Lehmann et al. 2002, Leibhold 2002). Some
of the methods, along with citations to case studies, follow (in no particular
order):

� Regressions (general linearmodels, general additivemodels, etc.) (James
and McCulloch 1990, Iverson et al. 1997b, Austin 1998, Franklin 1998,
Cawsey et al. 2002, Lehmann et al. 2002, Moisen and Frescino 2002).
Regression includes a wide array of models in which predictor variables,
often in a stepwise fashion, are selected which explain variation in the
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response variable or variables. Often models are built by fitting lines to
data that minimize the sum of the squared residuals.

� Kriging (e.g., universal, indicator) (Rossi et al. 1992, Leibhold et al. 1993,
1994, Hershey 1996, Riemann-Hershey and Reese 1999). These meth-
ods are theoretically based in multiple linear regression and use semi-
variograms to describe spatial structure in data, as well as predict val-
ues across nonsampled areas. Implicit is the notion that samples close
together in time and/or space will be more similar than those that are
farther apart. These methods preserve the spatial structure and variabil-
ity inherent in the sample data but do not work well with ancillary data
and usually predict a univariate response.

� Splines (e.g., thin plate splines) (Mitasova and Hofierka 1993, Hutchin-
son 1995, Mitasova et al. 1996, Price et al. 2000, Hofierka et al. 2002).
These interpolation functions include tension and smoothing param-
eters so that a digital elevationmodel (DEM), for example, canbe viewed
as a thin plate built at a higher resolution from points, and the ten-
sion adjusted to minimize overshoots and artificial pits in the resulting
DEM.

� Classification and regression trees (CART) (Breiman et al. 1984, Franklin
1998, Iverson and Prasad 1998b, Moisen and Frescino 2002). The model
is fit using recursive partitioning rules, where data are split into left and
right branches according to rules defined by the predictor variables. At
the terminal node, the predicted value (regression trees) or class (classi-
fication trees) is estimated.

� Multivariate adaptive regression splines (MARS) (Freidman 1991,
DeVeaux et al. 1993, Prasad and Iverson 2000, Moisen and Frescino
2002). MARS is related to classification and regression trees in that
it is a flexible nonparametric regression method that generalizes the
piecewise constant functions ofCART to continuous functions byfitting
(multivariate) splines.

� Computer-intensive data mining and prediction techniques (Breiman
1996, 2001, Iverson et al. 2004a). These advanced machine-learning
techniques use multiple CART trees in determining the best predictive
models, including measures of variable importance within the mod-
els. Bagging and random forests are techniques that use a bootstrap
approach to identify variable importance and produce averaged models,
sometimes with as many as 1000 CART trees involved.

� Inverse distance weighted methods (ESRI 1993, Price et al. 2000). These
methodsapplya simple linearlyweightedcombinationofa setof sample
points, with the weight being a function of inverse distance.
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� Most-similar-neighbor methods (Moeur and Stage 1995, Ohmann and
Gregory 2002). These methods provide site-specific data for nonsam-
pled areas by choosing the most similar parcel from a set of sam-
pled parcels to act as its surrogate. Ohmann and Gregory (2002)
combined most-similar-neighbor methods with direct-gradient analy-
sis (canonical-correspondence analysis) to produce reasonably accurate
vegetation maps.

� Artificial neural networks (Ripley 1994, Cairns 2001, Moisen and Fres-
cino 2002). With neural networks, accurate models can be built for
prediction when the underlying relationships between predictor and
response are unknown; the response is a transformation of a weighted
combination of the predictor variables. The many coefficients and inter-
cepts are “learned” via an optimization method. It is more of a “black
box”, however, in that the influences of specific variables are difficult to
discern.

As a corollary to the above methods, to spread point-level information out
across the landscape is also the critical, andoftenmore important, taskofdeter-
mining where boundaries lie among the patches on the landscape. This is also
an area of active research (e.g., Fortin 1994, Fortin and Drapeau 1995, Lopez-
Blanco and Villers-Ruiz 1995, Wang and Hall 1996, Bernert et al. 1997, Fortin
et al. 2000).

2.6.8 Develop techniques to best acquire and archive information on
landscape history

Whenwe learn about thehistory of a landscape,we can learnmore about
what is currently making the landscape tick. Ecological legacies are extremely
important inmost locations, andtheycan last formanydecades, evencenturies.
Fires, clearing, grazing, wind storms, floods, hurricanes, volcanoes, and land-
use changes are example legacies that can have long-lasting effects (Wallin et al.
1994, Foster et al. 1998, August et al. 2002, Turner et al. 2003).

Landscape history is also important to document so that, especially with
respect to trends in deforestation, historical trends in one part of the world
can be used to aid in predicting future trends in another part of the world.
Then, if need be, actions can be taken to prevent history from repeating itself.
One of the most distasteful, and sadly often repeated, patterns on the planet is
whennative peoples are “displaced”by colonists fromanother place (Diamond
1999). Often but not necessarily related is the subsequent rapid conversion of
its lands as the new colonists settle. Deforestation patterns in the temperate
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would decimate a forest in less than a generation. History does indeed repeat itself

forests of Illinois,USA, for example,havemore recentlybeen repeated, andstill
continue, in the tropical forests of Costa Rica, Malaysia, and Brazil (Fig. 2.2).

We now have many years of data for data mining and evaluation of land-use
histories, yet these data are being under-utilized. We have air photos since the
early 1930s, Landsat MSS since ∼1972, Landsat TM since ∼1982, AVHRR since
∼1978, and SPOT since 1986. We have sampling station data (e.g., forest plots,
water quality sampling, bird census, etc.) over a very long history, but the old-
est data often are not digital. Those data that are digital are yielding tremen-
dous value, for example with respect to the breeding bird survey data, contin-
uous since the mid 1960s (James et al. 1996, Sauer et al. 2001, Rodriguez 2002,
Matthews et al. 2004).

Unfortunately,we alsohavedecades of data perishing in oldfile cabinets and
storehouses as retirements and budget issues prevent a wealth of data from
being captured digitally. This is a tragic loss in these days where the evaluation
of long-term trends is such a critical component of many of today’s environ-
mental issues.

2.6.9 Determine appropriate methods to merge and analyze data acquired
at different scales

Often the significant biological events (e.g., rare occurrences, invasions
of exotics) are happening at very fine scales, but we can’t collect data every-
where at that scale. We therefore need to have suitable methods for scaling
up and scaling down to obtain appropriate estimates for the scale of interest
(e.g.,Wiens1989, Rastetter et al.1992, Ehleringer andField1993,Gardner et al.
2001, Schneider 2001, Cushman and McGarigal 2002). This is an area of active
research and discussed in separate chapters by Ludwig and Wu.
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As an example from our research laboratory, we now have 1m elevation data
from LIDAR (Light detection and ranging sensor) and can calculate an inte-
gratedmoisture index (Iverson et al.1997a) on thosedata, butwe cannot obtain
that resolution for soils or vegetation attributes. How do we correctly merge
and analyze such data so that we best understand the relationships between
long-term moisture and soil and vegetation characteristics (Fig. 2.1)?

2.6.10 Efficiently handle increasing volumes of data, with minimal user
pre-processing

There are petabytes of data streaming back to Earth each day. We need
additional research to facilitate the pre-processing and screening of these data
so landscape researchers can readily obtain and process the filtered data with
less data volume and less up-front cost. As an example, the MODIS (Moderate-
resolution imaging spectroradiometer) sensor has a science team that has been
developing algorithms for automatic calculation for several vegetation-related
metrics so that each user doesn’t have to do it (Running 2002, Heinsch et al.
2003, Zhang et al. 2003).

2.6.11 New GIS technologies needed

There are at least four areas where the development of GIS technol-
ogy must proceed to enhance the work of landscape ecologists and the sub-
sequent accountability of that work. We should appeal to vendors and devel-
opers to proceed with these developments. First, we need a temporal GIS, one
that allows better analysis of changes through time. Second, we need more
development in three-dimensional GIS, for better analysis of volumetric and
mass-flow data. Third, we need the development of an “uncertain GIS,” one
that allows the quantifying, display, and analysis of various forms of uncer-
tainty (e.g., Duckham and McCreadie 2002). Fourth, we need the development
of automatic metadata tracking within the GIS, so that a complete history and
documentation of data generation and manipulation, including error track-
ing, occurs without human intervention (Beard 2001, Gan and Shi 2002).

2.6.12 Develop and test theory and methods of uncertainty analysis of
landscape data

Though several books have been produced on this topic (e.g., Goodchild
and Gopal 1989, Mowrer et al. 1996, Mowrer and Congalton 2000, Hunsaker
et al. 2001, Shi et al. 2002a), there is still a lot of research needed so that every
landscape ecologist and GIS user can understand the critical nature spatial
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uncertainty plays in their projects. Some areas needing further development
include graphical visualization of uncertainty (e.g., Buttenfield 2001, Drecki
2002), error metrics calculation (e.g., Arbia et al. 1998), and the simulation of
specific uncertainties for testing analytical procedures.

2.6.13 Devise methods so error can be evaluated and broken down into its
various components (error budget)

Here I emphasize the need to be able to determine where the error lies
in any GIS analysis – which form of error mentioned earlier in this chapter
is most problematic, and therefore how might that error be trimmed? Or as
an example, how can error associated with imagery classification be separated
from error associated with a simulation model? Or, how does error propagate
and accumulate in various spatial analyses such as overlay and buffer opera-
tions? Much of the difficulty associated with this research need is a fundamen-
tal flaw in the GIS systems that have been developed and accepted over the past
30 years. Goodchild (2002) discussed the need for a measurement-based GIS,
rather than the nearly universal coordinate-based GIS, which cannot properly
dealwith error.Measurement-basedGIS could retaindetails ofmeasurements,
such that error analysis is possible, and corrections to positions can be appro-
priately propagated through the database.

2.6.14 Devise methods to assess the effects of varying data quality and grain
size on the outputs of landscape pattern analysis, model simulations,
and resultant decisions

The quality of data and metadata will determine landscape ecologists’
ability and effectiveness of detecting patterns and relating them to processes,
and consequently affect research results, practical recommendations, and final
decisions. Though some work has been done on the sensitivity of various land-
scape metrics from varying data quality and grain size (e.g., Wickham and
Riitters 1995, Wickham et al. 1997, Hargis et al. 1998), this is an area needing
more research. With respect to grain size, we need to determine with more cer-
tainty how the following processes affect uncertainty: aggregation, interpola-
tion, transformation, andre-measurement.FormanyGISapplications, it isnot
possible to compare the outputs to an independently derived “truth”; in these
cases, it is best to conduct a sensitivity analysis based on randomization of the
data (Hunsaker et al. 2001). For example, it may be possible to use Monte Carlo
simulations to determine if a decision becomes unstable because of poor data
quality (Phillips and Marks 1996). Decision-support networks are needed that
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support error analysis and the spatial characterizationofuncertainty (Eastman
2001).

2.7 Policy issues related to data acquisition and quality

Inaddition to the14 research-focused issues, there are a few issueswhich
are based primarily in policy, and so are mentioned briefly here. These issues
are only presented as idea seeds, with much more effort needed to make them
proposals.

First, policy-makers need to get behind the research issues to help provide
the finances and exposure to make them happen. Otherwise there is no way
thatwell-supported, globally represented, long-termmonitoringprograms, as
an example, will come into being.

Second, mechanisms are needed to enable agencies and countries to easily
cooperate, so that the best data sets possible can be derived and analyzed thor-
oughly and without perceived or real country-level bias.

Third, rigorous support within the policy arena is needed for adequate edu-
cation and training so that the science can develop credibly in the most help-
ful ways for societal benefit. Finally, the public, the decision-makers, and the
researchers, need to become aware of GIS/map accuracy issues and the sub-
sequent validity of any information they use (Spear et al. 1996, Cornelis and
Brunet 2002). For information to be used and useful in the policy arena, and
not itself be the subject of debate, it must be policy relevant, technically credi-
ble, and politically legitimate (O’Malley et al. 2003).

2.8 Conclusions

Remote data acquisition is becoming much easier and consistent,
though information obtained on the ground is still critically important, costly
to acquire, and generally not achievable by remote sensing. We need to learn
how to best use these data resources to monitor and manage Earth’s resources.
Data quality is still a major stumbling block for researchers and decision-
makers, and a current critical research topic.
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3

Landscape pattern analysis: key
issues and challenges

3.1 Introduction

Landscape pattern analysis (LPA) has been a major part of landscape eco-
logical research for the last two decades (Romme 1982, O’Neill et al. 1988,
Turner 1989, 1990, Turner and Gardner 1991, Pickett and Cadenasso 1995,
Gustafson 1998, Wu and Hobbs 2002). The ultimate goal of LPA is to link spa-
tial patterns to ecological processes at different scales. The importance of LPA
lies in the needs to: (1) monitor, quantify, and project the change of a given
landscape; (2) compare and contrast patterns between different landscapes;
and (3) help understand processes underlying observed patterns, so that land-
scape dynamics may be better understood and predicted (Turner et al. 2001,
Wu 2004). Thus, appropriate and effective use of LPA methods is vital to the
development of landscape ecology.

After two decades of rapid development, landscape ecology has begun to
mature. However, many problems still persist in the application of LPA (Li and
Reynolds 1995, Tischendorf 2001, Fortin et al. 2003, Li and Wu 2004). Li and
Wu (2004) have called for a serious rethinking of why and how landscape pat-
tern analysis should be used, with an intent to discourage the rampant and
blind use of LPA methods. They argued that theoretical guidance should be
sought in the practice of LPA. Fortin et al. (2003) stated that methodological
developments often undergo four phases: (1) the introduction phase with key
papers describing a new methodology, (2) the testing phase with many papers
applying the new methodology, (3) the critical review phase with limitations
of the methodology identified and with rethinking of its fundamental pur-
poses, assumptions, and formulations, and (4) the standardization phase with
the most effective methods being selected as the norm. They suggested that

Key Topics in Landscape Ecology, ed. J. Wu and R. Hobbs.
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landscapepatternanalysiswas in the thirdphase, suffering fromsomegrowing
pains.However, onemay also argue that critical review should always bepart of
any scientific process, and the four phases actually form a cycle around which
methodsare continuouslybeingdeveloped, tested, and improved (orotherwise
discarded).

The objectives of this chapter are: (1) to critically assess the current status of
LPA, (2) to review the assumptions, behaviors, and limitations of commonly
used LPA methods, (3) to discuss major challenges in LPA, and (4) to develop
guidelines for the effective application of LPA. We will focus on the proper
selection, use, and interpretation of various methods, based on key spatial pat-
tern attributes, basic assumptions, general behaviors, and major limitations.
For more in-depth reviews of the specific LPA methods and their equations,
the reader is referred to Li (1989), Turner and Gardner (1991), McGarigal and
Marks (1995), Riitters et al. (1995), Dale et al. (2002), and Fortin et al. (2002).

3.2 General classification of LPA methods

The numerous methods used in LPA may be classified based on different
criteria such as research objectives, data types, and mathematical properties of
the methods (Li and Reynolds 1995, Gustafson 1998, Wu et al. 2000, Dale et al.
2002, Fortin et al. 2002). Most LPA studies deal with spatially continuous data
with known locations and complete coverage in the form of maps. Such map
data used in LPA and landscape modeling are frequently obtained from remote
sensing sources (e.g., satellite imagery, aerial photos) andusually stored ingeo-
graphic information systems, orGIS (e.g., vegetation, soil, land-usemaps).Dis-
crete data like point samples will not be considered here, but good reviews
exist (Upton and Fingleton 1985, Dale 1999). In this review, we concentrate
on the measurement types of required data and classify these methods into
two groups: spatial statistics for numerical (i.e., ratio and interval) data and
landscape metrics for categorical (i.e., rank and nominal) data. This is because
data types influence what methods may be used, what spatial pattern may be
revealed, andwhat researchquestionsmaybeaddressed (Li andReynolds1995,
Fortin et al. 2002).

Many LPA methods may be applied to one data type only, but some can be
used toanalyzebothdata types (Dale etal.2002).Commonlyused fornumerical
maps are several methods of spatial statistics (including geostatistics), such as
semivariogramanalysis and autocorrelation indices likeMoran’s I, andGeary’s
C (see Cliff and Ord 1981, Robertson 1987, Cressie 1991, Rossi et al. 1992, Dale
et al. 2002). As a fundamental property of spatial statistics, spatial autocor-
relation means that things closer in space are more related than things far-
ther apart. Thus, strong spatial autocorrelation signifies a strong influence of



Landscape pattern analysis: key issues and challenges 41

processes at work. The methods for categorical maps are primarily indices of
landscape mosaics (Romme 1982, O’Neill et al. 1988, Li 1989, Li and Reynolds
1993, Riitters et al. 1995). Landscape indices quantify the spatial structure of
landscape mosaics, and such quantitative information can then be used to
study effects of pattern on process. While most of these methods are borrowed
from geosciences and other branches of ecology, landscape ecology has cre-
ated some of its own in the last two decades (Romme 1982, O’Neill et al. 1988,
Li 1989, Li and Reynolds 1993, Riitters et al. 1995).

To ensure that the methods of LPA are applied appropriately and effectively,
it is essential to understand what exactly each method does (Li and Reynolds
1994, 1995, Riitters et al. 1995, Dale et al. 2002, Fortin et al. 2002, Li and Wu
2004, Wu 2004). In addition to learning how to calculate them, landscape
ecologists must understand key components of spatial pattern as well as the
assumptions, behaviors, and limitations of the methods.

3.3 Key components of spatial pattern in relation to LPA

Different methods of LPA reveal different aspects of spatial pattern in
landscapes. Thus, it is critical to recognize the different components of spa-
tial patterns in data as well as the different attributes of methods in inter-
preting results. Generally speaking, spatial pattern in landscapes is defined
by the complexity or variability of a system property of interest in space and
time (Li and Reynolds 1995). Complexity refers to qualitative or categorical
descriptors of this system property, while variability refers to quantitative or
numerical descriptors of the property. Each data type has its own character-
istic complexity and variability that may serve as linkages of spatial pattern
to ecological processes and provide ways to interpret their relationships. Even
thoughweemphasize the structural characteristics indata that canbeobserved
and analyzed, their functional linkages to ecological processes (e.g., popula-
tion dynamics, nesting or foraging behavior, biogeochemical cycling) are criti-
cal to the interpretationofLPAresults andmustbe considered (Li andReynolds
1994, 1995, Fortin et al. 2003, Li and Wu 2004).

In landscape pattern analysis with numerical maps, the key quantifiable
components of spatial pattern are domain variation, autocorrelated variation,
random variation, and anisotropy of landscape elements (Table 3.1; Burrough
1987, Li and Reynolds 1995, Fortin et al. 2002). These components display a
continuum of variability (Li and Reynolds 1994, 1995). Domain variation is
long-range, deterministic and structured, and is represented by trends and
magnitude of change of the mean or variance in space (e.g., those defined
by trend surface analysis). Autocorrelated variation is medium-range, ran-
dom but spatially correlated, and is characterized by the scale, within which
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table 3 .1 . Data types, components and attributes of spatial pattern, and examples of methods to
analyze thema. SV stands for semivariogram, and SH% is the degree of spatial autocorrelation (see text for
more explanation)

Data Type

Component of

Spatial Pattern Attribute Method Reference

Categorical

Map

Composition � Number of patch

types
� Proportion of patch

types

� Contagion index
� Diversity index

� Li and Reynolds

1993

� Pielou 1975

Configuration � Spatial arrangement
� Patch shape
� Contrast between

neighboring

patches
� Connectivity of

patches

� Fractal dimension
� Shape index
� Patchiness index

� O’ Neill et al. 1988

� Forman and Godron

1986

� Romme 1982

� Tischendorf and

Fahrig 2000

Anisotropy � Directional

difference in spatial

arrangement

� Directional analysis � Wu et al. 2002

� Wu 2004

Numerical

Map

Domain variation � Trend
� Magnitude of mean

or variance

� Trend surface

analysis

� Sokal and Rohlf

1981

Autocorrelated

variation

� Degree
� Intensity
� Scale

� SH% of SV
� Fractal dimension

of SV
� Range of SV

� Li and Reynolds

1995

� Cressie 1991

� Rossi et al. 1992

Random variation � Degree at short

range
� Degree at long range

� Nugget of SV
� Sill of SV

� Burrough 1987

� Li and Reynolds

1995

Anisotropy � Directional

difference in

domain and

autocorrelated

variation

� Directional analysis � Cressie 1991

� Rossi et al. 1992

� Burrough 1983

a Modified from Li and Reynolds 1995.
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autocorrelation exists, and the degree and intensity (i.e., rate of change) of spa-
tial autocorrelation. Random variation is short-range or long-range, indepen-
dent and not structured, and is marked by random noise or total variance.
Anisotropy is the variation of trend and autocorrelation in different direc-
tions. For example, the autocorrelation structure of a system property may
be quantified by parameters (i.e., range, nugget, sill) calculated from semivar-
iogram analysis (Li and Reynolds 1995; Table 3.1). The short-range random
noise is represented by nugget and the long-range random variation by sill.
The scale of spatial autocorrelation is defined by the range of semivariograms,
whereas the degree of spatial autocorrelation may be characterized by the per-
centage of structured variance, which is represented by the index of SH%, i.e.,
SH%= (sill−nugget)/sill. Notice that SH% corresponds to the proportion of
spatial autocorrelation in the total variation of the system property because
sill represents the maximum (total) variation and nugget the random varia-
tion. The intensity of spatial autocorrelation may be quantified by the slope of
logarithm-transformed semivariogramsbecause the slope expresses the rate of
change in semivariancewith respect to lagdistance.Thus, the steeper the slope,
thehigher the intensity of autocorrelation. The slope canbe representedby the
fractal dimension of the semivariogram (Burrough 1983).

In landscape pattern analysis with categorical maps, the key quantifiable
components of spatial pattern are the composition and configuration of a
landscape mosaic (Table 3.1; Li and Reynolds 1994, 1995). Composition is
nonspatial and includes the number and proportions of patch types, while
configuration is spatial and includes spatial arrangement of patches, patch
shape, contrast between neighboring patches, connectivity among patches of
the same type, and anisotropy (i.e., variations of other attributes in different
directions). These seven attributes in Table 3.1 have been widely recognized as
factors of spatial pattern (e.g., Pielou 1977, Romme 1982, Forman and Godron
1986, Ludwig and Reynolds 1988, O’Neill et al. 1988, Wiens et al. 1993, Li and
Reynolds 1994, 1995, Tischendorf and Fahrig 2000). The attributes are self-
explanatory and easy to understand even though some of them (e.g., spatial
arrangement, connectivity) are difficult to quantify. Use of these attributes in
LPAcanbe illustratedby the followingexample. Suppose thatwehaveahabitat
map for a species, and then each pattern attribute of the map may be linked to
functional responses of the species (Li and Reynolds 1994, 1995). For example,
the number of habitat patch types may indicate the level of resource diversity;
the proportion may determine the dominance (or lack) of critical resources;
spatial distribution of resources may affect species dispersal and foraging effi-
ciency; irregular habitat patch shape may signify great edge effects; changes
in the neighboring contrast may determine the magnitude of edge effects and
the permeability of boundaries to flows of matter and biological organisms;
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connectivity of habitat patches may influence the success rate of species disper-
sal and the spread of diseases; and anisotropy in spatial pattern may be related
to influences of topographic or edaphic factors, or differences in underlying
processes in different directions.

3.4 Statistical and ecological assumptions of LPA methods

The assumptions of LPA methods may be general or specific, and explic-
itly defined or implied. Recognizing the assumptions of a method is an impor-
tant first step to apply it properly. Below we discuss some major statistical and
ecological assumptions behind the commonly used LPA methods.

3.4.1 Statistical assumptions

Spatial statistics (e.g., semivariogram, Moran’s I, Geary’s C) assume sta-
tionarity in the system property of interest. The stationarity assumption dic-
tates that the mean (i.e., the first-order stationarity) and the variance (i.e., the
second-order stationarity) of the system property is constant over sampling
space (Webster 1985, Cressie 1991, Fortin et al. 2002). A weak, first-order sta-
tionarity can often be assumed for ecological data when some neighborhood
effects or processes are at work. As Fortin et al. (2002) pointed out, stationar-
ity is a property of the process rather than the observation. This means that
this assumption may not be validated by the data used in analysis alone. The
observation is just one realization of the pattern generated by the correspond-
ing process. Fortunately, minor departures from the stationarity assumption
should not preclude the use of these spatial statistics. What is important is to
ensure that there is no change in the process or its dominance within the study
area and that there is no change of support or grain size (Webster 1985).

SomeLPA studies assume that a landscapemap (numerical or categorical) is a
sample from a population of maps. This assumption makes it possible to com-
pare resultsofLPAof two (ormore)maps if statistical characteristics (e.g.,mean,
variance) of the populations are known (Fortin et al. 2003). However, when the
statistical characteristics of the populations are not known, no statistical tests
may be made about the differences between two maps from different times or
locations because each map represents only one single data point (Li and Wu
2004). We will revisit the consequences of this assumption later.

3.4.2 Relationship between pattern and process

A fundamental principle in landscape ecology is that spatial patterns of
landscapes not only affect but also are affected by ecological processes (Turner
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figure 3 .1
Schematic demonstration of a problematic research approach to establishing
relationships of wildlife abundance to habitat sites at increasing radii. The study
plot is the only site within which wildlife information is available. As a result, a
potential flaw exists because of a scale mismatch (i.e., the two variants used in
correlation analysis not belonging to the same space domain) and because of an
invalid assumption (i.e., similar abundance of the species being supported at every
specific site of habitat inside the radius of R1, R2 and R3)

1989, Pickett and Cadenasso 1995). The principal message here is that spa-
tial pattern matters in our understanding of the structure, functioning, and
dynamics of landscapes. However, this pattern and process principle requires
critical scrutiny because a conceptual flaw may occur in LPA if pattern and pro-
cess are not interactive (Li and Wu 2004). Although it is true in general that any
spatial pattern is a result of some process or processes at some point in time,
it is not appropriate to assume pattern and process always exhibit reciprocal
effects on ecological scales. The interaction between pattern and process can
only occurwhen theybothoperate at commensurate temporal scales and in the
same spatial domain (WuandLoucks1995, Li andWu2004). In addition,when
a process is not involved in the formation of a particular spatial pattern, there
should not be any inherent relationship between the pattern and the process;
whenaprocess is nonspatial, spatial patternbecomesnonconsequential. Thus,
whether spatial pattern affects a process of interest cannot be assumed a priori;
rather, it needs to be verified with empirical evidence.

For example, in the search for relationships between forest fragmentation
andwildlife populationdynamics (e.g., abundance, predation),manyattempts
have been made to relate landscape metrics at large scales with increasing radii
to wildlife population quantities observed in study plots (Fig. 3.1; Robinson
et al. 1995). However, such practice of relating broad-scale landscape metrics to
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fine-scale processes must be done with great caution because the correlational
relationships may be specious due to the mismatch of scales. As we have sug-
gested earlier, such correlation analysis would not be valid when the two vari-
ants do not belong to the same space domain (Fortin and Payette 2002). Also,
this sort of correlation analysis depends heavily on the validity of the implicit
assumption that every specific habitat site inside the larger radii must sup-
port or have similar abundance of the species, an assumption that is unlikely
to be met in reality. In addition, when conducting correlation or regression
analysis, ecologists should be acutely aware of the problem of “ecological fal-
lacy,” the phenomenon of improper inferences of lower-level attributes from
higher-level relationships,whichhas beennotorious in the social sciences (Wu,
Chapter 7, this volume).

Establishing causal relations requires knowledge of mechanisms of pattern
generation. This is often difficult because different processes may generate the
same pattern (Pielou 1977, Cale et al. 1989). Without identification of respon-
sible mechanisms for the pattern, observed correlation may be misleading
because it is possible that a critical factor in the pattern generation may be
unmeasured and omitted from analysis (Fig. 3.2; Fortin and Payette 2002). In
addition, spatial pattern is not a simple factor to wildlife populations because
it may often affect population processes indirectly through altering the dis-
tribution of other abiotic and biotic factors. As a result, predictions based on
relationships between spatial pattern and wildlife population dynamics may
generally tend to be weak for many species.

3.4.3 Ecological relevance of categorical data and landscape metrics

LPA assumes the ecological relevance of landscape data used. Ecologi-
cally relevant map data should contain information closely related to the eco-
logical process under study. However, this simple, but implicit, assumption is
often overlooked when categorical maps are used (Li and Wu 2004). The main
reason for such oversight is that map data used for LPA are often collected for
other purposes (e.g., pre-existing maps of vegetation, soil, land-use). Conse-
quently, whether available maps are appropriate for addressing the specific
objectives of a study is not always adequately discussed in landscape ecologic-
al studies. Of course, if the ecological relevance of map data is questionable,
the results of LPA can be of little use. Therefore, to ensure the ecological rele-
vance of data, one should explicitly address the question in the research plan-
ning, data collection, and publication processes. This is mainly a problem with
categorical maps because numerical maps directly present variables of ecolog-
ical interest. Li and Wu (2004) provided an example of and a solution to this
problem. They argued that, in habitat suitability analysis, a vegetation map
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should not be used directly and blindly because the same landscape may be
viewed by wildlife species differently. Instead, the vegetation map should be
converted into a habitat rank map based on the unique habitat requirements
of the species of interest (Harris and Sanderson 2000, Li et al. 2000), and then
LPA is performedon thehabitat rankmap. Suchdata transformations (reclassi-
fication) relate species requirements to landscapeattributes, thusmaking them
ecologically relevant.

LPA also assumes ecological relevance of landscape metrics used. Ecologi-
cally relevant metrics should functionally link ecological processes (e.g., flows
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table 3 .2 . Relationships between landscape indices and spatial pattern attributes.a A simulation
experiment with full control of the spatial pattern attributes was used to determine if indices agree with the
expected trends obtained from the literature. For example, when the spatial arrangement of patches changes
from uniform to random to clumped, spatial heterogeneity (SH) is expected to increase (i.e., the expected trend),
while the indices behave as follows: fractal dimension increases and agrees with this trend (A), evenness
decreases and thus shows an opposite trend (O), and contagion and patchiness do not show any trend (N). Note
that only patchiness can be used to characterize contrast

Agreement to Expected Trend
Spatial Pattern Expected Trend

Attribute Low SH← − − − → High SH Fractal Contagion Evenness Patchiness

No. of Patch Types Small < Large O A N O

Proportion Uneven < Even O O A A

Spatial Arrangement Uniform < Random < Clumped A N O N

Patch Shape Square < Regular < Irregular A N A O

Neighboring Contrast Low < Mixed < High . . . . . . . . . A

a Modified from Li and Reynolds 1995.

of materials and energy in landscapes: water transportation, nutrient move-
ment, species dispersal, fire spread) to landscape structure (e.g., Wiens et al.
1993, Li and Wu 2004). Such linkages have been discussed with regard to
many commonly used indices (O’Neill et al. 1988, Li 1989, Turner 1989, Li and
Reynolds 1993, 1994, 1995, Turner et al. 2001). For example, Li and Reynolds
(1994, 1995) established relationships between landscape indices and spatial
pattern components, which in turn may be linked to processes. For the indices
examined (i.e., evenness, contagion, fractal dimension, patchiness), they found
that the relationships of the four indices to different spatial patterns were
not always consistent with the common expectations (Table 3.2; see Li and
Reynolds 1994). Their findings highlighted the need that ecological relevance
of landscape indices should be established with empirical evidence. Li and Wu
(2004)warned that, in the absenceof suchevidence, landscape indicesmay sim-
ply be mathematical constructs without any ecological meaning. It must be
pointed out that, even for indices that are effective measures of spatial pattern,
their effects on ecological processes (e.g., edge effects, corridor usage) should
notbe taken forgranted. It is essential, therefore, to ensure ecological relevance
of indices inLPAbydeveloping indices thathave close associationswith ecolog-
ical processes. In the case of wildlife habitat evaluation, for example, LPA is in
principle more effective if indices used are related to food (e.g., foraging effi-
ciency), cover (e.g., shelters for energy conservation), reproduction (e.g., nest-
ing sites), and other population processes (e.g., dispersal) (Li and Wu 2004).
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In LPA, the scale of map data is often changed before analysis (i.e., data
rescaling; Gardner et al. 1987, Turner et al. 1989, Wu et al. 2000, Saura and
Martinez-Millan 2001, Wu 2004). Rescaling is necessary for analysis or mod-
eling at multiple scales because of the difficulties in collecting such data by
direct observations. While such data transformation usually assumes that the
rescaled data are equivalent to those directly observed at the new scales, pat-
terns revealed with rescaled data may be distorted (Li and Wu 2004, Wu 2004).
AsarguedbyLiandReynolds (1995), oneneeds todistinguishbetweenthescale
of observation, at which the natural world is translated into data, and the scale
of analysis, at which patterns are revealed from the data. Rescaling changes the
scale of analysis, but its results are still strongly affected by the scale of original
observations that determines the finest grain size of the data set. Studies have
shownthat theaccuracyof rescaleddatausingdifferentmethods (e.g.,majority
rules, systematic selection, random selection) can be quite adequate for certain
purposes, but generally varies with specific landscapes and metrics of interest
(Justice et al. 1989, Benson and Mackenzie 1995, Bian 1999, Saura 2004, Wu
2004). The bottom line is that the validity of rescaled data must be assured for
the intended analysis because data are the basis for deriving relationships and
testing hypotheses.

3.5 Behavior of LPA methods

In addition to the underlying assumptions, the behavioral characteris-
tics of LPA methods also need to be known to assure their appropriate applica-
tions. The behavior of a method is a function of its mathematical formulation
and thedataused in calculation. Several recent studies have systematically ana-
lyzed the behaviors of a number of LPA methods, including correspondence
between landscape measures and spatial pattern attributes (Li and Reynolds
1994, 1995, Wickham et al. 1997, Hargis et al. 1998, Neel et al. 2004), relation-
ships among landscape indices and among spatial statistical methods (Riitters
et al.1995, Dale et al.2002), and sensitivity of landscapemetrics to scale (Turner
et al. 1989, Wickham and Riitters 1995, Jelinski and Wu 1996, Wu 2004).

3.5.1 Correspondence between landscape measures and pattern attributes

Recognizing the different attributes of spatial pattern is important to
successful application of LPA methods and interpretation of their results. In
Table 3.1 we described the correspondences of some major landscape indices
and the semivariogram to various attributes of spatial pattern (Li and Reynolds
1994, 1995). These linkages can help relate quantitative information on spa-
tial pattern todynamics of ecological processes andphenomena. Fornumerical
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map data, relationships of spatial statistical methods (e.g., semivariograms) to
spatial pattern attributes areusually straightforward. For example, theparam-
eters calculated from semivariograms (or other similar methods) are by design
all positively correlated to the spatial pattern attributes (Table 3.1): (1) the
autocorrelatedvariation increaseswithSH% (degree), fractal dimension (inten-
sity), and range (scale), (2) the random variation increases with nugget (degree
at short range) and sill (degree at long range), and (3) domain variation and
anisotropy can be determined to exist by trend surface analysis and directional
analysis, respectively.

For categorical map data, relationships of landscape indices to spatial pat-
tern attributes are complicated because most of these indices have complex
formulas that are not based directly on spatial pattern attributes (Table 3.1).
Through a simulation experiment, Li and Reynolds (1994, 1995) showed that
the selected indices (i.e., fractal dimension, contagion, evenness, patchiness)
corresponded well to the expected trends of spatial pattern in most cases, but
exceptions and reverse patterns did occur (Table 3.2). The expected trends of
how spatial heterogeneity should change with the spatial pattern attributes
were obtained fromthe literature.Usually, fractal dimension, contagion, even-
ness, and patchiness are all assumed to be positively related to spatial het-
erogeneity. However, when different spatial pattern attributes are considered,
these commonly used metrics do not always show such simple behavior. For
example, fractal dimension increased and agreed with the expected trends
as the spatial arrangement changed from uniform to random to clumped
and as the patch shape changed from square to regular to irregular. But it
decreased and thus showed theopposite to the expected trendas thenumberof
patch types changed from small to large and as the proportions of patch types
changed from uneven to even (Table 3.2). Thus, Li and Reynolds (1994, 1995)
proposed that each of the spatial pattern attributes should be represented by a
simple landscape index.Forexample, theproportionofpatchtypesmayberep-
resented by evenness, the spatial arrangement of patches by fractal dimension,
the patch shape by the shape index, the contrast between neighboring patches
by patchiness index, the patch size by mean patch size, and the amount of edge
by edge density. As for the number of patch types, it should be used directly as
a measure of patch richness.

3.5.2 Relationships among LPA methods

Landscape indices can be highly correlated because they usually use the
samefivebasicmeasurementsof landscapemosaics: thenumberofpatch types,
proportion, perimeter–area relation, distance, and contrast (Li and Reynolds
1994,1995, Riitters et al.1995).High correlationamong indices indicates great
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redundancy in information content; thus, a criterion for selecting indices is to
avoid using indices with high correlation. Working with landscape maps from
across the United States, Riitters et al. (1995) established the correlation struc-
ture of 55 landscape metrics based on a factor analysis. They found that more
thanhalf of the indices examinedwere closely correlatedwithat least oneother
index with a correlation coefficient exceeding 0.9 (including negative correla-
tion). They classified these landscape metrics into five relatively independent
groups: (1) patch compaction, (2) texture, (3) patch shape, (4) perimeter–area
scaling, and (5) number of patch types. Most of the groupings by Riitters et al.
(1995) can be explained simply by the formulations of the landscape met-
rics based on the five basic pattern attributes. These results were similar to
the findings by Li and Reynolds (1994; unpublished data) that grouped land-
scape indices by their relations to spatial pattern attributes based on a differ-
ent perspective (see discussion above; Table 3.2). The correlation coefficients
among indices by Riitters et al. (1995) should be useful in selecting a group of
indices for any given study to maximize the information content of results and
improve the understanding and interpretation of the observed spatial pattern
of landscapes.

Many spatial statistical methods also have close mathematical or conceptual
relations because of the similarities in their mathematical formula and data
used. In a recent review, Dale et al. (2002) performed an analysis of the rela-
tionships among diverse groups of spatial statistics based on their mathemat-
ical foundations, empirical calculations, and conceptual linkages. Similar to
the correlation study by Riitters et al. (1995), Dale et al. (2002) used an ordina-
tion technique to show relative positions or groupings of the methods in the
space defined by the first two ordination axes. Among those groups commonly
used in landscape ecology are autocorrelation-based methods (e.g., semivar-
iogram, Moran’s I, Geary’s C), wavelet-based methods (e.g., various wavelet
approaches, spectral analysis), moving-window-based methods (e.g., fractal
dimension, lacunarity), variance-to-mean-ratio-based methods (e.g., Ripley’s
K,Morisita’s index),Mantel test, and join-countmethods.Themethods ineach
group show great similarity and, thus, need not to be used together.

3.5.3 Changes of landscape measures with respect to scale

Scaling relations as measured by changes in landscape measures over
a range of scales (grain size and extent) provide critical information for the
understanding and interpretation of landscape structure and functioning,
as well as for identifying the characteristic scales and quantifying multiple-
scale or hierarchical structures in landscapes (Wu et al. 2000, Dale et al. 2002,
Wu 2004). This is because landscape pattern is often scale-dependent and its
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multiscale characteristics may be explicitly quantified by scaling functions.
Most of the spatial statistics (e.g., semivariogram, Moran’s I, Geary’s C, frac-
tal dimension based on the box method) are formulated (or can be extended) to
provide outputs in the form of scalograms (Dale et al. 2002, Wu et al. 2002). As
a result, they offer a straightforward way of investigating the changes of land-
scape measures in response to changing the scale of analysis.

However, scaling relations for landscape metrics require in-depth and often
labor-intensive analyses to establish (Turner et al. 1989, Wu et al. 2000, 2002,
Saura 2004, Wu 2004). Wu et al. (2002) and Wu (2004) performed systematic
analyses of the scaling relations of a number of landscape metrics with map
data of real landscapes. They found that the responses of landscape metrics
to changing scale at the landscape level fell into three categories: simple (e.g.,
power-law), unpredictable, and staircase scaling functions. When the analysis
was done at the class level (i.e., individual land-cover types), only the first two
categories were observed. Effects of changing grain size were generally more
predictable than those of changing extent. Such knowledge on how different
metrics may behave with changing scale (i.e., scalograms) can guide applica-
tions of LPA in scaling of spatial pattern because landscapemetricswith simple
scaling relations reflect those landscape features whose extrapolation across
spatial scales can be readily achieved and, in contrast, metrics with unpre-
dictable scaling relations represent landscape features whose extrapolation is
difficult (Wu 2004).

3.6 Limitations and challenges of LPA

Effective applications of LPA require that landscape ecologists under-
stand the limitations of LPA methods, which hinge on their purposes, assump-
tions, and behaviors. LPA is limited by what a method can do. For example,
using evenness or coefficient of variation to quantify spatial arrangement of
patches is a futile effort because these indices do not contain spatial infor-
mation. LPA is also restricted by what assumptions a particular method must
meet. For example, the implicit assumption of ecological relevancy of categor-
ical map data is required for all landscape indices, and should not be over-
looked. Finally, choosing the right methods for a particular study is of great
importance, and can be achieved by closely examining the behaviors of poten-
tial methods in terms of their linkages to spatial pattern attributes, relation-
ships among themselves, and changes with scale.

Below, we discuss four major challenges in relation to LPA: (1) how to inter-
pret results of LPA to address specific research questions, (2) how to effectively
establish relationships between landscape pattern and process such that the
relationship canbehelpful inunderstandingandprojecting landscape change,
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(3) howtouseknownspatial heterogeneity to improvepredictionsof landscape
change (or scaling), and (4) how to assess significance in comparing two land-
scapes such that one can determine with some certainty whether or not signif-
icant changes have occurred (Turner et al. 2001, Wu and Hobbs 2002, Fortin
et al. 2003, Li and Wu 2004). Resolving these challenges will greatly enhance
the progress of landscape ecology and the successful applications of LPA.

3.6.1 Difficulties in interpreting indices

Interpreting results from LPA can be difficult, especially with complex
landscape indices (Li and Wu 2004). The reasons for this difficulty include:
(1) uncertainty about what an index really measures (e.g., multiple formulas
of contagion and fractal dimension (Riitters et al. 1996, Dale 1999)), (2) prob-
lems of using landscape indices in correlation analysis (Li and Wu 2004, Wu,
Chapter 7, this volume), (3) lack of specific thresholds to identify significant
changes in landscape structure and function (Turner et al. 2001), and (4) lack
of a well-tested group of indices that can directly measure rates of ecological
processes (O’Neill et al. 1999, Ludwig et al. 2000) or are closely related to spa-
tial pattern attributes (see Tables 3.1 and 3.2). Successful interpretation of LPA
results requires that landscape ecologists understand not only the methods of
spatial pattern analysis, but also the concepts on which the methods are based
(Dale1999, Li andWu2004). Todo so, onemustunderstand thekey spatial pat-
tern attributes of landscapes as well as the assumptions and behaviors of LPA
methods as discussed above.

3.6.2 Establishing relationships between pattern and process

Establishing relationships between landscape pattern and ecological
processes is a main goal of landscape ecology. A commonly used approach
is to perform correlation analysis with landscape indices and process data
(e.g., nutrient loading in streams, species abundance, dispersal success). This
approach is effective especially when mechanisms for the relationships can be
developed for causal explanation and testing (Pickett et al. 1994). For example,
Ludwig et al. (2000) developed an empirical scaling equation (i.e., correlation)
for savanna landscapes inAustralia that relates soil nitrogen content to the size
of vegetation patches. They attributed the observed relationships to the redis-
tribution of resources (nutrients, water) by run-off/run-on processes that form
resource islands (e.g., Schlesinger et al. 1990).

Themostdifficult challenge inestablishingrelationshipsbetween landscape
pattern and process is the lack of large-scale data. The lack of full coverage of
process data in landscapes is due to difficulties in measuring processes at large
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scales.Theconsequenceof theproblemwasdemonstrated in thewildlife exam-
ple in Fig. 3.1. Effective applications of remote sensing need to be explored
to provide a solution to the problem. The lack of replications for landscape
analysis is due to difficulties in sampling large areas and to the problem of
pseudoreplication (Li and Wu 2004). Meta-analysis with a large number of
case studies may be used to tackle the problem given that the same proto-
cols of methodology and similarity in landscapes involved can be assured. The
lack of large-scale experimentation to test relationships or hypotheses in land-
scape ecology is often due to difficulties with experimental control and logis-
tic constraints. Simulation experimentation with models will continue to pro-
vide some remedies to this problem because it allows for landscape dynamics
to be studied with different scenarios and sufficient replications (e.g., Li
and Reynolds 1994). However, simulation modeling alone cannot solve the
problem simply because simulated results are not real-world observations. So,
field-manipulative experiments should be encouraged in landscape ecology
whenever feasible.

3.6.3 Improving prediction based on known spatial heterogeneity

Spatial heterogeneity is one of the most fundamental characteristics of
ecological systems at all scales and exerts significant influences on sampling,
analysis, and modeling (Risser et al. 1984; Wiens 1989; Li and Reynolds 1995;
Turner et al. 2001). However, few studies have explored ways of improving pre-
dictions of landscape dynamics with quantitative information on landscape
heterogeneity from LPA. A common practice in modeling processes at large
scales (or scaling up) is to run a local-scale model repeatedly for all patches (or
pixels) in the landscape of study (known as the direct integration method; see
Wu, Chapter 7, this volume). Usually, landscape heterogeneity is handled with
a spatial data set that defines model input and parameters across the entire
study area in a spatially explicit fashion. In this case, the uncertainty of model
predictions may increase with the degree of within-patch or subpixel spatial
heterogeneity. For example, models for regional assessments are often run on
patches of one to several km 2, within which distinct land-cover types may be
mixed. As a result, model parameters for a patch are usually determined by the
major land-cover type or an average of all types present. This results in model
uncertainty similar to the well-known problem of pixel-mixing in remote
sensing.

To improve model predictions, one has to deal with two issues: error
reduction with known within-patch spatial heterogeneity, and uncertainty
assessment with incomplete coverage of parameter values in space. When
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information on spatial heterogeneity at a sub-patch scale is available, one can
incorporate it directly intomodels. For example, Asner et al. (1997) used a spec-
tral mixture analysis (SMA) to incorporate subpixel spatial heterogeneity from
fractional coverage of two vegetation types (tree and grass) into the calculation
of LAI for a savanna landscape. SMA characterizes subpixel heterogeneity by
using a linear combination of the reflectance spectra of ground components
to define reflectance at each pixel. Fractional coverage of vegetation types at a
subpixel scale (30m from Landsat TM) was used to reduce error in estimating
LAI at a coarser resolution (1kmfromAVHRR).When spatial coverageofmodel
parameters is incomplete (i.e., unknown parameter values at some locations),
one may use Monte Carlo techniques to quantify the level of uncertainty and to
determine if variability of theparameters of concern significantly affectsmodel
output.

3.6.4 Determining the significance of differences between two landscapes

Landscape ecologists are frequently confrontedwith the followingques-
tions: Does the spatial configuration of two landscapes differ significantly?
Have significant changes in landscape structure occurred during a certain
periodof time? Suchquestions arenot always easy to answerbecausefield stud-
ies usually deal only with one or a few landscapes so that no simple test is
available to make statistical inferences (Fortin and Payette 2002). The inabil-
ity to address such basic questions statistically is a critical limitation of LPA.
This problem is not unique to landscape ecology, but common to many other
kinds of large-scale studies (e.g., regional assessment, climate change) where
the number of replicates is limited. In these situations, visual comparisons
with spatial statistics or landscape indices are often used to draw conclusions
about differences or similarities between landscape maps. In general, land-
scape indices are descriptive and do not allow for statistical tests, whereas spa-
tial statistics like semivariograms may allow for statistical tests locally where
there are a large number of sample points, but not globally where the whole
landscape represents only one data point. Hence, solutions to this problem of
LPA are urgently needed.

One such solution is Monte Carlo simulation. For example, Fortin et al.
(2003) demonstrated such an approach by comparing two landscapes. The
basic idea is that a landscape at any given moment is one realization of a
stochastic process, and thus the population characteristics can be generated
by Monte Carlo simulation as long as a stochastic model of the process can be
defined. With two sets of model parameters estimated to represent two dif-
ferent landscapes, a large number of realizations of maps can be produced
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for each landscape through Monte Carlo simulation. Thus, the resultant pop-
ulation characteristics of the two sets of simulated maps can be used in an
inferential test to define significant differences between the two landscapes
(e.g., less than 5 percent overlap of the probability distribution; Fortin et al.
2003). In this approach, the lack of observations is dealt with by making the
stationarityassumption, i.e., themodelparameters are spatially invariant.This
approach is promisingonly if the spatial process canbe correctly identified and
only if a mechanistic model can be constructed. In addition, the approach may
not work well for categorical variables when the main processes that generate
landscape mosaics are human activities (e.g., management regimes, land-use
policies) that often defy statistical characterization by stochastic processes.

When the stochastic process is unknown, however, an alternative, com-
plementary approach may be used as demonstrated by Li and Reynolds
(1995). They treated spatial pattern as an observable phenomenon that was
defined stochastically by spatial pattern componentsdiscussed above for either
numerical or categorical data (Table 3.1). Li and Reynolds (1994, 1995) devel-
oped two spatial pattern simulation models: SHAPN and SHAPC. SHAPN is
an autoregressive-moving-average (ARMA) model (e.g., Bras and Rodriguez-
Iturbe 1985) that generates numerical transects based on variability in mag-
nitude, trend surface, and scale and degree of autocorrelation. SHAPC is a
landscape mosaic simulator that generates categorical maps with character-
istic spatial pattern based on complexity in number of patch types, propor-
tion of each type, patch distribution, patch shape, and patch-size distribution.
The key characteristics of SHAPC and SHAPN are that: (1) they do not have
to refer to any underlying stochastic processes given the difficulties involved
in identifying which process is at work in most situations, and (2) they gener-
ate spatial data with controllable parameters that closely represent spatial pat-
tern attributes (Li and Reynolds 1994, 1995). In a pilot study, Li (unpublished
manuscript) used thisMonteCarlo approach to simulate a large number of cat-
egoricalmapsbasedonchosenmodelparameters (which canbeestimated from
real landscapes), and to determine how much change in the values of indices
must occur to indicate significant change in landscape structure (Fig. 3.3). In
this experiment, the significance tests were based on the population character-
istics (i.e., mean and variance) of each pair of groupings, which were composed
of landscape maps with the same settings of the selected factors (e.g., all maps
with 4 patch types vs. those with 5). The preliminary results indicated that this
approach could determine the thresholds of index change that were required
for two maps to be statistically different (Fig. 3.3). Such threshold values of
indices may help landscape ecologists make better inferences about observed
changes in landscapes. Both of these approaches need to be tested with real
landscapes.
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f igure 3 .3
Changes in landscape metrics along the gradient of the number of patch types. The
x-axis represents absolute change in number of patch types between the data
groups, whereas the y-axis represents absolute change in a given index. The
landscape maps used in the analysis were generated in a factorial experiment (with
864 treatments and five replicates) by SHAPC under controlled conditions as
defined by five factors of spatial pattern: (1) number of patch types, (2) proportion,
(3) patch size, (4) patch shape, and (5) spatial arrangement. The response variables in
the analysis were evenness, contagion, dispersal, edge density, fractal dimension,
and patchiness. The open squares represent significant differences based on the
Tukey comparison with z-scores at the 90 percent confidence level. The solid
diamonds indicate nonsignificance. Threshold values may be derived for four of the
six indices; e.g., a change of 0.05 in contagion may result in a significant difference.

3.7 Concluding remarks

In this chapter we have provided an overview of landscape pattern anal-
ysis in terms of its usefulness, classification, basic assumptions, key character-
istics, and major limitations and challenges. These are all fundamental ele-
ments of LPA. Methodology is the cornerstone of science, and LPA is one of
the primary methodological foundations of landscape ecology. Therefore, the
effective application of LPA is of paramount importance to the advancement
of landscape ecology. Thus, general guidelines for the proper selection, imple-
mentation, and interpretation of various methods in LPA are needed. Here we
provide several suchguidelinesbasedon thedirectionsof theory, consequences



58 harbin l i and j iangou wu

of assumptions, patterns of behaviors, and solutions to limitations of LPA
methods.

For method selection, the research objectives, data types, and behaviors of
methods are among the most important elements to consider. The main ques-
tions to be answered are: Which method can provide the most relevant infor-
mation to address the objectives given the available data? What combination
of methods will provide sufficient information on different aspects of spatial
pattern? One should: (1) avoid redundancies by selecting methods that are not
highly correlated, (2) conduct spatial analysis at multiple scales to adequately
quantify heterogeneity and detect characteristic scales of landscapes, and
(3) use simplemetrics (e.g., patch size, edge, shape, inter-patchdistance) in cor-
relation analysis to facilitate meaningful inferences.

For implementation (i.e., mathematical operations), important considera-
tions should be given to the assumptions and equations (or algorithms) of
the selected methods. The basic questions to be asked include: What are the
assumptions behind the methods? Does anything need to be done to ensure
that the assumptions are met (e.g., data transformation)? One should: (1) make
sure thatmethods anddata used are ecologically relevant to the questionbeing
addressed, (2) ensure that the support (or grain size) and extent of the data are
consistent throughout the analysis, (3) avoid scale mismatch between variables
in analyses such as correlation and regression, and (4) compute uncertainty
measures whenever possible.

For interpretation of results, the central elements to take into account
include the basic behaviors and limitations of the methods, the key pattern
attributes involved, and the data used in the analysis. The important ques-
tions to ask are: What does the observed pattern mean, ecologically and sta-
tistically? How do the quantitative measures of landscape structure relate to
ecological processes of interest? One should: (1) pursue empirical evidence for
the existence of a pattern–process relationship, instead of assuming it a priori,
(2) identify possible mechanisms for observed correlation and avoid omitting
a critical factor in the pattern generation, (3) use different pattern attributes
as effective linkages that can help relate landscape structure to ecological pro-
cesses, (4) interpret results from rescaled data with extra caution, and (5) be
aware that a landscapemapmay represent only a single data point inmanyLPA
studies.

In conclusion, to guarantee effective use of any method in science one must
understand both the method itself and the data used in its implementation.
This is the overarching theme of this chapter. These guidelines will, we hope,
facilitate successful applications of LPAand continue to be refined as landscape
ecology progresses. In addition, even though we discuss the selection, imple-
mentation, and interpretation of methods as separate issues of LPA, they must
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be considered together in practice. It is certain that, with emerging new ideas
andtheoriesof spatially extendedsystemsandrapidlydeveloping technologies
in computingandremote sensing,LPAwill continue tomakeprogress andplay
a pivotal role in landscape ecology.
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4

Spatial heterogeneity and
ecosystem processes

4.1 Introduction

Understanding thepatterns, causes, and consequences of spatial hetero-
geneity for ecosystem function is a research frontier in both landscape ecol-
ogy and ecosystem ecology (Turner et al. 2001, Chapin et al. 2002, Wu and
Hobbs 2002, Lovett et al. 2005). Landscape ecology research has contributed
to tremendous gains in understanding the causes and consequences of spa-
tial heterogeneity, how relationships between patterns and processes change
with scale, and the management of both natural and human-dominated land-
scapes. There are now many studies in widely varied landscapes that elucidate,
for example, the conditions under which organisms may respond to landscape
composition or configuration, or disturbance spread may be constrained or
enhanced by landscape pattern. The inclusion of a spatial component is now
pro forma in many ecological studies, and tools developed by landscape ecolo-
gists for spatial analysis andmodelingnowenjoywidespreaduse (e.g., Baskent
and Jordan 1995, McGarigal and Marks 1995, Gustafson 1998, Gergel and
Turner 2002). Landscape ecological approaches are not limited only to “land”
but are also applied in aquatic and marine ecosystems (e.g., Fonseca and Bell
1998; Bell et al. 1999; Garrabou et al. 2002; Teixido et al. 2002; Ward et al. 2002).
However, with a few exceptions, the consideration of ecosystem function has
lagged behind progress in understanding the causes and consequences of spa-
tial heterogeneity for other ecological processes.

Ecosystem ecology focuses on the flow of energy and matter through organ-
isms and their surroundings, seeking to understand pools, fluxes, and reg-
ulating factors. From its initial descriptions of how different ecosystems
(e.g., forests, grasslands, lakes and streams) vary in structure and function,
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ecosystem ecology moved toward quite sophisticated analyses of function –

e.g., food web analyses, biogeochemistry, regulation of productivity, and so on
(Golley1993, Pace andGroffman1998, Chapin et al.2002).However, ecosystem
ecologyhas typically emphasizedunderstanding changes through timewithin
a single ecosystem rather than understanding variation across space (but see
Ryszkowski et al. 1999). Recent studies suggest that spatial variability in some
ecosystem processes may be of similar magnitude to temporal variation (e.g.,
Burrows et al. 2002, Turner et al. 2004), and efforts to explain and predict such
variation are increasing. The importance of transfers among patches, repre-
senting losses fromdonorecosystemsandsubsidies to recipientecosystems, for
the long-term sustainability of ecosystems is also now acknowledged explic-
itly (Naiman 1996, Carpenter et al. 1999, Chapin et al. 2002). Ecosystem studies
have elucidated the mechanisms underlying temporal dynamics of many pro-
cesses, but there has been comparatively little explicit treatment of spatial het-
erogeneity.

Progress at the interface of ecosystem and landscape ecology has been rel-
atively slow, despite a tradition in Eastern Europe (e.g., Ryszkowski and
Kedziora 1993, Ryszkowski et al. 1999) and stronger connections during the
early development of landscape ecology in North America (e.g., Risser et al.
1984, Gosz 1986). Integration of the understanding gained from ecosystem
and landscape ecology would likely enhance progress in both disciplines while
generating new insights into how landscapes function. Indeed, gaining a more
functionalunderstandingof landscapes is agoal sharedbyecosystemand land-
scape ecology. In this chapter, we identify key questions that could guide a
research agenda in spatial heterogeneity and ecosystem function, focusing on
four key research areas in which significant progress can be made: (1) under-
standing spatial heterogeneity of process rates, (2) land-use legacies, (3) lateral
fluxes in landscape mosaics, and (4) linking species and ecosystems.

4.2 Understanding the spatial heterogeneity of process rates

Understanding variability in the rates of key ecosystem processes is a
major focus of ecosystem ecology (Chapin et al. 2002). “Point processes” are
those that can be well represented by rates measured at a particular location in
space and time (Turner andChapin2005), and for theseprocesses, spatial varia-
tion among replicatemeasurements is often averaged to estimate ameanvalue.
For example, net primary production, net ecosystem production, denitrifica-
tion, and nitrogen mineralization are processes understood in many systems
using methods of analysis focused on spatially independent measurements.
Most ecosystem ecologists have focused on understanding the mean rates and
their temporal dynamics, in spite of the “noise” owing to spatial variation.
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However, the basic causes of spatial heterogeneity in point-process rates have
been well known for a long time (Jenny 1941). Heterogeneity is derived from
the abiotic template, including factors such as climate, topography, and sub-
strate. In addition, ecosystem process rates may vary with the biotic assem-
blage, disturbance events (including long-term legacies), and the activities of
humans (Chapin et al. 1996, Amundson and Jenny 1997). Despite the acknowl-
edgement of sources of spatial heterogeneity, there has been relatively little
empirical work designed to characterize the spatial variation of process rates,
the spatial scales over which variation is manifest, and the factors that control
such variation.

Recent studies have demonstrated that understanding temporal behavior
in mean rates may not be adequate; understanding spatial variance in pro-
cess rates may lead to new insights into the mechanisms governing ecosystem
dynamics andnewapproaches for predicting landscape function (vanDokkum
et al.2002, Beneditti-Cecchi2003). Understanding the locations anddirect and
indirect effects of the spatial and temporal variation in process rates across
landscapes could help reveal the relative importance of abiotic, biotic, and
human factors, which interact across potentially different scales of time and
space to both constrain and produce observed spatial pattern.

Studies linking disturbance, succession, and ecosystem processes in Yellow-
stone National Park illustrate how new insights and predictive power can be
gained from understanding variation in process rates (Turner et al. 1994, 1997,
2004). The 1988 Yellowstone fires created a landscape mosaic in which post-
fire lodgepole pine densities varied from 0 to >500000 stems ha−1. This spa-
tial heterogeneity in sapling density resulted largely from contingencies such
as the spatial variation in fire severity and in pre-fire serotiny within the stand,
rather than from the abiotic template. The tremendous variation in stand den-
sity in turn generated substantial heterogeneity in aboveground net primary
production (ANPP), which ranged from 1 to 15Mg ha−1 yr−1 ten years after the
fires (Turner et al. 2004). Analyses of how spatial variation in stand density and
growth rate (basal area increment, an index of ANPP) changes with stand age
revealed that effects of the initial post-fire mosaic persists for at least a century
(Kashian2002, Kashian et al.2005).Had onlymeanANPPbeen studied and the
spatial variability in ANPP ignored, it is likely that key factors influencing the
process would not have been identified.

Understanding the spatial patterns of ecosystem process rates is also funda-
mental to spatial extrapolationover large areas.Obtainingfieldmeasurements
of many ecosystem process rates across large areas is costly, and relatively few
spatially extensive empirical data sets exist. Remote sensingmethods andplat-
forms offer promise for some variables on land (Groffman and Turner 1995,
Martin and Aber 1997, Serrano et al. 2002), in wetlands (Urban et al. 1993), and
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in the open ocean (Karl 2002). Extrapolation of process rates across heteroge-
neous landscapes using empirical data or simulation models combined with
GIS data layers can be used to test hypotheses about the influence of indepen-
dent variables (Miller et al. 2004). Running et al. (1989) were among the first to
integratebiophysical dataobtained frommany sources andcombine thesedata
with an ecosystem simulation model to predict evapotranspiration, leaf-area
index andnet photosynthesis across a large landscape. Their estimates demon-
strated the power of these new integrative methods for producing spatially
explicit projections of variation in ecosystem processes and offered insights
into interactions among the controls on these processes (Running et al. 1989).
Empirical extrapolations combined with GIS data have been used to predict
rates of denitrification in southern Michigan (Groffman et al. 1992), net nitro-
gen mineralization within forests of the Midwestern Great Lakes region (Fan
et al. 1998), and aboveground net primary production in western Yellowstone
National Park (Hansen et al. 2000). Using spatial extrapolation in a hypothesis-
testing mode represents a powerful approach that could be used much more
widely in studies of spatial heterogeneity of point-process rates (Miller et al.
2004).

A first research priority for linking ecosystem and landscape ecology should
focus on understanding the spatial structure of variation in rates at multiple
scales, the factors that produce the spatial variation, and the consequences of
that variation for other ecological phenomena (Table 4.1). Methods from land-
scape ecology that consider both continuous and discrete representations of
spatial data should be integrated with studies of ecosystem processes to build
understanding of landscape function.

4.3 Influence of land-use legacies

Landscape ecology has made important contributions to our under-
standing of land-use change, including the natural and socioeconomic drivers
of land-use change, how it affects landscape structure, andhoworganismsmay
respond.Recent studieshavedocumented the importanceofhistorical landuse
in explaining contemporary ecosystems and landscapes (Foster et al. 2003). For
example, historical landuse influences current vegetation composition inNew
England forests (Currie and Nadelhoffer 2002, Foster 2002, Hall et al. 2002,
Eberhardt et al. 2003). Comparisons of formerly cultivated forests with refer-
ence forests in North America and Europe suggest that agricultural practices
can alter soil nutrient content and net nitrification rates for at least a century
after abandonment (Koerner et al. 1999, Compton and Boone 2000, Goodale
and Aber 2001, Dupouey et al. 2002, Jussy et al. 2002). Thus, historical patterns
of land use may be important drivers of the pattern and variability in current
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table 4 .1 . Suggested general questions that could guide research in each of four areas
in which progress is both needed and possible at the interface of landscape ecology and
ecosystem ecology

Topic area Research questions

Spatial heterogeneity of process rates � How spatially heterogeneous are ecosystem

process rates?
� What causes variation in ecosystem process

rates?
� What are the consequences of variation in

process rates on key ecological phenomena?

Influence of land-use legacies � What is the role of land-use legacies in

explaining the state of contemporary

ecosystems?
� How persistent are the effects of historical

land use?

Lateral fluxes in landscape mosaics � In landscape mosaics, how does spatial

configuration influence pools and lateral

fluxes of matter, energy and information?
� What are the relative roles of spatial

variation in initial conditions, local process

rates, and lateral connections for pools and

fluxes?
� How do effects of spatial heterogeneity

differ in one-way networks and mosaics

with multidirectional flows?

Linking species and ecosystems � How do trophic cascades influence

vegetation mosaics and rates of ecosystem

processes?
� How do the spatial movements of

organisms respond to and create spatial

heterogeneity in ecosystem process rates?

rates of ecosystem processes. Landscape ecologists have often conducted stud-
ies that quantify how landscapepatterns have changed through time; however,
in few cases have linkages been made between historical landscapes, their tra-
jectories, and the ecosystem processes.

Understanding the functional roleof land-use legacies couldbeaddressedby
combining the spatial analysis methods of landscape ecology with the process-
based approach of ecosystem ecology. Landscape ecology offers sophisticated
methods to quantify land-use patterns as they change through time. This
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information could be used to stratify field sampling locations by historical
land use and other appropriate variables, such as factors that relate to the abi-
otic template (e.g., elevation, slope, aspect, substrate). Pools and process rates
for key functional variables can be measured using traditional methods from
ecosystem ecology (e.g., Sala et al. 2000). Spatial extrapolation can again serve
as a means of testing the predictive power of current understanding, and also
of identifying locations in a landscape where some pool or flux of interest may
be especially high or low.

The use of new quantitative methods that consider the magnitude and scale
of spatial variability in ecosystem response variables may also yield important
new insights. Ecosystem processes are usually measured as continuous rather
than categorical variables, and methods derived from spatial statistics are ide-
ally suited for studying spatial variation in continuous data. Many of these
methods (e.g., semivariograms, correlograms, kriging) are similar to time-
series analyses that identify temporal periodicities in a data set. Spatial statis-
tics also provide guidance for efficient sampling schemes to assess the spa-
tial structure of continuous data (e.g., Burrows et al. 2002, Fraterrigo et al. in
review).

Understanding the influence of historical land-use patterns on vegetation
and soils in the SouthernAppalachianMountains illustrates howablendingof
landscape and ecosystem ecology can be used to understand the effects of his-
torical land use on landscape function. Spatial-pattern analyses of these land-
scapes have identified topographic positions and forest communities that have
been influencedby land-use changes to agreater or lesserdegree (e.g.,Wear and
Bolstad1998,Turner etal.2003).Historical landusehas stronglyaffectedmesic
forest communities and the occurrence and abundance of herbaceous plants
within these forests (Duffy and Meier 1992; Pearson et al. 1998, Mitchell et al.
2002, Turner et al. 2003). However, the long-term (>50yr) impacts of land use
on the spatial heterogeneity of soil nutrients are poorly understood. Fraterrigo
et al. (in review) examinedpatternsofnutrientheterogeneity in themineral soil
(0–15cm depth) of 13 southern Appalachian forest stands in western North
Carolina > 60yr after abandonment from pasture or timber harvest using a
cyclic sampling design derived from spatial statistics. Mean concentrations
rarely indicated an enduring effect of historical land use on nutrient pools, but
the spatialheterogeneityofnutrientpoolsdiffered substantiallywithpast land
use. Nutrient pools were most variable in reference stands, and this variabil-
ity was greatest at fine scales. In contrast, formerly pastured and logged stands
generally exhibited less variability, and soil nutrientswere relativelymore vari-
able at coarse spatial scales.Geostatistical analysis of fine-scale patterns further
revealed that spatial structure of soil cations was more closely linked to former
land use than observed for other soil nutrients. These results suggest that land
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use has persistent effects on the spatial heterogeneity of soil resources, which
may not be detectable when values are averaged across sites (Fraterrigo et al. in
review).These insightswereonlypossibleby combining the spatial approaches
of landscape ecology with the analytical methods of ecosystem ecology.

All landscapes exist and change in a framework of both natural and cultural
legacies. Historical natural disturbances such as fire, floods, and storms appear
to strongly influence contemporary systems, and analysis of cultural history of
contemporary landscapes has assumed greater importance in recent decades
(Foster et al. 2003). Yet studies of the impact of prior historical conditions of a
landscapeare relatively few.Landscapeecologycancontributeby linkinga tem-
porally extendedunderstandingof landscape spatialdynamicswith functional
measurements and the application of methods for analyzing continuous data.
Wesuggest a secondresearchpriority for linking landscapeandecosystemecol-
ogy directed toward understanding the relative importance of historical land-
scapeconditions forexplainingcontemporaryecosystemdynamics, alongwith
quantifying the persistence time of legacy effects on different ecosystem char-
acteristics and processes (Table 4.1).

4.4 Lateral fluxes in landscape mosaics

Lateral fluxes of matter, energy or information in spatially heteroge-
neous systems have been recognized as key foci within landscape ecology in
particular (Risser et al. 1984, Wiens et al. 1985, Turner et al. 1989, Shaver et al.
1991) and ecology in general (e.g., Reiners and Driese 2001). Broad conceptual
frameworks have considered the conditions under which spatial pattern, or
particular aspects of spatial pattern, should influence a lateral flux. For exam-
ple, Wiens et al. (1985) proposed a framework for considering fluxes across
boundaries that included the factors determining the location of boundaries
between patch types in a landscape mosaic, how boundaries affect ecologic-
al processes and the movement of materials over an area, and how imbalances
in these transfers in space canaffect landscape configuration.Weller etal. (1998)
explored how and why different riparian buffer configurations would vary in
their ability to intercept nutrient fluxes moving from a source ecosystem to
an aquatic system. Simulation models ranging from simple representations
(e.g., Gardner et al. 1989, Turner et al. 1989, Gardner et al. 1992) to complex,
process-based spatial models (e.g., Costanza et al. 1990, Sklar and Costanza
1990, Fitz et al. 1996) have also been employed to identify the aspects of spatial
configuration that could enhance or retard a lateral flux. However, a general
understanding of lateral fluxes in landscape mosaics has remained elusive,
despite promising conceptual frameworks developed for semi-arid systems
(e.g., Tongway and Ludwig 2001).
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Manyempirical studieshave takena comparative approachusing integrative
measurements, such as nutrient concentrations in aquatic ecosystems, as indi-
cators of how spatial heterogeneity influences the end result of lateral fluxes
(Correll et al. 1992, Hunsaker and Levine 1995). Most of these studies focus on
nutrients, such as nitrogen or phosphorus, related to eutrophication of sur-
face waters (e.g., Lowrance et al. 1984, Peterjohn and Correll 1984, Soranno
et al.1996, Jordan et al.1997, Bennett et al.1999). For example, in a recent study
of the US Mid-Atlantic region, landscape heterogeneity explained from 65–86

percent of the variation in nitrogen yields to streams (Jones et al. 2001). Vari-
ation in topography, the amount of impervious surfaces (e.g., pavement), and
the extent of agricultural and urban land uses have all been related to the con-
centration or loading of nutrients in waters. However, the particular aspects of
spatial heterogeneity that are significant or the spatial scales over which that
influence is most important have varied among studies (Gergel et al. 2002). The
lack of consistency among the comparative studies may arise, in part, from the
absence of mechanistic understanding about how materials actually flow hori-
zontally across heterogeneous landscapes.

The insights to be gained by focusing on the pathways of lateral fluxes are
exemplifiedby studies ofnitrogen retention inSycamoreCreek,Arizona focus-
ing on hydrologic flowpaths as functional integrators of spatial heterogeneity
in streams (Fisher and Welter 2005). Building upon a long history of research
on this desert stream, Fisher and Welter found that nitrogen retention of the
whole system could not be predicted simply by summing the rates observed
in system components; rather, the lateral transfers through spatially hetero-
geneous space had to be understood explicitly. In particular, the geometry of
different patches, such as sand bars, that influenced nitrogen processing was
critical to understanding nitrogen transport and retention.

Understandingsurface- andgroundwaterfluxesamonglakechains innorth-
ern Wisconsin has demonstrated the importance of lateral fluxes for lakes. A
lake’s landscapeposition isdescribedby itshydrologicpositionwithin the local
to regional flow system and the relative spatial placement of neighboring lakes
within a landscape (Webster et al.1996, Kratz et al.1997, Riera et al.2000).Many
hydrologic and biological properties of a lake are determined directly by land-
scapeposition,which reflects the relative contributionsof surface- andground-
water to the lake (Kratz et al. 1997, Soranno et al. 1999, Riera et al. 2000). Yet
across large areas (e.g., an entire lake district containing thousands of lakes),
surface- and groundwater connections among lakes are not well understood,
making itdifficult topredict the functionof individual lakes thathavenotbeen
intensively studied or of the integrated land–water mosaic.

Approaches fromlandscapeecology could contribute togeneralunderstand-
ing of the influence of spatial structure on stocks and fluxes across space. For
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example, measures of composition and configuration could be adapted to the
node-and-link structure of systems with lateral fluxes. Spatial models that
track themovement of organismsorpropagulesmight be considered for appli-
cability to matter and energy. Furthermore, only a small subset of the lateral
transfers of matter, energy, and information across landscape mosaics has been
studied. There is a tremendous opportunity to seek a general understanding
of lateral transfers in heterogeneous landscapes. We suggest that landscape
ecologists extend their frameworks and approaches for the reciprocal interac-
tions between pattern and process to the realm of fluxes of matter, energy, and
information. Priorities should focus on understanding the importance of spa-
tial configuration of fluxes, the relative importance of controlling factors, dif-
ferences between uni- and multidirectional flows, and the role of disturbance
(Table 4.1).

4.5 Linking species and ecosystems

Strengthening the ties between species and ecosystems, between pop-
ulation ecology and ecosystem ecology, has been recognized as an important
disciplinary bridge within ecology (e.g., Jones and Lawton 1995). Organisms
exist in heterogeneous space; they also use, transform, and transport matter
and energy. The importance of herbivores in redistributing nutrients across
landscapes has been recognized for some time. For example, grazers can
enhance mineral availability by increasing nutrient cycling in patches of their
waste (McNaughton et al.1988,Day andDetling1990,Holland et al.1992). The
cascading influence of herbivores on nutrient cycling through their modifica-
tion of plant community composition has also been recognized (e.g., McInnes
et al. 1992, Pastor et al. 1997). Recent studies have also identified the role of pis-
civores in transportingnutrients derived fromaquatic ecosystems to terrestrial
ecosystems through their foraging patterns (e.g., Willson et al. 1998, Helfield
andNaiman2002,Naiman et al.2002). Consideringhabitat use andmovement
patterns of species in a spatial context provides a wealth of opportunities to
enhance the linkage between species and ecosystems and again enhance func-
tional understanding of landscape mosaics.

Recent studies have identified the importance for vegetation patterns of spa-
tial heterogeneity in trophic cascades. For example, in thewestern US, extirpa-
tion of wolves in the twentieth century has been linked to increased ungulate
population sizes and high rates of herbivory on woody plants such as aspen
(Populus tremuloides) and willow (Salix spp.) (e.g., Romme et al. 1995, Ripple
and Larsen 2000, Berger et al. 2001, Beschta 2003). With predator restoration
in some North American national parks, numerical or behavioral responses
of ungulates to predators may lead to spatial heterogeneity in browsing and
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possibly the recovery of woody vegetation in some locations on the land-
scape (White et al. 1998, Ripple et al. 2001, National Research Council 2002,
Ripple and Beschta 2003). Such trophic cascades, when played out spatially
in dynamic landscapes, may have important implications for dynamics of the
vegetation mosaic. In tropical forest fragments, predator elimination has also
been associated with increased herbivore abundance and a severe reduction in
seedlings and saplings of canopy tree species (Terborgh et al. 2001).

Large herbivores are known to respond to spatial heterogeneity in the dis-
tribution of forage resources, but how important herbivores are in creating
those spatial patterns, how their influence may be scale dependent, and how
herbivore-induced patterns affect ecosystem processes remain unclear (Augus-
tine and Frank 2001). Herbivore-mediated changes in forest composition have
been shown to have important implications for patterns of nutrient cycling
(Pastor et al. 1998, 1999). In Isle Royale National Park, selective browsing
by moose (Alces alces) altered forest community composition which, in turn,
changed nutrient cycling rates in the soil. Augustine and Frank (2001) demon-
strated an influence of grazers on the distribution of soil N properties at every
spatial scale from individual plants to landscapes. These studies suggest that
much may be learned through integrative studies of population dynamics and
ecosystem processes.

Taking a landscape perspective in which the linkages between species and
ecosystems play out in space offers an unprecedented opportunity to enhance
the linkages between these traditionally separate sub-disciplines within ecol-
ogy. Populations both respond to and create heterogeneity in their environ-
ments; ecosystem processes, similarly, can both influence species’ patterns of
occurrence and behaviors and also respond to biota. Population/community
and ecosystem ecologists have historically asked quite different research ques-
tions. We suggest that the landscape ecology may provide the conceptual
framework through its emphasis on spatially explicit studies to integrate pop-
ulations and ecosystems much more effectively (Table 4.1).

4.6 Concluding comments

The successful integration of ecosystem ecology and landscape ecol-
ogy should produce a much more complete understanding of landscape func-
tion than has been developed to date. We have identified four areas in which
progress is both important and possible: understanding the causes and con-
sequences of spatial heterogeneity in ecosystem process rates; the influence
of land-use legacies on current ecosystem condition; horizontal flows of mat-
ter and energy in landscape mosaics; and the linkage between species and
ecosystems.



72 monica g . turner and jeffrey a . cardille

Achieving this integration will require progress in several areas. First, con-
tinuous and categorical conceptualizations of space must be used in much
more complimentary ways (Gustafson 1998). Discrete or patch-based repre-
sentations of spatial heterogeneity dominate in landscape ecology, yet ecosys-
tem ecology is often characterized by continuous variation in pools or fluxes.
Second, models and empirical studies both must be brought to bear on ques-
tions of how spatially heterogeneous landscapes both create and respond to
fluxes of matter, energy, and information. Studies that encompass broad spa-
tial extents remain logistically difficult; while this is stating the obvious, it is
important to recognize that studying ecosystem processes in large and het-
erogenous areas remains a nontrivial challenge. Third, landscape and ecosys-
tem ecologists should collaborate to explore new technologies that may facili-
tate spatially extensivemeasurements. Landscape-ecosystemecologists should
be proactive, describing the measurements that are highly desirable but not
yet technologically feasible at particular spatial–temporal scales. Fourth, col-
laborative research should be the rule rather than the exception. Most scien-
tists do not have the training in all aspects of the science required to address
the research questions we have identified – e.g., understanding spatial analy-
sis, landscape patterns, and their change through time; knowing all the field
and analytical procedures for ecosystem process measurements; spatial statis-
tics;microbial ecology; andmodeling.Effective collaborationsmayberequisite
for progress.

Understanding the implicationsof thedynamic landscapemosaic for ecosys-
tem processes remains a frontier in ecosystem and landscape ecology. The
potential benefits of integrating landscape and ecosystem ecology are impor-
tant for landscape management and ecological restoration. Maintenance of
ecosystem services in changing landscapes has been identified as a key priority
for resource management from local to global scales (e.g., Daly 1997, Naiman
andTurner2000, Amundson et al.2003, Loreau et al.2003, Schmitz et al.2003).
Clearly, achieving this goal requires a much greater functional understanding
of landscapes than is currently available. Landscape ecology offers tremendous
promise for providing a conceptual framework to understand reciprocal inter-
actions between spatial heterogeneity and ecosystem processes. We challenge
landscape ecologists to embrace the functional complexity of ecosystem ecol-
ogy, and ecosystem ecologists to similarly embrace the spatial complexity of
their systems.
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5

Landscape heterogeneity and
metapopulation dynamics

5.1 Introduction

Landscape ecologists became interested in how landscape structure
affects ecological responses during the mid-1980s (Risser et al. 1984). One eco-
logical response of interest to landscape ecologists is population dynamics.
In the mid-1980s, metapopulation ecology, the study of habitat spatial struc-
ture in population dynamics, had already been in existence for 14 years (Levins
1970). It was therefore natural for landscape ecologists with an interest in pop-
ulation dynamics to take the metapopulation ecology perspective as a starting
point in developing a landscape-scale population ecology.

In this chapter I review theoriginalmetapopulationmodel anddescribehow
the spatial structure incorporated inmetapopulationmodels has changedover
the past 35 years. I then discuss limitations of the classical metapopulation
framework for predicting population dynamics in heterogeneous landscapes,
and I argue for continued development of landscape population models.

5.2 Levins’ metapopulation model

Levins’ metapopulation model is arguably the first model of population
dynamics devised for the “study of population processes in a heterogeneous
environment” (Levins 1969). This model represents a population existing in T
patches (called “sites” by Levins.) The number of these patches that is occupied
by the species is N, and the rate of change of occupied patches is

dN

dt
= mN

(
1 −

N

T

)
− E N
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figure 5 .1
Three equally valid illustrations of spatial heterogeneity as represented in the
Levins (1969) model. All patches have the same colonization probability. (a) patches
are disjunct; (b) patches are contiguous (one patch); (c) patches are superimposed

where m is the rate of colonization of empty patches (called “migration” by
Levins) and E is the rate of extinction of occupied patches. The model is ana-
lyzed to give the number of occupied patches at equilibrium: T (1 − E/m).
Therefore, the number of occupied patches increases with increasing coloniza-
tion rate and with decreasing extinction rate. Note that the local populations
within patches are not represented in the model; there is no explicit considera-
tion of births, deaths, emigration, or immigration. Instead, patches are sim-
ply either occupied or not occupied, and the only two processes considered
are establishment of new populations (colonization) and extinction of exist-
ing populations. The original metapopulation model and its derivatives have
therefore also been called “patch occupancy” models (Higgins and Cain 2002,
Ovaskainen and Hanski 2003) or “presence–absence” models (Baguette and
Schtickzelle 2003) or “extinction–colonization” models (Fahrig 2002).

The Levins metapopulation model includes landscape spatial structure in
the sense that the habitat in the model is assumed to be divided into T pieces.
However, since the colonization and extinction rates are the same for all
patches, the model implicitly assumes that all patches are identical in every
sense.Ofparticular importance is that, since thepieces ofhabitat are all equally
likely to be colonized, the model does not include spatial relationships among
the habitat pieces. All pieces of habitat are assumed to be in the same loca-
tion relative to potential colonists. This is sometimes envisioned as a “disper-
sal pool” in which dispersing individuals mix and then are randomly redis-
tributed among the patches (Fig. 5.1). However, there is in fact nothing in
the model that requires the “patches” to be spatially disjunct from each other
(Fig. 5.1). In some ways the most realistic way of viewing the model is to think
of all the patches as being in the same location (Fig. 5.1). Therefore, although
the Levins model subdivides the environment into T pieces, there is no explicit
spatial structure to the habitat.
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The Levins model also assumes nothing about the quality or spatial struc-
ture of the portion of the landscape that is not habitat, and which is usu-
ally presumed to separate the patches of habitat, i.e., the “matrix.” The
implicit assumption is that thematrix is spatiallyhomogeneous.The literature
presents conflicting descriptions of the quality of the matrix in the metapop-
ulation model. Many authors liken the matrix to the ocean surrounding a
set of islands, where the islands are analogous to the habitat patches (e.g.,
Hanski 1994). This analogy implies that a dispersing organism that lands in
the matrix will inevitably “drown;” the matrix is therefore viewed as a hos-
tile environment and dispersal mortality is implicitly high. However, the orig-
inal metapopulation model and its derivatives do not actually include the pro-
cesses of emigration from patches or dispersal mortality. The potential effects
of these processes onpopulationdynamics arenot obtainable fromthemodels.
Therefore, it may be more accurate to describe the matrix in metapopulation
models as being “sufficiently benign to allowpassage of dispersingorganisms”
(Vandermeer and Carvajal 2001).

5.3 Spatially realistic metapopulation models

In the 35 years since Levins first introduced his model, hundreds of
papers have analyzed and expanded on its basic structure. Current metapop-
ulation models represent additional spatial structure beyond that represented
in the Levins model, in two important respects: patches are assumed to vary
in size and in location relative to each other. Metapopulation models that
include patch sizes and relative locations have been termed “spatially realistic”
metapopulation models (e.g., Wahlberg et al. 1996) and are reviewed in Hanski
and Ovaskainen (2003). There are many different possible ways of formulating
such models. As a particular example, in the metapopulation model presented
by Drechsler et al. (2003), colonization of an empty patch i is both: (1) a decreas-
ing function of the distances from i to the occupied patches in the metapop-
ulation, on the assumption that immigration increases with decreasing dis-
tance, and (2) an increasing function of the sizes of the occupied patches, on
the assumption that larger occupied patches produce more potential colonists
(Fig. 5.2). The probability of extinction of occupied patch i is assumed to be
both: (1) a decreasing function of the size of i, on the assumption that larger
occupied patches contain larger populations, which have lower extinction
probabilities, and (2) a decreasing function of the colonization probability of i,
on the assumption that colonization probability is correlated to immigration
rate, and increasing immigration rate should decrease extinction probability
through the rescue effect. Since colonization probability is a function of patch
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figure 5 .2
Illustration of the relationships between patch size and interpatch distance and
extinction and colonization probabilities in a “spatially realistic” metapopulation
model (Drechsler et al. 2003). The size of the × over each patch represents the
probability of location extinction when the patch is occupied. The thickness of the
arrow entering each patch represents the probability of colonization when the patch
is unoccupied. Patch A has the lowest colonization rate because of the large distance
to potentially occupied patches such as patch B. Patch A also has the highest
extinction probability because it is a small patch (with a presumed small
population) that is far from other occupied patches, thus reducing the chance of
rescue. Patch B also has a low colonization rate; however, it is higher than the
colonization rate of patch A, because patch B is close to patch C which is likely to be
occupied (due to its proximity to a large patch, B). Patch B has the lowest extinction
probability because it is very large (which implies a large population). Patch C has
the highest colonization probability because it is close to a patch that is highly likely
to be occupied and to produce many potential colonists because of its large size
(patch B). Patch C has an intermediate extinction probability; its extinction
probability based on only its patch size would be high, but it should be frequently
rescued from extinction by immigration from patch B

size and interpatch distance, extinction probability is therefore also a function
of patch size and interpatch distance in this model (Fig. 5.2).

Spatially realistic metapopulation models are typically analyzed for persist-
ence probability of the metapopulation. Persistence probability increases with
increasing colonization rates anddecreasingextinctionprobabilities, andwith
increasing variance in patch sizes and interpatch distances. Increasing vari-
ance in patch sizes implies some large patches which have very low proba-
bilities of extinction, and increasing variance in isolation values implies spa-
tial contagion of patches, i.e., groups of patches within the landscape that
are close together and therefore have high colonization rates (Ovaskainen
et al. 2002, Ovaskainen and Hanski 2003). These models can also be used to
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study questions about the role of individual patches or groups of patches in
overall population viability (e.g., Cabeza and Moilanen 2003, Ovaskainen and
Hanski 2003). Note that spatially realistic metapopulation models are patch-
occupancy models, i.e., they do not explicitly include population processes of
births, deaths, emigration, and immigration.

Spatially realisticmetapopulationmodels do includemore landscape spatial
heterogeneity than the Levins model, because they include variation among
patches in patch sizes and relative spatial locations. However, they do not
include any consideration of the quality or heterogeneity of the nonhabitat
(matrix) portion of the landscape. As in the Levins model, they implicitly
assume that the matrix is homogeneous and, since the models do not explic-
itly include emigration or dispersal mortality, they implicitly assume that the
matrix is benign, i.e., that dispersal mortality is not important to population
dynamics.

5.4 PVA tools based on the metapopulation framework

Most applied ecologists who deal with real-world conservation prob-
lems encounter metapopulation theory indirectly, through tools for popula-
tion viability analysis (PVA) such as “ALEX”, “RAMAS-space” and “VORTEX”
(reviewed inLindenmayer et al.1995). Thesemodels are different from the clas-
sical metapopulation theory discussed above in that the population dynam-
ics within patches are included in the models. This is an important distinc-
tion; several authors have shown that by collapsing thepopulationprocesses of
births, deaths, emigration, and immigration into the twoprocesses of local col-
onizations and extinctions, classical metapopulation models can lead to large
errors in prediction (Amaresekare and Nisbet 2001, Higgins and Cain 2002,
Léon-Cortés et al. 2003).

On the other hand, PVA metapopulation models do adhere to the assump-
tions of classical metapopulation theory in their representation of habitat and
landscape structure. Specifically, these models are habitat-patch based; each
local population is assumed to occur within a habitat patch. Similar to the spa-
tially realistic metapopulation models (above), patch sizes and interpatch dis-
tances are included in the PVA metapopulation models. Like other metapop-
ulation models, the PVA metapopulation tools do not model the movement of
organisms in thematrix, and theydonot includedispersalmortality.Thenum-
ber of individuals moving from patch A to patch B is a function of the size of
the population in patch A and the distance from A to B. There is no accounting
for individuals that emigrate from patches but fail to reach other patches, i.e.,
dispersal mortality. Therefore, the PVA metapopulation models, like classical
metapopulation theory, assume a benign, homogeneous matrix.
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5.5 Landscape population models

Like spatially realisticmetapopulationmodels andPVAmetapopulation
tools, landscape population models incorporate the effects of habitat-patch
size and relative patch locations on population dynamics. However, landscape
population models represent landscape structure in a more complete way than
do metapopulation models. While the metapopulation models consider only
thedistributionof habitat, landscapepopulationmodels explicitly include the
quality and pattern of the matrix. In landscape population models the loca-
tions of all individuals (or portions of populations) are simulated on the entire
landscape, including in the habitat and in the matrix (e.g., dispersing individ-
uals). Landscape population models can be either general in that they are not
meant to simulate a particular landscape or species (e.g., Fahrig 1998, Flather
andBevers2002), or theymaybedesigned to simulate the responseof aparticu-
lar species to landscape structure (e.g., Topping and Sunderland 1994, Henein
et al. 1998). Inclusion of the effects of matrix quality and heterogeneity on pop-
ulation dynamics can have important effects on model predictions. In fact,
landscape population models can produce very different model predictions
than one would get using a metapopulation model, as discussed in the follow-
ing two sections.

5.5.1 Matrix quality

As discussed above, metapopulation models do not explicitly include
the matrix. There is no effect of dispersal mortality on population persistence
in metapopulation models. This is an important omission; in reality not all
emigrants from a patch will successfully find a new patch; some proportion of
them will die. This means that emigration can reduce overall population per-
sistence because it adds to mortality. This mortality will be balanced to some
extent by the positive colonization and rescue effects of successful emigrants
(i.e., immigrants) onoverall populationpersistence.However,metapopulation
models only include the positive effects of immigration on population persist-
ence and neglect the possible negative effects of emigration, i.e., dispersal mor-
tality.

Landscape population models explicitly include emigration, dispersal mor-
tality, and immigration (Fig. 5.3). In these models, population persistence
is generally found to be a declining function of emigration rate, except at
low emigration rates (Fig. 5.4). At very low emigration rates, an increase in
emigration rate causes an increase in persistence, due to rescue and recolo-
nization of local populations. However, at higher emigration rates, further
increases in emigration rate result in decreasing persistence probability of the



84 lenore fahrig

f igure 5 .3
Illustration of the effect of matrix quality on immigration rate. Immigration is the
result of emigration minus dispersal mortality. The lower the matrix quality, the
higher the dispersal mortality. The net effect of an increase in emigration rate on
overall population persistence in the landscape depends on the balance between the
negative effect of dispersal mortality and the positive effects of immigration (i.e.,
colonization and rescue)
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f igure 5 .4
Relationship between emigration rate and log (population persistence time), based
on simulations using a landscape population model (Fahrig 1998). Note that the
location of the maximum and the steepness of the curve change with changing
model parameters (e.g., reproductive rate, disturbance probability)
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population due to the added dispersal mortality (Fahrig 1990, Casagrandi and
Gatto 1999).

The negative effect of emigration on population persistence in landscape
population models leads to conclusions that are opposite to those normally
drawn from a metapopulation analysis. For example, based on their landscape
population model of a rare butterfly species, León-Cortés et al. (2003) con-
cluded that “contrary to most metapopulation model predictions, system per-
sistence declined with increasing migration rate, suggesting that the mortal-
ity of migrating individuals in fragmented landscapes may pose significant
risks to system-wide persistence.” Similarly, Gibbs (1998) and Carr and Fahrig
(2001) found inempirical studies thatmoremobileamphibianspecies aremore
strongly negatively affected by human-caused landscape changes than are less
mobile species. Gibbs (2001) points out that this is in contrast to the “widely
held notion” that more dispersive species should perform better in human-
modified landscapes. This notion is taken fromthemetapopulationprediction
that higher colonization rates lead to higher population persistence, which
has been incorrectly interpreted to mean that increasing dispersal (emigra-
tion) always has a positive effect on population persistence. Landscape popula-
tion models, which explicitly include the matrix, do not lead to this erroneous
prediction.

Elsewhere I have also argued that the lack of explicit consideration of the
matrix in metapopulation models has led to an over-estimate of the effect of
habitat subdivision or fragmentation per se relative to the effect of habitat loss
on population persistence (Fahrig 2002). In metapopulation models habitat
loss reduces population persistence by an assumed reduction in colonization
or immigration rate with decreasing habitat amount. In landscape population
models, loss of habitat increases the proportion of the population that spends
time in thematrix,where reproduction isnotpossibleandwheremortality rate
is usually assumed to be higher than in breeding habitat. Habitat loss there-
fore decreases the overall reproduction rate and increases the overall mortal-
ity rate in landscape population models. I have argued that this imposes a con-
straint on thepotential for reducedhabitat fragmentation tomitigate effects of
habitat loss in landscape population models (Fahrig 2002).

In fact, the critical role of dispersal mortality in population persistence was
anticipated over 20 years ago in theoretical studies of the evolution of opti-
mal emigration rate, using evolutionary stable strategy (ESS) models (Comins
et al. 1980, Levin et al. 1984, Klinkhamer et al. 1987; Fig. 5.5). Optimal emi-
gration rate was shown to be a decreasing function of dispersal mortality rate.
Therefore, as matrix quality decreases (i.e., dispersal mortality rate increases),
the optimal emigration rate should decrease. This means that, in the face of
humanalterations to the landscape that reducematrixquality, suchasaddition
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Optimal dispersal rate as a function of disperser survival rate, based on an
evolutionary stable strategy (ESS) analysis of a stochastic spatially implicit patchy
population model with random local extinctions (Comins et al. 1980). The curve is
redrawn from Figure 5.4 in Comins et al., where local extinction probability was 0.1

of roads or pesticide-laden crop fields, species with low emigration rates are
more likely to persist than species with high emigration rates, despite the fact
that, in the short term, they will have lower rates of colonization of empty
patches. The negative effect of emigration is due to an overall increase in mor-
tality rate of thepopulation,which reduces overall population size.This reduc-
tion in population size eventually also reduces the probability of recoloniza-
tionof local extinctions, leading to adownward spiral to extinction (Venier and
Fahrig 1996).

5.5.2 Matrix heterogeneity

In addition to overall matrix quality (affecting dispersal mortality),
some landscape population models include different types of landcover in the
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matrix. Since metapopulation models (including spatially realistic metapop-
ulation models and PVA metapopulation tools) do not include the matrix,
they also do not include matrix heterogeneity. Does matrix heterogeneity
alter metapopulation predictions of population persistence? Theoretical work
has not yet directly addressed this question. However, simulation studies
(Gustafson and Gardner 1996, Tischendorf et al. 2003) have shown that patch
sizeand isolationaregoodpredictorsofpatch immigrationratesonlywhenthe
matrix is homogeneous. Bender andFahrig (2005) conducted spatially explicit
simulations and a field study of small mammal movement. They found that
when the matrix was homogeneous, patch size and isolation accounted for
up to 75 percent of the variation in patch immigration rate in the simula-
tion study, and for 61 percent of the variation in patch immigration rate in
the field study. However, when the matrix was heterogeneous, the amount
of variation explained by patch size and isolation dropped to as little as
35 percent in the simulation study and to 17 percent in the field study. In an
empirical study, Walker et al. (2003) found that patch sizes and interpatch dis-
tances did not adequately predict the distribution of a rock-dwelling rodent;
presence of movement barriers in the landscape (rivers) needed to be included
for the model to successfully predict distribution. Similarly, Cronin (2003)
found that interpatch movement of an insect parasitoid depended on the type
of matrix between the two patches. Therefore, metapopulation predictions,
which assume that patch colonization rates are a function of interpatch dis-
tances, are likely to be poor when the matrix is heterogeneous. A landscape
population model is needed in this situation.

5.5.3 When should population models include matrix quality
and heterogeneity?

The more spatial structure that is incorporated into population models,
the less feasible theyare toparameterize for real species.Therefore, it is import-
ant to delineate the situations in which information on landscape structure is
needed and when it is not needed. Due to the large potential effect of disper-
sal mortality on population persistence (Fahrig 2001), information on overall
matrix quality is almost certainly always necessary.

This leaves the question: when does the heterogeneity of the matrix (inde-
pendent of its average quality) affect population persistence? There are two sit-
uations in which matrix heterogeneity should matter. First, it seems obvious
that information on matrix heterogeneity will be needed if the risk of mortal-
ity differs among different types of cover in the matrix. For example, predators
may favour certain matrix-cover types, which will result in higher risk of mor-
tality for prey when they travel through them than when they travel through



88 lenore fahrig

f igure 5 .6
Illustration of the effect of matrix pattern relative to the habitat pattern,
on population size and persistence. Dispersal mortality is high in the
white matrix cover type and low in the grey matrix cover type. A and B have the
same average matrix quality (averaged over the landscape). However, the overall
population size and persistence probability is higher in A than in B because in
A most dispersing individuals (i.e., those from the large patches) encounter
high-quality matrix, whereas in B most dispersing individuals encounter
low-quality matrix. The latter situation results in a higher overall mortality rate
for the population

other cover types. In this situation the rate of movement between patches will
depend on the cover type(s) that separates them (Fig. 5.6).

The second situation in which matrix heterogeneity will affect population
persistence is when the species shows different affinities for different matrix
cover types. Landscape population models can incorporate this by using dif-
ferent boundary crossing probabilities for different cover types, such that the
probability of a disperser crossing into a benign cover type is high and out of
a benign cover type is low, relative to the same probabilities for a more risky
matrix-cover type. This type of movement behavior was included in the simu-
lationmodels ofTischendorf et al. (2003) andBender andFahrig (2005), and led
to a large predicted effect of matrix heterogeneity on interpatch movement. In
contrast,Goodwin andFahrig (2002) simulated a species that showeddifferent
movement behaviors within different matrix-cover types, but no difference in
mortality among the matrix-cover types and no differential boundary crossing
probabilities among matrix-cover types. In this model, matrix heterogeneity
had very little effect on interpatch movement.
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5.6 Conclusions

Levins’ model was an important development in population ecology
because it representeda transition fromaspatiallyhomogeneous toaheteroge-
neousrepresentationofhabitat.Major changes inmetapopulationmodelsover
the past 35 years include: (1) the development of spatially realistic metapopu-
lation models, which incorporate the effects of habitat patch sizes and relative
locations on extinction and colonization rates, and (2) the development of PVA
metapopulation toolswhich incorporate localpopulationdynamics intoa real-
istic metapopulation modeling framework.

These metapopulation models are useful in some situations. However, they
are likely to fail in situations where: (1) the landscape matrix is not benign,
i.e., dispersal mortality is potentially important to population dynamics, and
(2) the matrix is heterogeneous, resulting in low predictability of coloniza-
tion from habitat structure (i.e., patch sizes and locations) alone. For many
organisms, human alterations to the landscape (e.g., urban and agricultural
development) increase the probability of dispersal mortality, thus reducing
matrix quality. In addition, these alterations create a heterogeneous landscape
matrix fromtheperspectiveofdispersingorganisms.Therefore, theconditions
that compromise the predictive ability of metapopulation models are likely to
occur for species of conservation concern in human-dominated landscapes. In
these situations, further development of landscape population models will be
needed to improve predictions of the effects of landscape structure on popu-
lation dynamics. Application of landscape population models to species con-
servation problems will require collection of information that is not currently
available in the literature for most species, including rates of emigration from
habitat, andmovement rates andmortality rates in variousmatrix-cover types.

Acknowledgments

I thank members of the Landscape Ecology Laboratory at Carleton for
commentsonanddiscussionof anearlierdraft of this chapter.Twoanonymous
reviewersprovidedhelpful comments.Thisworkwassupportedby theNatural
Sciences and Engineering Research Council of Canada.

References

Amarasekare, P. and R.M. Nisbet. 2001. Spatial heterogeneity, source-sink dynamics, and the
local coexistence of competing species. American Naturalist 158, 572–84.

Baguette, M. and N. Schtickzelle. 2003. Local population dynamics are important to the
conservation of metapopulations in highly fragmented landscapes. Journal of Animal Ecology 40,
404–12.



90 lenore fahrig

Bender, D.J. and L. Fahrig. 2005. Matrix heterogeneity can obscure the relationship between
inter-patch movement and patch size and isolation. Ecology 86, 1023–33.

Cabeza, M. and A. Moilanen. 2003. Site-selection algorithms and habitat loss. Conservation Biology
17, 1402–13.

Carr, L.W. and L. Fahrig. 2001. Impact of road traffic on two amphibian species of differing
vagility. Conservation Biology 15, 1071–8.

Casagrandi, R. and M. Gatto. 1999. A mesoscale approach to extinction risk in fragmented
habitats. Nature 400, 560–2.

Comins, H.N., W.D. Hamilton, and R.M. May. 1980. Evolutionary stable dispersal strategies.
Journal of Theoretical Biology 82, 205–30.

Cronin, J.T. 2003. Matrix heterogeneity and host-parasitoid interactions in space. Ecology 84,
1506–16.

Drechsler, M., K. Frank, I. Hanski, R.B. O’Hara, and C. Wissel. 2003. Ranking metapopulation
extinction risk: from patterns in data to conservation management decisions. Ecological
Applications 13, 990–8.

Fahrig, L. 1990. Interacting effects of disturbance and dispersal on individual selection and
population stability. Comments on Theoretical Biology 1, 275–97.

Fahrig, L. 1998. When does fragmentation of breeding habitat affect population survival?
Ecological Modelling 105, 273–92.

Fahrig, L. 2001. How much habitat is enough? Biological Conservation 100, 65–74.
Fahrig, L. 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecological

Applications 12, 346–53.
Flather, C.H. and M. Bevers. 2002. Patchy reaction-diffusion and population abundance: the

relative importance of habitat amount and arrangement. American Naturalist 159, 40–56.
Gibbs, J.P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient.

Landscape Ecology 13, 263–8.
Gibbs, J.P. 2001. Demography versus habitat fragmentation as determinants of genetic variation

in wild populations. Biological Conservation 100, 15–20.
Goodwin, B.J. and L. Fahrig. 2002. How does landscape structure influence landscape

connectivity? Oikos 99, 552–70.
Gustafson, E.J. and R.H. Gardner. 1996. The effect of landscape heterogeneity on the probability

of patch colonization. Ecology 77, 94–107.
Hanski, I. 1994. Patch-occupancy dynamics in fragmented landscapes. Trends in Ecology and

Evolution 9, 131–5.
Hanksi, I. and O. Ovaskainen. 2003. Metapopulation theory for fragmented landscapes.

Theoretical Population Biology 64, 119–27.
Henein, K., J. Wegner, and G. Merriam. 1998. Population effects of landscape model

manipulation on two behaviourally different woodland small mammals. Oikos 81, 168–86.
Higgins, S.I. and M.L. Cain. 2002. Spatially realistic plant metapopulation models and the

colonization–competition trade-off. Journal of Ecology 90, 616–26.
Klinkhamer, P.G., T.J. de Jong, J.A.J. Metz, and J. Val. 1987. Life history tactics of annual

organisms: the joint effects of dispersal and delayed germination. Theoretical Population Biology
32, 127–56.
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6

Determining pattern–process relationships
in heterogeneous landscapes

6.1 Introduction

Landscapes are now being altered at unprecedented rates (Forman and
Alexander 1998), resulting in the loss and fragmentation of critical habitats
(Gardner et al. 1993), declines in species diversity (Quinn and Harrison 1988,
Gu et al. 2002), shifts in disturbance regimes (He et al. 2002, Timoney 2003),
and threats to the sustainability of many ecosystems (Grime 1998, Simberloff
1999). Because the ecological consequences of landscape change are difficult to
measure, especially at broad spatial and temporal scales, the quantification of
landscape pattern has often been used as an indicator of potential biotic effects
(e.g., Iverson et al. 1997, Wickham et al. 2000). It is hardly surprising, therefore,
that the development of methods to measure landscape pattern has become an
important endeavor in landscape ecology (see O’Neill et al. 1999 for a recent
review).

Numerous landscape metrics have been developed and applied over the last
15 years or so, but relatively few studies have been successful in using metrics
to establish pattern–process relationships at landscape scales. The first land-
scape metrics paper (Krummel et al. 1987) attempted to do this by present-
ing the hypothesis that the shape of small forest patches should be affected
by human activities while large patches should follow natural topographic
boundaries. The analytical results showed that this was the case, but causal
relationships were never experimentally confirmed. The prospect of this first
study stimulated the rapid development of additional indices (see O’Neill
et al. 1988, Haines-Young and Chopping 1996), with progress in this arena fre-
quently reviewed (e.g., Gustafson and Parker 1992, Riitters et al. 1996, Hargis
et al. 1998, Fauth et al. 2000, He et al. 2000, Tischendorf 2001) and computa-
tional methods codified (e.g., Gardner 1999, McGarigal et al. 2002). However,
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the confirmation that pattern metrics reflect the changes in ecosystem pro-
cesses as a result of landscape change has remained an elusive goal (but see
Tischendorf 2001, Ludwig et al. 2002).

The absence of rigorous guidelines for the application of landscape metrics
has raised additional concerns about their usefulness and validity (e.g., Fortin
et al. 2003, Li and Wu 2004, Wu 2004). These concerns include that the use of
multiple metrics to assess pattern change increases the probability of obtain-
ing falsepositives (type I errors); thatmetricswithnonmonotonic relationships
with pattern change are of limited usefulness and generality; and that the con-
fidence levels associated with many metrics are difficult or impossible to esti-
mate. In spite of these important issues, the results of landscape analyses using
questionable measures of pattern are now driving costly programs to mitigate
the effects of landscape change. Perhaps the most notable examples are the
widespread use of corridors to link critical habitat areas in an effort to reduce
extinction riskswithin fragmented landscapes (AndersonandDanielson1997,
Tewksbury et al. 2002).

In spite of the magnitude of efforts to increase the degree of habitat connec-
tivity, the effectiveness of corridors as a species conservation tool remains con-
troversial (Rosenberg et al. 1997, Beier and Noss 1998). The success of corridors
is directly dependent on their use by target species to disperse to and populate
otherwise unavailable patches of suitable habitat. Obtaining sufficient infor-
mation on dispersal is notoriously difficult, resulting in a long history of using
model simulations todefine those features of the landscapewhichmost impact
thedispersal success (e.g.,Murray1967,GustafsonandGardner1996,Tischen-
dorf et al. 1998).

The following analysis builds onpast simulationmethods to identify critical
relationships between the landscape structure (corridor pattern) and ecosys-
tem process (reestablishment of resident or invasion of exotic plant species),
illustrating how pitfalls in analysis may be avoided. The subsequent results are
both simple and robust, allowing a series of issues to be considered. Among
these are the conditions under which corridors interact with the native biota
to promote the reestablishment of endemics following disturbances or, alter-
natively, allow the invasion of exotics. The results of a factorial set of simula-
tions are also used to offer recommendations for the general use of metrics to
relate pattern and process within heterogeneous landscapes.

6.2 Methods

6.2.1 Model overview

The model used for simulating pattern–process within heterogeneous
landscapes is CAPS, an individual based, spatially explicit model of plant
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competition, establishment, anddispersal (Plotnick andGardner2002). Plants
simulated by CAPS may differ in life history, relative fecundity, habitat prefer-
ences,propertiesofpropagule spread, andability to compete for space inwhich
to germinate andbecome established. The landscape is described as a gridwith
each grid site defined by 1 of n different habitat types. Maps may be randomly
generated within CAPS or imported from landscape data. Competitive success
which results in establishment and reproduction is simulated via a seed lottery
with success randomly determined from the abundance of propagules at that
site and the suitability of the local habitat to support that species (see details
below).

CAPS is written and compiled in Lahey Fortran 95 to be executed under
the Linux operating system. Full details regarding model formulation may be
found in Plotnick and Gardner (2002) and program source code and executa-
bles may be downloaded from http://scout.al.umces.edu/∼gardner.

6.2.2 Corridor generation

Corridors were randomly generated in CAPS using a fractal algorithm
(Gardner 1999) to produce landscapes with a central, narrow habitat corridor
(Fig. 6.1). Two parameters control the character of these landscapes: H sets
the spatial dependence (or “roughness”) of adjacent points (see Plotnick and
Prestegaard 1993 for a full description of the role of H in the generation of frac-
talmaps), and p controls the amount of eachhabitat type. Resulting landscapes
were composed of 512 rows and columns (262144 lattice sites) with each site
representing a 2m×2m habitat site (map size is 1024 by 1024m or 104.9 ha).
Differences in habitat types are considered as an abstract representation of the
numerous biotic and abiotic factors (e.g., differences in soil type, moisture, ele-
vation, light availability, etc.) thatmaynegatively orpositively affect thegermi-
nation, survivorship, and reproduction of individual species.

6.2.3 Dispersal

CAPS allows a variety of probability distributions of propagule disper-
sal to be used in the dispersal kernel. The probability density functions (p.d.f.)
for dispersal are uniquely specified for each species, and may be selected from
either the uniform, normal, exponential, or Cauchy distributions (Fig. 6.2).
The selected p.d.f. produces sets of values representing the probability, d(i,r),
of a viable seed released from a parental site, i, reaching a map site that is a
distance r away. The p.d.f.s for the uniform, normal and exponential are more
fully discussed in Plotnick and Gardner (2002), while the Cauchy distribu-
tion (Johnson and Kotz 1970) is a recent addition to the CAPS program. The
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figure 6 .1
Example of two fractal maps (with expanded detail) used to generate random
corridors. Both gridded maps have 256 rows and columns with p (the fraction of the
map that is corridor) of 0.02. A: H=0.3; B: H=0.7 (see text for explanation of map
generation procedure)

location parameter, θ , for the Cauchy was set to 0.0, allowing the Cauchy p.d.f.
to be defined by the scale parameter, λ. Thus, the Cauchy p.d.f.=1/πλ/(λ2 r2),
where r is the distance over which dispersal occurs.

Simulation efficiency was improved by setting finite limits on dispersal.
For each distribution, a maximum dispersal distance, r′, was defined (see the
evaluation of this constraint discussed below) limiting dispersal to the area



96 robert h. gardner et al .

A

0.5

0.4

0.3

0.2

0.1

0.0

0 5 10

Distance, r

P
ro

ba
bi

li
ty

 [
d(

i, 
r)

]

15 20 25

Cauchy
Exponential
Normal

B
25

20

15

10

5

0
0 10 20 30 40

Years

V
 (

m
yr

−
1 )

50 60 70 80

Cauchy
Exponential
Normal

f igure 6 .2
Comparison of the probability of movement (A) and the rate of movement (B) for the
normal, exponential, and Cauchy probability distributions



Determining pattern–process relationships in heterogeneous landscapes 97

around the parental site defined by the radius r′. The total number of sites, S,
over which dispersal may occur is determined by r′: S = 5, when r′ =1 (i.e., near-
est neighbor dispersal), while S=441 when r′ =12. All probabilities within the
circle defined by the radius r′ are summed and normalized so that the dispersal
probabilities from a single site sums to 1.0. Our comparison of these discrete
formulations with the equivalent continuous distributions used in a discrete
time, spatially continuous integrodifference simulation of dispersal (Hart and
Gardner1997)has shownthat the twomethodsarenumericallyequivalentpro-
vided that d(i,r) is small when r= r′.

6.2.4 Competition

Competition for establishment, growth, and reproduction is simulated
annually at each unoccupied site via a seed lottery (Lavorel et al. 1994, Plotnick
and Gardner 2002). Sites are unoccupied if plant propagules have yet to reach
that location, if the resident individual has died (this occurs yearly for annual
plants), or if the habitat type is unsuitable for occupation (i.e., the optima, Oij,
for habitat j is 0.0 for all species, i). The seed lottery is performed as a two-step
process:

1. The probability of viable seeds of species i landing on an unoccupied site
of habitat type j is calculated and weighted by the suitability of that site
for seed germination. This probability, Tij, is estimated as:

Ti j = Oi j

⎡
⎣ z∑

1

d (i, r )Ri

⎤
⎦

where Ri is the relative fecundity of species i, z is the number of grid sites
within the neighborhood defined by the radius r, and d is the dispersal
kernel for species i. The suitability of each habitat type j for each species
is described by the habitat optima matrix, Oij: if Oij = 0.0 then Tij = 0.0
because species i cannot survive within habitat type j; if 0.0 < Oij < 1.0
then the probability of success, Tij, is scaled according to the relative
inhospitality of habitat j; if Oij ≥ 1.0 then the probability of successful
establishment, Tij, is proportionately increased for species i.

2. Finally, the values of Tij are normalized by the sum across all species
present so that �Tij equals 1.0 for the site being considered. These dis-
tanceandhabitatweightedprobabilities are thenused in the seed lottery
to randomly select the species that will establish at that site.

An average, nonspatial measure of competitive ability of each species within
each habitat type may be estimated by: αij = Oij Rj, the product of the habitat
optima and the relative fecundity. Calculation of αij ignores spatial effects
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considered by Tij by assuming that seeds of all species will reach all unoccu-
pied sites. For competition between two species, the ratio of the αijs provides a
mean-field estimation of expected success in seed lottery competition.

6.2.5 Simulating invasion

Simulations of species invasion along corridors were performed either
with or without a resident species present. All species were annual plants, with
simulated differences in species achieved by varying the relative fecundity, R,
the p.d.f used for dispersal, and the range of habitats (niche width or habitat
optima,Oij) thatmay be occupied.Maps were initialized by placing the invader
along the east and west edges of the map, while residents, if simulated, were
placed on all other map sites. The rate of movement of invaders, v, was mea-
sured as the maximum distance moved, c, per time interval, t. Thus, v = c / t,
where t is number of years simulated.Theuse of themaximumdistancemoved
has two advantages: (1) extensive calculations of mean squared distances (see
Turchin 1998) are unnecessary because the direction of movement is known,
(2) c can be estimated for all distributions – even for fat-tailed distributions
which may lack finite moments (Clark et al. 2001), and (3) this statistic allows
asymptotic rates of spread tobeunambiguously estimated (seeFig.6.3ofClark
et al. 2001). The initial conditions of all simulations produce a concentration
of invaders along the east and west edges of the map, biasing initial estimates
of v. Therefore the most reliable averages for v were obtained over the interval
t = 30–35 years.

Four types of simulations were performed to evaluate model assumptions
and determine the relative effects of landscape and biotic attributes on species
invasions within habitat corridors. These simulations were: (1) an initial series
to evaluate theperformance of alternativedispersal kernelswithin latticemod-
els, (2) a set of simulationswithfixedspecies characteristicsbutvariation in cor-
ridor width and degree of continuity, (3) a set of simulations of invasion with
competition within homogeneous landscapes, and (4) a factorial set of simula-
tions that systematically varied species characteristics, competition, and land-
scape structure to determine the relative importance of each set of factors in
the invasion process. All simulations were run for 300 time steps (years), or
until the invading species reached the center of the map. The initial landscape
patterns and the final species distributions were analyzed with RULE (Gardner
1999).

6.2.5.1 Truncation effects for different dispersal kernels
The exponential distribution has frequently been used for modeling passive
dispersal (Okubo and Levin 1989, Turchin 1998) and has been the foundation
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upon which diffusive models are based (i.e., Skellam 1951, Okubo 1980).
However, there are compelling arguments for using distributions whose
extreme values do not decline exponentially with distance. These distribu-
tions, often termed “fat-tailed,” are distinguished by the formation of new
colonies at the extreme limits ofdispersal (Clark et al.1999,Wallinga et al.2002)
and result in higher rates of population expansion than exponential or normal
distributions. Although seed dispersal data are rarely sufficient to unambigu-
ously identify differences in the tails of the distribution (Wallinga et al. 2002),
it is important to evaluate the effect of different p.d.f.s (including truncation
effects) on the simulation of dispersal in CAPS.

Alternative forms of the dispersal kernel were simulated within a landscape
composed of a single habitat type (p=1.0), or with maps containing a linear
corridor 4m wide (2 grid sites) that connected the east and west edges of the
map. The habitat optima and relative fecundity of the invading species were
held constant at Oij = 2.0, R=2.0 and resident species were not simulated. The
dispersal kernels were either the Cauchy, normal, or exponential distributions
with the controlling parameter of each set to 1.0 and the p.d.f.s truncated at
either 12 or 24m (total of six sets of simulations). Invaders were initialized on
the edge of the map and the rate of movement, v, measured until the invader
reached the center of the map.

6.2.5.2 Structured landscapes
A second set of simulations was performed to evaluate the effect of corridor
structure (i.e., variation in corridor width or gaps) on the rate of dispersal of
an invading species. Two types of structured maps were created: (1) maps with
a single line of habitat from the east to the west edge of the map (i.e., parallel to
the directions of invasion) with the width of the lines set at 1, 2 or 4 map sites
(2–8m), and (2)mapswithmultiple vertical linesofhabitat fromnorth to south
(i.e., perpendicular to the direction of invasion) with distances between lines of
1, 2, or 4 map sites (2–8m). Resident species were not simulated, the p.d.f. of
the invader was set to the exponential distribution (r′ =12m,2=1), andOij con-
stant at 2.0. For each map type a value of R was set at 1.0, 2.0 or 4.0 for a total of
18 sets of simulations. The invading species was initialized on the map edges
and the rate of invasion, v, was measured until the center of the map was colo-
nized. An average rate of invasion was estimated from the values of v recorded
at t=30 to 35.

6.2.5.3 Effect of competition
The effect of competition on invasion was evaluated with a series of simula-
tions within a homogeneous landscape. The relative fecundity of residents and
invaders was set at R=2.0, maps were of a single habitat type (p=1.0), and
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invaderswere initializedon the east andwest edgesof themaps.The rate ofdis-
persal, v, was measured over a 300-year period, or until the invader reached the
center of the map. The competitive abilities, αij, of each species was varied by
altering only the habitat optima, Oij, of the resident species to produce a series
of simulationswith the ratioof competitive abilities (resident/invader) ranging
from 0.25 to 10.0.

6.2.5.4 Landscape factorial
The final set of simulations involved the examination of a wide range of land-
scape structures, life-history characteristics of the invading species, and com-
petitive effects on the invasion process. The fractal map algorithm of RULE
(Gardner 1999) was used to generate ten replicates of nine different landscapes
types (a totalof90maps),with landscape typesdiffering in thevalueofH (either
0.3, 0.5, or 0.7; Fig. 6.1) and the fraction of the map occupied by the corridor,
p (either 0.005, 0.01, or 0.02). A buffer habitat surrounding the corridor was
held constant at p=0.02 for all simulations. The remainingportionof themap
was a third habitat type that could be occupied by a resident species, but would
not support the invader (i.e., O13 = 0.0). These maps were designed to repre-
sent a broad range of corridor types from highly diffuse to highly concentrated
(Fig. 6.1).

The invading specieswas an annual plantwithfixeddispersal characteristics
(p.d.f. = exponential, 2 = 1.0, r′ = 6.0), but variable levels of relative fecundity
(R = 1.0, 2.0, or 4.0). Because dispersal success is a function of the dispersal ker-
nel and fecundity (Clark and Ji 1995, Higgins et al. 1996), varying just fecun-
dity was sufficient for our purposes. But in reality, both the dispersal kernel
and fecundity may be expected to vary. The niche width of invaders, defined by
the values of Oij for each of the three habitat types, was either narrow (Oij =2.0
for the corridor, but 0.0 elsewhere) or broad (Oij =2.0 for the corridor, 1.0 for
the buffer, and 0.0 elsewhere). Invasion with competition was also simulated
by initializing the map with a resident species with R=2 and Oij =0.0 for the
corridor, but Oij =1.0 elsewhere. The full factorial set of conditions resulted in
a total of 810 simulations being performed.

6.3 Results

6.3.1 Truncation effects for different dispersal kernels

The comparison of truncation effects for three p.d.f.s is shown in
Table 6.1. Other species characteristics were held constant (Oij = 2.0, R = 2.0)
and dispersal was observed within maps composed of either a single habitat
type (A) or a corridor of suitable habitat constrained to a 4m-wide region (C4).
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table 6 .1 . Comparison of truncation effects for three probability
distribution functions (p.d.f.). The probability, d(i,r), and rate of dispersal, v, are
shown when the p.d.f. tails were truncated at the maximum range, r′, of 12 or
24m

r′=12 r′=24

p.d.f Map typea d(i,r) v d(i,r) v

Normal A 0.22e-6 5.42 0.13e-27 5.47

C4 0.22e-6 4.08 0.13e-27 4.08

Exponential A 0.39e-3 7.25 0.94e-6 8.87

C4 0.39e-3 4.59 0.94e-6 5.07

Cauchy A 0.23e-2 8.94 0.44e-3 17.39

C4 0.23e-2 6.10 0.44e-3 8.77

a All maps were 512 rows and columns with a single habitat type (A) or a 4m

corridor (C4) connecting the east and west edges of the map.

The effect of truncation of the p.d.f.s was most noticeable for the Cauchy dis-
tribution, causing a 50 percent reduction in the rate of invasion when r′ was
reduced from 24 to 12 m (Table 6.1). Even though the values of d(i,r) at r′ were
always small, the fatter-tails of the Cauchy distribution (Fig. 6.2a) resulted in
dispersal rates that were considerably larger than either the normal or expo-
nential distributions (Table 6.1).

Truncationeffects arebarelynoticeable for thenormaldistribution,butmea-
surable for the exponential distributions in the solid (A) maps (Table 6.1).
Reductions in the rate of dispersal due to the confines of the corridors were
evident for all p.d.f.s, and considerably larger than those due to truncation of
the p.d.f.s. The fatter-tails of the Cauchy distribution resulted in a larger num-
ber of propagules lost from the corridors, producing a 50 percent reduction in
v when comparing results in the unconstrained maps (A) to those within the
4m corridor when r′ =24m (Table 6.1). The effect of the corridor on disper-
sal was small but also evident for the normal distribution. The lower proba-
bilities in the tails of the normal distribution (Fig. 6.2a) resulted in no appre-
ciable changes in v due to truncation effects (Table 6.1). The exponential case
showed an intermediate corridor effect with v reduced from 8.9 myr−1 in the
solid map to 5.1 myr−1 within corridors when r′ =24m (Table 6.1). Because the
following simulations considered the variation in a large number of species
and landscape parameters, the dispersal kernel of the invading species was
fixed to the exponential distribution (λ = 1.0, r′ =12m) for all subsequent
simulations.
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table 6 .2 . The effect of corridor width and dispersal barriers
on the rate of dispersal, v, for species differing in relative fecundity, R

Dispersal case R = 1.0 R = 2.0 R = 4.0

Solid maps (A) 7.21 7.31 8.25

Corridor width:

2m 1.77 3.28 4.97

4m 3.36 5.17 6.24

8m 4.65 5.95 7.21

Dispersal barriers:

2m 4.33 5.81 7.01

4m 3.24 4.69 6.02

8m 1.91 3.41 5.22

6.3.2 Effect of corridor width and gaps

Calculation of v within the solid map (A) provided an estimate of the
maximum possible dispersal rate of 8.25 myr−1 when R=4.0 (Table 6.2). Dif-
ferences due to variation in R were small, with an ∼13 percent increase in v for
a four-fold increase in R. When dispersal was constrained by narrow, 2m corri-
dors, with the highest level of fecundity (R=4.0), v was 40 percent slower then
the solid (A) maps. Increasing corridor width resulted in proportionally fewer
propagules dispersed into the nonhabitat areas surrounding the corridor and,
therefore, an increase in v. The rate of invasion inan8m-wide corridorwasonly
∼13 percent less than that of the A map when R=4.0 (Table 6.2).

Low fecundity and narrow corridors (R = 1.0, width=2m, Table 6.2) had a
nonadditive effect ondispersal,with v increased∼62percent from2 to4m,and
∼64percentwhenR increased from1.0 to4.0. If these effectswere independent
and additive, then v would be greater than 9.0 myr−1; a rate greater than that
observed for A maps (Table 6.2). This lack of additivity is probably due to the
changing proportion of seeds falling into adjacent habitat as corridor width
increases.

The results of the corridor gap simulations show that even the narrowest
(2m) gaps cause a decrease in dispersal rates (e.g., v reduced from 7.21 to
4.33 myr−1 when R=1.0, Table 6.2). The rate of invasion was very slow
(1.91 myr−1) when R=1.0 and the width of the barrier=8m. However, barrier
effectswerediminished asR increased (Table6.2). The truncationof thedisper-
sal kernel at 12m determined the maximum barrier that could be crossed.
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Changes in the invasion rate, v (myr−1), as a result of increasing levels of competition
from a resident species

6.3.3 Effect of competition on invasion

Systematic variation in the habitat optima of the resident species
(Or) allowed the competitive ability of the resident to be varied (e.g., αi/αr,
Fig. 6.3). The rate of invasion, v, showed a threshold response to competition
with a resident: v approached the maximum observed (7.31 myr−1, Table 6.2)
when the resident species was a relatively poor competitor (αi/αr =10.0); but
declined rapidly as the relative competitive ability of the resident increased
(Fig. 6.3). When the two species were equal competitors (αi/αr =1.0), v was
reduced to ∼ 2.0 myr−1; and when the resident species was the superior com-
petitor (αr/αi =0.1), v was barely measurable (<0.05 myr−1, Fig. 6.3).

6.3.4 Fractal maps factorial

The corridorsproducedby the fractalmapgenerator vary as a functionof
p (the fraction of the map occupied by the corridor) and H (the parameter con-
trolling the spatial dependence or “roughness” of corridor habitat, Fig. 6.1).
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Changes in the mean number of habitat patches, M(c), and average patch size, S(c),
within the randomly generated corridors as a function of p, the fraction of the map
occupied by the corridor, and H, the spatial dependence of map habitat. Error bars
represent one standard deviation above the mean.

The number and size of corridor patches were analyzed by RULE using the
next-nearest neighbor criterion for patch identification (Gardner 1999). The
results showed that p and H directly affected the average patch size within
the corridors, S(c), with the largest patches occurring when p=0.02 and H=0.7
(Fig.6.4). The total number of patches,M(c),was inversely related topatch size,
with the greatest degree of fragmentation of corridor habitat occurring when
p=0.005 and H=0.3 (Fig. 6.4).
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table 6 .3 . The adjusted mean values estimated by SAS general
linear model (Table 6.4)

Independent

Variablea Level v S

H 0.3 0.73 ∼0.0

0.5 2.52 0.52

0.7 4.08 1.14

C Without 1.53 0.66

With 0.92 0.44

N Wide 3.32 0.89

Narrow 1.67 0.21

R 1.0 1.42 0.46

2.0 2.48 0.56

4.0 3.44 0.63

p 0.005 1.44 0.32

0.01 2.37 0.47

0.02 3.53 0.87

a H and p control the degree of map fragmentation and amount of habi-

tat within the corridor, respectively; N defines the niche width (narrow

or broad) of the invader; C indicates the presence or absence of competi-

tion; and R indicates the level of fecundity of the invader.

The adjustedmean rate of invasion, v, and the averagepatch size occupiedby
the invadingspecies (analyzedatyear300) arepresented inTable6.3.Thegreat-
est effect on vwasdue toH, theparameter controllingmaproughness (Fig.6.1):
v ranged from a low of 0.73 myr−1 when H=0.3 to 4.08 myr−1 at H=0.7. Rel-
ative fecundity of the invader, R, and the proportion of the map that was corri-
dor habitat, p, also had a positive effect on v (Table 6.3); while the presence of a
competitor reduced v by ∼40 percent and increasing niche width changed the
average invasion rate by ∼50 percent.

The average patch size, S, occupied by the invading species (analyzed in year
300) was correlated with the invasion rate (r=0.765). Patch sizes of the invader
were largest when H, p, and R were highest, the species niche was widest, and
competitors were absent (Table 6.3). Simple correlation coefficients – which
measure linear relationships uncorrected for other covariates – showed weak
overall trends with R and p, but a strong effect due to H (r=0.65).

The analysis of variance of v and S (Table 6.4) showed that landscape pat-
tern, species characteristics, andthedegreeof competitionaccounted forahigh
degree of the total variation in these response variables (R2 =84.3 and 73.7,
respectively, Table 6.4). The variance terms for the ANOVA were estimated by
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table 6 .4 . The relative sum of squaresa for the rate of movement (v) and the
mean cluster size (S) of the invading plant at year 300 of the simulation

v S

Sourceb df I III I III

H 2 42.3 6.8 41.6 1.6

p 1 16.3 16.3 10.1 10.1

H p 2 0.9 0.1 6.1 6.1

N 1 4.3 8.9 13.5 14.6

C 1 5.7 5.7 1.6 1.6

R 1 14.8 14.8 0.7 0.7

R2 – 84.3 73.7

a The relative sum of squares are either the type I (uncorrected) or type III

(the partial sum of squares) divided by the corrected total sum of squares and

expressed as a percent. Values estimated by SAS (2001) generalized linear model

procedure.
b H and p control the degree of map fragmentation and amount of habitat

within the corridor, respectively; N defines the niche width (narrow or broad)

of the invader; C indicates the presence or absence of competition; and R indi-

cates the level of fecundity (1.0 or 2.0) of the invader. R2 is the total rela-

tive sum of squares for the general linear model. All effects are significant at

P < 0.0001. See text for additional details regarding these simulations.

the SAS generalized linear model (SAS 2001), with the relative uncorrected
(type I) sum of squares and relative partial sum of squares (type III) reported
in Table 6.4. The difference between these two sums of squares is an indication
of the colinearity found when analyzing complex phonemena. H accounts for
42.3 and41.6percent of the variance for v and S, respectively,when it is thefirst
variable in the model (type I, Table 6.4), but drops to 6.8 and 1.6 percent (type
III, Table 6.4) when corrected for all other effects. The relative importance of
the independent variables on v, as measured by the partial sum of squares, was
greatest for p and least for C ( ranking: p > R > N > H > C, with all effects signif-
icant). Interactions between H and p were small but significant, while interac-
tions among other variables were not statistically significant.

Similar results were obtained for S, except that the most important parame-
ter affecting themeancluster sizewasN, thenichewidthof the invader.Awider
niche (i.e., the ability to germinate and establish in multiple habitat types)
allowsmorehabitat tobeoccupied and, therefore, largerfinal cluster sizes. The
parameter affecting competition, C, map roughness, H, and fecundity of the
invader, R, had the least important effect on S. Examination of the correlations
among predicted variables showed that the average patch size and the total
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table 6 .5 . This ANOVA table shows the relationship between four landscape
descriptorsa and the rate of invasion (v) and mean cluster size (S) of invading
species after 300 years

v S

Sourceb df I III I III

H 2 42.3 0.5 41.6 0.1

p 1 16.3 2.7 10.1 0.7

H p 2 0.9 <0.1 6.1 1.4

S(c) 1 2.8 2.2 3.7 3.7

M(c) 1 1.7 1.7 <0.1 <0.1

R2 – 63.9 61.6

a The relative sum of squares are either the type I (uncorrected) or type III

(the partial sum of squares) divided by the corrected total sum of squares and

expressed as a percent. Values estimated by SAS (2001) generalized linear model

procedure. All effects > 0.1 are significant at p < 0.01.
b H and p control thedegree ofmap fragmentation andamount of habitatwithin

the corridor, respectively; S(c) is the average patch size of available corridor habi-

tat; M(c) is the total number of habitat patches within the corridor estimated by

RULE (Gardner 1999). R2 is the total relative sum of squares for the general lin-

ear model. All effects are significant at P < 0.0001. See text for additional details

regarding these simulations.

number of patches occupied by the invader were inversely related (r=−0.732)
while the v and S were positively correlated (r=0.765).

The role of landscape pattern on invasion was further examined by includ-
ing other landscape metrics in the analysis of v and S (Table 6.5). Simple cor-
relations showed that S(c) (average patch size) was related to v (r=0.765) and
S (r=0.767); while M(c) (total number of patches) were inversely related to v
(r=−0.620) but directly related to S (r=0.441). The partial sum of squares
accounts for the colinearity among landscape metrics, showing a drop among
all responses to <4 percent. Although colinearity may always be expected
among landscape metrics (Riitters et al. 1995), their presence makes the deter-
mination of cause–effect relationships problematic. For instance, if we drop H
and p from the ANOVA then S(c) and M(c) alone explain 57.2 and 2.2 percent of
the variance in v, respectively.

6.4 Conclusions and recommendations

Dispersal is a critical factor that may ensure population persistence at
landscape scales even though local extinction eventsperiodically occur (Hanski
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and Gilpin 1991, Hanski and Simberloff 1997). The extensive changes in
landscape pattern that are being experienced in many areas (Malhi et al. 2002,
Lambin et al. 2003, Parmenter et al. 2003) often create a matrix that will not
support the successful dispersal of many organisms (Goodwin and Fahrig
2002). Under these circumstances corridors of suitable habitat may provide
a link through which dispersal may continue to occur (Gonzalez et al. 1998).
Although there is general agreement that maintaining connectance between
populations via dispersal is critical, the effectiveness of corridors must be eval-
uated for each species and each landscape configuration. The lack of empirical
evidence verifying the effectiveness of corridors within many landscapes has
raised doubts about their general effectiveness (van Dorp et al. 1997, Tikka et al.
2001, Tewksbury et al. 2002).

Theoretical studies are considerably easier to perform, and support the
general conclusion that corridors may effectively link spatially distinct pop-
ulations (Merriam et al. 1990, Danielson and Hubbard 2000). However, in
many of these studies, corridors have been regarded as simple links between
isolated areas of natural habitat. Reality is much more complex. Corridors
are rarely continuous or uniform in size. In addition, the effectiveness of
corridors will vary by the specific requirements of the dispersing organism.
Consequently the natural history (here represented as fecundity and disper-
sal kernel) and the ecology (competition and niche width) of the organism
need to be explicitly considered within the context of varying landscape pat-
tern. The goal of these simulations is to provide a sufficient understand-
ing of these processes, and their relationships to landscape heterogeneity,
to allow landscape metrics to be used to predict the usefulness of corridors
for species that may differ greatly in their dispersal ability and life-history
attributes.

The simulations reported here illustrate the potential range of effective-
ness of corridors for plant dispersal. The simulations are useful because they
allow a broad spectrum of factors to be considered, because dispersal is dif-
ficult to experimentally manipulate, because the effects of landscape pattern
are poorly understood, and because community structure (i.e., the presence of
competing species) can dramatically affect invasion success. Exploring these
multiple factors and their interactions provided an opportunity to under-
stand corridors and, perhaps of greater importance, to illustrate the linkage
of pattern and process within heterogeneous landscapes. Although the par-
ticulars of each species, community, and corridor may result in unique out-
comes, the broad scope of these simulations provide unusual insight into
the relationships and interactions among annual plants and the pattern of
corridors through which they may disperse. Four results are of particular
note:
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1. Pattern and process are scale dependent. The distribution of propagules
around the parent plant differs greatly between species, being depen-
dent on the morphology of the seed, its mode of transportation, and
the environmental conditions which favor seed establishment (Harper
et al. 1970). These species-specific characteristics interact with the local
pattern of the landscape to produce scale-dependent patterns of dis-
persal and establishment (Table 6.2, Fig. 6.4). The scale-dependent
nature of pattern andprocesswithinheterogeneous landscapes is awell-
recognized phenomenon (Gardner et al. 1992, Keitt et al. 1997) and a
key issue in landscape ecology (Levin 1992, Wu and Hobbs 2002). As
thewidths of corridors decline, the edge-to-area ratios increase. The loss
of seeds across habitat boundaries can dominate seed dispersal events
(e.g., van Dorp et al. 1997), with losses increasing as the widths of cor-
ridors decline and dispersal distances increase. Breaks in corridors do
not prevent dispersal when fecundity is high (Table 6.2) and the tails
of the dispersal kernel are long (Fig. 6.3). It is possible that this scale-
dependency may allow island stepping stones to be sufficient to link
widely separated populations (Keitt et al. 1997, Hewitt and Kellman
2002).

2. Effect of fecundity. Higher fecundity results in greater dispersal with
a consequent increase in competitive advantage (Clark and Ji 1995,
Lavorel and Chesson 1995). These simulation confirm the importance
of fecundity, R (Table 6.2), on the velocity of dispersal, v, but also show
thatR is less important than landscapepattern (H and p) for determining
thefinal pattern of species distribution, S (Table6.4). Therefore, the con-
sideration of the interaction between pattern and process is necessary to
predict invasion and distribution of species within heterogeneous land-
scapes (Plotnick and Gardner 2002).

3. Competition dramatically reduces dispersal. The rate of dispersal dra-
maticallydeclines as competition increases (Fig.6.3).A critical threshold
exists near the point where the competing species have an equal proba-
bility of establishment (i.e., a competitive ratio of 1.0), with the rate of
invasion approaching zerowhen the resident species is a better competi-
tor. If the form of this function is constant (and that remains to be deter-
mined), then itmaybepossible to reconciledifferences inempiricalmea-
surementsmadewithin recentlydisturbed regions (i.e., in the absenceof
resident species) with those made in an established community (i.e., the
equilibrium case). The former represents a maximum realized invasion
rate, while the latter reflects reductions due to competition. Differences
between these two cases are also measures of the importance of distur-
bance in the invasion process.
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4. The importance of pattern. It is hardly surprising that variation in
landscape pattern is an important determinant of the speed and estab-
lishment of an invading plant. However, characterizing the attributes
of pattern that affect a particular process remains a challenging prob-
lem (Bartlett 1978). Because we generated landscapes with two param-
eters, H and p, we have the luxury of being able to assess the impact of
these parameters on the process of dispersal and establishment, v and S
(R2 ∼0.62, Table6.4). Patternswithin actual landscapes aregeneratedby
complexenvironmental andhistorical events that aredifficult to express
with only a few parameters. Although the colinearity among landscape
metrics (see the type III sum of squares, Table 6.5) makes it difficult to
establish cause–effect relationships, only a fewparameters are needed to
adequately characterize pattern–process dependencies.

The analysis of dispersal of annual plants within corridors illustrates the
larger issue of using metrics to identify pattern–process relationships in land-
scape ecology. The history of the development and use of landscape metrics
is a recent one, evolving rapidly since O’Neill et al. (1988) presented a catalog
of metrics. Simple metrics are certainly useful as a succinct description of spa-
tial patterns, but pitfalls exist that hinder their use for determining pattern–

process relationships. The well-known issue of colinearity (Riitters et al. 1995)
notedabovemakes itdifficult todefine themostuseful androbust setofpattern
metrics. Without a clearly specified hypothesis the danger of a false positive
(i.e., type II error) may be very large. A second pitfall is the existence of non-
linear relationships, including critical thresholds, where small changes in pat-
tern induce disproportionately large changes in the process being studied. For
instance, the amount of edge within random landscapes is maximized when
p=0.5 and is minimized when p=0.0 and 1.0. Because actual landscapes show
similar patterns (Gardner et al. 1992, Turner et al. 2001) metrics based on patch
size and/or edge are descriptively useful but prescriptively dangerous. Many of
these problems stem from the widespread use of gridded integer maps which
make theuse of classical spatial statistics forhypothesis testingmuchmoredif-
ficult (Turner et al. 2001).

More rigor is needed in landscape ecology to avoid the propagation of error
when pattern–process relationships are studied within heterogeneous land-
scapes.Foremost is theneed for identificationof algebraic relationships among
similar landscape metrics. The existence of colinearity among metrics is a sta-
tistical indictor that metrics may be directly or indirectly developed from more
fundamental variables, such as p. Secondly, indices must be extensively tested
within random and real landscapes to assess their efficiency and usefulness for
description and prediction. Metrics that are not monotonic, or show critical
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thresholds of change, should be separated from those whose sensitivity to
change is constant across the range of patterns to be investigated.

An equal burden should be placed on the description of the landscapes used
within each study. The source of data from which landscape maps were devel-
oped, the grain and extent of the study area, and the land-cover classification
rules (or reclassification) rules shouldbe thoroughlyexplained. Inaddition, the
software-dependent neighborhood rules (Gardner 1999) used to identify pat-
tern should be documented. Although these suggestions are familiar, a com-
plete specification of analysis methods is required before results among land-
scape studies may be compared. Only when these conditions are met can we
expect to see significantprogress indeterminingpattern–process relationships
within heterogeneous landscapes.
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7

Scale and scaling: a cross-disciplinary
perspective

7.1 Introduction

Scale andheterogeneity are twokey concepts in landscape ecologywhich
are inherently related. Scale would matter little in a world where entities and
relationships remain invariant across space or time, or in a landscape that is
spatially or temporally homogeneous (i.e., uniform or random). However, real
landscapes are heterogeneous biophysically and socioeconomically, and they
must be treated as such for most questions and problems that interest us as
scientists or citizens. Spatial heterogeneity – the diversity of entities and their
spatial arrangement – is one of the most essential and unifying features of all
natural and anthropogenic systems. Landscapeheterogeneity is themanifesta-
tionofpatchiness (discretepatterns) andgradients (continuousvariations) that
are intertwined across multiple spatial scales. Thus, scale is indispensable for
describing and understanding landscape pattern.

It is not surprising, therefore, that scale has become one of the most funda-
mental concepts in landscape ecology, a field that focuses prominently on spa-
tial heterogeneity and its ecological consequences (Risser et al. 1984, Forman
and Godron 1986, Forman 1995, Turner et al. 2001). In fact, landscape ecol-
ogy has been widely recognized by biologists, geographers, and even social sci-
entists for its leading role in studying scale issues (McBratney 1998, Marceau
1999, Withers and Meentemeyer 1999, Meadowcroft 2002, Sayre 2005). How-
ever, it was not until the 1980s that the notion of scale began to gain its promi-
nence in landscape ecology (and in ecology in general). Also, landscape ecology
is not the only discipline that deals with scale and spatial pattern. The goal of
geographical research is to describe and explain the spatial patterns of natural
and anthropogenic features on the Earth’s surface (Harvey 1968), and scale as a
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geographic variable is “almost as sacred as distance” (Watson 1978). However,
geographers have long opted for single-scale studies without adequate justifi-
cation (Watson 1978, Meentemeyer 1989).

Nevertheless, studies explicitlydealingwith spatial scale inbothecologyand
geography date back to several decades ago. For example, plant community
ecologists have used various block-variance methods to investigate multiple-
scale patterns of vegetation since the 1950s (Greig-Smith 1952, Dale 1999).
On the other hand, insightful discussions on the relationships among pat-
tern, process, and scale were provided by several prominent geographers in
the 1960s and the 1970s (e.g., Haggett 1965, Harvey 1968, Miller 1978), when
the field of landscape ecology was still unknown to most ecologists around the
world. The most notable research on scale issues in the geographic literature,
however, is the study of the so-called “modifiable areal unit problem” or the
MAUP (Openshaw 1984, Jelinski and Wu 1996). The MAUP is quite relevant to
scale issues in landscape ecology and will be further discussed later.

Even those disciplines that do not focus explicitly on spatial patterns have
not been able to completely ignore the role of scale. For example, economists
have longmade thedistinctionbetweenmicroeconomics andmacroeconomics
that correspond tofine-scale and coarse-scale economicpatterns andprocesses,
whereas different levels of institutions or organizational hierarchies (e.g.,
household, community, regional, national, and international) often define the
scope and objectives of sub-disciplines and research topics in social and polit-
ical sciences. In these cases, however, scale has often been treated implicitly or
rather coarsely. Although scale is as important in social sciences as in natural
sciences, greater progress has been made in ecological and physical sciences in
recent decades. To date, efforts to compare and integrate scale issues across dis-
ciplines are lacking, but urgently needed (Wu and Hobbs 2002, Sayre 2005).

The main goal of this chapter is to provide an overview of the key con-
cepts, methods, and state-of-the-science of scale and scaling issues that are
relevant to landscape ecology. Obviously, this is an extremely ambitious goal
becauseof the enormous scopeandcomplexityof this topic. I shall discussboth
the conceptual and technical issues of scale and scaling, and identify major
research questions and challenges in scaling across heterogeneous landscapes.
Although the principal emphasis is placed upon spatial scale, most of the
concepts and methods also apply to temporal scale.

7.2 Concepts of scale and scaling

The terms scale and scaling have acquired a number of connotations
fromvarious disciplines.Nomatter how it is defined, scale generally “implies a
certain level of perceived detail” (Miller 1978), which most commonly pertains
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to time, space, or levels of organization. Scale definitions may be grouped into
three classes: dimensions, kinds, and components of scale (Table 7.1). Space,
time, and organizational hierarchies represent three primary dimensions of
scale, of which space and time are most fundamental. Organizational hierar-
chies, when nested, generally follow the space–time correspondence principle:
higher levels correspondtobroader spatial and longer temporal scales,whereas
lower levels are associatedwithfiner spatial and shorter temporal scales (Simon
1962,Urban et al.1987,Wu1999).Within each scaledimension, one candistin-
guish between different kinds of scale: intrinsic scale, observation scale, exper-
imental scale, analysis/modeling scale, andpolicy scale (seeTable7.1 for defini-
tions). Except for intrinsic scale, all other types of scale are defined or imposed
by the investigator. To quantify variations of a pattern or process across scale,
however, one must specify scale components that are operational. Common
components of scale include cartographic (map) scale, grain (resolution, sup-
port), extent, coverage (samplingdensity, intensity), and spacing (interval, lag).
While cartographic scale remains a fundamentally important concept in map-
ping science, grain and extent have firmly established themselves as the most
frequently used, operational concepts of scale in ecology. Specifically, grain
refers to the finest level of spatial or temporal resolution of a pattern or a data
set, andextent is thespatialor temporal spanofaphenomenonorastudy (Allen
et al. 1984, Turner et al. 1989a, Wiens 1989).

The term scaling is sometimes also known as scale transfer or scale transfor-
mation (Blöschl and Sivapalan 1995, Bierkens et al. 2000). In physical sciences,
scaling has traditionally referred to the derivation of power laws, and this nar-
row definition has been adopted in biology and ecology for decades. In partic-
ular, biological allometry involves deriving power-law relationships between
the size of organisms and biological processes (Schmidt-Nielsen 1984, Niklas
1994). Some researchers treat ecological scaling simply as the search for power
laws in the biological world (e.g., Calder 1983, Brown and West 2000). How-
ever, a broader definition of scaling, i.e., the translation of information across
scales or organizational levels, haswidely beenused in ecology, geography, and
environmental sciences (Turner et al. 1989a, Wiens 1989, King 1991, Rastet-
ter et al. 1992, Blöschl and Sivapalan 1995, Marceau 1999, Wu 1999, Bierkens
et al. 2000). Accordingly, the process of transferring information from finer
to broader scales is called scaling up or upscaling, whereas translating infor-
mation from broader to finer scales is known as scaling down or downscal-
ing. In general, scaling involves changing grain size, extent, or both (Allen
et al. 1984, Turner et al. 1989a, King 1991, Wu 1999). Note that hierarchical
levels and scales in time and space are different but closely related concepts. All
levels can be characterized in terms of specific spatiotemporal scales, but not
all scales represent organizational levels of hierarchical systems. Nevertheless,
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table 7 .1 . A three-tiered conceptual framework for scale definitions. While all the
definitions are useful for different purposes, only scale components are operational in the
practice of scaling

Dimensions of scale

Time A fundamental dimension that allows for fast

or frequent events to be distinguished from

those that are slow or infrequent

Space A fundamental dimension whereby large and

small entities can be distinguished and their

configurations can be discerned

Organizational hierarchy A directional ordering of interacting entities

that have distinctive process rates, thus

forming different levels. As ecological

organizations exist in space and time, levels

always correspond to certain spatial and

temporal scales

Kinds of scale

Intrinsic scale Scale at which a pattern or process actually

operates

Observation scale Scale at which measurements are made or

sampling is conducted

Experimental scale Scale at which an experiment is performed

Analysis/modeling scale Scale at which an analysis is conducted or a

model is constructed

Policy scale Scale at which policies are intended to be

implemented

Components of scale

Grain Finest level of spatial or temporal resolution of

a pattern or a data set; equivalent or similar

to resolution, support, or minimum

mapping unit (MMU)

Extent Spatial or temporal span of a phenomenon or a

study; equivalent to the study area or study

duration

Coverage Proportion of the study area or duration

actually sampled; also called sampling

density or intensity

Spacing Distance between two neighboring sampling

units; also called sampling interval or lag

Cartographic scale Ratio of map distance to actual distance on the

Earth’ s surface; also called map scale
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“a change in scale often necessitates consideration of new levels of organiza-
tion” (O’Neill and King 1998).

7.3 Scale effects, MAUP, and “ecological fallacy”

Scale-related studies in landscape ecology during the past two decades
have focused on three distinctive but intrinsically linked issues: characteristic
scales, scale effects, and scaling. In this section I shall discuss the first two, with
an emphasis on scale effects. Scaling approaches and methods will be the sub-
ject of the next section. In particular, this section makes a deliberate effort to
compare and contrast scale effects in ecology with the MAUP and the so-called
“ecological fallacy” in geography and the social sciences.

7.3.1 Characteristic scales and scale effects

The characteristic scale of an ecological phenomenon is the spatial and
temporal scale on which the phenomenon principally operates and thus can
be most appropriately studied. The background assumption of characteristic
scales is thatmany, ifnotmost,patternsandprocesses each takeplaceonafinite
range of scales (or scale domains), and thusdifferent phenomena canbe charac-
terizedby their distinctive scaledomains.Anumberof empirically constructed
space–time diagrams, in which phenomena are plotted against the space and
time scales of their occurrences, corroborate this assumption (e.g., Stommel
1963, Clark 1985, Urban et al. 1987, Delcourt and Delcourt 1988, Blöschl and
Sivapalan 1995). On the other hand, different phenomena may overlap in their
scale domains to varyingdegrees, and this scale overlap can tell us thenature of
the relationship between the different processes of interest. For example, pro-
cessesoperatingoncommensurate scalesmay interact frequently,whereaspro-
cesses with disparate rates (e.g., a few orders of magnitude apart) may have no
direct effect on each other. From this perspective, identifying the characteris-
tic scales of relevant patterns and processes is a critical first step in designing a
successful research project. Hierarchy theory has provided a conceptual frame-
work aswell as practical guidelines for the searchof characteristic scales,whose
detection is often associatedwith scale breaks (e.g.,O’Neill et al.1991, Cullinan
et al. 1997, Wu 1999, Hay et al. 2001, Hall et al. 2004).

A phenomenon may not be observed or gauged properly if the scale of obser-
vation is not commensurate with the characteristic scale of the phenomenon.
While the scale of observation is a choice by the observer, characteristic scales
are intrinsic to that being observed. Across a landscape, changing the “lenses”
of observation may lead to a series of different patterns, and the same phe-
nomenon may be manifested differently on different scales. These are scale



120 j ianguo wu

effects, reflective of both the scale multiplicity of landscape structure and arti-
facts in pattern analyses (Wu 2004, Li and Wu, Chapter 2, this volume). More
specifically, scale effects may occur in any statistical analyses or dynamic mod-
els that use area-based data when grain size or extent is changed. Although
the effects of quadrat size and position on observed vegetation pattern were
explicitly investigated in the 1950s by plant ecologists, it was not until the
late 1980s that landscape ecologists began to investigate the various effects of
changing grain size and extent on landscape pattern analysis and, to a lesser
extent, on landscape modeling. Turner et al. (1989b) were among the first to
systematically study how changing grain size and extent could affect three
landscape indices (diversity, dominance, andcontagion). Since then,numerous
studies have examined scale effects in landscape pattern analysis (Benson and
Mackenzie 1995, Wickham and Riitters 1995, Jelinski and Wu 1996, O’Neill
etal.1996, Saura2004,Wu2004) andspatialmodeling (King etal.1991,Wuand
Levin 1994, Ciret and Henderson-Sellers 1998, Kersebaum and Wenkel 1998,
Jenerette and Wu 2001).

7.3.2 The MAUP

When landscape ecologists were busy “discovering” scale effects with
new pattern metrics and remote sensing data in the 1990s, studies of the
MAUP-related issues had existed for several decades in geography and the
social sciences. The root of the MAUP, as the name suggests, is the use of areal
units that are “modifiable” or arbitrary. Area-based data include census data,
remote sensing data, and raster-based maps of soil, vegetation, land use, and
other themes. The MAUP has two components: the scale effect and the zoning
effect (Openshaw 1984, Jelinski and Wu 1996). The scale effect here refers to
the variation in the results of statistical analysis caused by spatially aggregat-
ingdata into fewer and larger arealunits (i.e., reducing the spatial resolutionor
coarse-graining). This is equivalent to the effect of changing grain size in land-
scape ecology (Turner et al. 1989b, Wu 2004). The zoning effect is the variation
in the results of statistical analysis due solely to different ways of aggregating
areal units to a given scale of analysis (i.e., changing the boundaries and con-
figurations of areal units at a given spatial resolution). In landscape ecology,
variability in statistical results due to the aggregation of pixels along different
directions is an example of the zoning effect (Jelinski and Wu 1996, Wu 2004).

The phenomenon of arbitrarily defined areal units affecting statistical
results was first noticed in electoral geography more than 100 years ago when
politicianspurposefullymanipulated the local boundaries of electoral districts
toalter theoutcomeofanelectionwithout changingthe individualvotes them-
selves (gerrymandering). As the earliest study of the MAUP, Gehlke and Biehl
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(1934) conducted a correlation analysis between male juvenile delinquency
and median monthly income from 252 census tracts in Cleveland, USA, and
found that the correlation coefficient increased considerably as the areal units
were aggregated contiguously. While early studies were sporadic, the resur-
gence of interest in the MAUP in the 1980s was evident from the flurry of stim-
ulating studies by Openshaw and his associates (e.g., Openshaw and Taylor
1979, Openshaw 1984). Numerous MAUP studies have been published ever
since, most of which were concerned with correlation and regression analy-
ses (Arbia 1989, Goodchild and Gopal 1989, Fotheringham and Wong 1991,
Wrigley 1994, Amrhein 1995).

After decades of research, however, geographers still have different views
on the nature and scope of the MAUP (Goodchild and Gopal 1989, Wrigley
1994, Jelinski and Wu 1996, Marceau 1999). One extreme view regards the
MAUP as simply a consequence of using “bad” or improper methods, and thus
the solution is to find “scale-independent” or “frame-independent” methods.
But most other views recognize that the MAUP is a result of the interactions
between the methods and the data used. That is, spatial effects are not just arti-
facts, and the MAUP can provide useful information on the multiple-scaled
patterns embedded in the data (Jelinski and Wu 1996, Marceau 1999, Hay
et al. 2001).

7.3.3 The “ecological fallacy”

The existence of the MAUP implies that statistical relationships from
area-based data may change with the scale of analysis, and thus cross-scale
inferences are unwarranted. This point was made clearly and loudly by
Robinson (1950) when he introduced the distinction between “an individ-
ual correlation” and “an ecological correlation.” In individual correlations the
variables are descriptive properties of indivisible individuals, whereas in eco-
logical correlations thevariables aredescriptivepropertiesofgroupsof individ-
uals. A striking example inRobinson (1950) was the correlationbetweennativ-
ity and illiteracy for the USA in 1930. The analysis using individual-level data
produced a positive correlation between foreign birth and illiteracy (i.e., the
individual correlation=0.118), supporting the common observation that the
native-born generally had a better command of American English. However,
the same analysis using the state-level aggregated data indicated that the per-
cent illiterate was negatively correlated with percent foreign-born (the ecolog-
ical correlation=−0.619). Apparently, this aggregate-level result could lead
to a wrong inference at the individual level that the foreign-born were more
likely to be literate of American English than the native-born. In reality, this
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aggregate-level correlation was due largely to the fact that most foreign-born
lived in states where the native-born were relatively literate (Freedman 2001).

Robinson (1950) concluded that individual and ecological correlations were
almost always different in practice because the ecological correlations were
usually stronger than the individual correlations. Since then, thephenomenon
of improper inferences of individual behavior from an analysis of groups has
been known as the “ecological fallacy” (Wrigley et al. 1996, King 1997). Note
that the word, “ecological,” in this case means “of groups” or “of aggregates,”
not really related to the interrelationship between organisms and their envi-
ronment. Unfortunately, this connotation of “ecology,” a dangerously mis-
leading distortion of the original meaning of the word, has long been used in
the social and behavioral sciences, such as “ecological correlations,” “ecologi-
cal regressions,” “ecological inferences,” and“ecological fallacies” (e.g.,Dogan
andRokkan1969, Poole1994,Wrigley et al.1996, King1997, Freedman2001).
Alker (1969) attempted todevelop“a typologyof ecological fallacies” to include
several types of inappropriate inferences from aggregated areal data. In par-
ticular, the individualistic fallacy referred to the improper generalization of
aggregate-level relationships from individual-level results, a somewhat con-
verse problem of the “ecological fallacy.” The rest of the “ecological fallacies”
identified by Alker (1969) were related to different kinds of sampling and con-
ceptual errors in statistical inferences. The “ecological” and individualistic fal-
lacies are both cross-level inference fallacies, and really should have been called
as such.

Robinson’s (1950) study has attracted a great deal of attention particularly
because quantitative social and political studies (and thus policies and actions
based on such studies) at the time were based primarily on aggregate areal
data. It “startled, dismayed, and even infuriated many users” of areal data
(Alker 1969), and “sent two shock waves through the social sciences that are
still being felt, causing some scholarly pursuits to end and another to begin”
(King 1997). Unfortunately, a number of unintended yet misleading conse-
quences have resulted from Robinson’s (1950) study. In particular, the notion
of “ecological fallacy” has led to several misguided conceptions: individual-
level models are always better specified and more accurate than aggregate-
level models, aggregate-level relationships are always intended as substitutes
of individual-level relationships, and aggregate-level variables have no rele-
vance to causal relationships and mechanistic explanations of individual-level
activities (Allardt 1969, Schwartz 1994). In fact, aggregate-level relationships
can be quite useful for defining the context, generating potential hypothe-
ses, and identifying the relevance for studying individual-level phenomena.
Frequently, aggregate-level variables may not only be constraints on, but
also direct causes of, individual-level processes. For example, population-level
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studies are crucial for identifying important public health problems, and
certain risk factors for diseases genuinely operate at the population level
(Pearce 2000).

7.3.4 Towards a more comprehensive understanding of scale effects

Thenumerous studiesof theMAUPandcross-level fallacies areevidently
relevant to understanding scale issues faced by landscape ecologists as well as
other scientists. The literature of the social sciences on these issues is a rich
source of information for learning how scale can help elucidate complex pro-
cesses, identify hierarchical linkages, or create spurious patterns in human
landscapes where social, economic, and political forces are dominant drivers.
Findings of the effects of MAUP on correlation analysis, regression analysis,
and geospatial models (Openshaw 1984, Arbia 1989, Goodchild and Gopal
1989, Fotheringham and Wong 1991, Amrhein 1995) should be relevant for
similar types of landscape ecological analyses.

The “ecological fallacy” is a problem of disaggregation (or downscaling) in
which inferences about a lower level are made from knowledge of an upper
level. Ecologists are frequently faced with such challenges to predict the prop-
erties of “trees” using information on the “forest.” Developed in the social
sciences over the past several decades, the various methods for solving the
problem of cross-level fallacies may prove to be useful for solving genuinely
ecological problems as well. These methods are collectively known as the
“ecological inference” methods, including “ecological regression” (Goodman
1953, Freedman 2001), the neighborhood method (Freedman et al. 1991), and
theEImethod (King1997).However, analogous todeciphering landcover com-
position within a pixel of a remote sensing image, inferring the behavior of
lower levels from higher-level data is inherently difficult because: (1) aggre-
gate data usually do not contain explicit information on subgroup behavior,
and (2) the characteristics of aggregates may be outcomes of nonlinear inter-
actions among subgroups or emergent properties, so that they cannot be sim-
ply “decomposed” using reductionist methods. Like other downscaling meth-
ods (more in the next section), none of the ecological inference methods can
work well in all circumstances. Both impressive progress and thorny problems
in cross-level inference research are evident in a series of exchanges between
some leading scholars in this area (Freedman et al. 1998, Freedman et al. 1999,
King 1999).

In spite of its relevance to ecology, the termMAUPseemed completely absent
in the ecological literature until the mid-1990s when Jelinski and Wu (1996)
discussed the implications of the MAUP for landscape ecology. Even today,
the enormous literature on the MAUP and cross-level fallacies continues to
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Basic operations

1-E: Change extent only (extrapolation)

1 - E 2 - G

4 - EG

7 - EGC

5 - EC

3 - C

6 - GC

and singling out)

2-C: Change grain only (coarse- and

Changing 
coverage (c)

Changing 
extent (E)

Changing 
grain (G)

fine-graining)

Combinations

4-EG: Change extent and grain
5-EC: Change extent and coverage

7-EGC: Change extent, grain, and coverage
6-GC: Change grain and coverage

3-C: Change coverage only
(interpolation and sampling)

f igure 7 .1
Seven different kinds of scaling operations. In practice, a scaling project may often
involve two or more operations in combination

be ignored by biological and physical scientists, including the most scale-
cognizant landscape ecologists. This situation is puzzling because ecological
analyses frequently use area-based data and because landscape ecology is actu-
ally known for being highly interdisciplinary. In geography and the social sci-
ences, on theotherhand, even the recent literatureon theMAUPandcross-level
fallacies seldom cites any of the scale-related studies in ecology. This is equally
disappointing given that geography and landscape ecology both emphasize
spatial views and approaches.

7.4 Theory and methods of scaling

Spatial scaling is about translating information across heterogeneous
landscapes. The significance and challenges for spatial scaling both reside in
the fact that landscapepatternsandprocesses are spatiallyheterogeneous,non-
linearly interactive, and replete with feedbacks and threshold dynamics. Thus,
tomove fromone scale to another in suchcomplex landscapes, onehas to either
assume away heterogeneity, nonlinearity, and feedbacks, or deal with them
explicitly andeffectively. Inpractice, spatial scaling isdone throughsevenbasic
operations (Bierkens et al. 2000). Changing extent, grain size, and coverage
are the three basic operations, whereas the other four are different combina-
tions of the three (Fig. 7.1). Strictly speaking, extrapolation is to increase the
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extent of an observation set, while interpolation is to increase the coverage of a
studyarea. In landscapeecologyandgeography, scaling frequently involves the
changeof extent (extrapolation) andgrain size or resolution (fine-graining and
coarse-graining). The key to spatial scaling is to figure out ways to implement
these scaling operations, i.e., scaling approaches and methods.

Scaling methods may be grouped into two general approaches (Blöschl and
Sivapalan 1995, Bierkens et al. 2000): the similarity-based scaling approach
(SBS) andthedynamicmodel-basedscalingapproach (MBS). SBS isbasedonthe
principlesof similarity, andoftencharacterizedbypower-lawscaling functions
derived either analytically or empirically. In contrast, MBS transfers informa-
tion between different scales through changing the input, parameters, and
formulation of dynamic models. MBS tends to be more comprehensive, and
usually does not lead to simple scaling functions as does SBS.

7.4.1 The SBS approach

Similarity has long been used as the background assumption in a num-
ber of scaling methods. Two systems are said to be similar if they share some
properties that can be related across the systems by a simple conversion fac-
tor (Blöschl and Sivapalan 1995). These similarities can be of different kinds,
including geometric, dynamic, and functional similarities. An important and
relatively new concept in the SBS approach is self-similarity, which is the key
idea in fractal geometry (Mandelbrot 1982, Hastings and Sugihara 1993). Self-
similarity refers to the phenomenon that the whole is composed of smaller
parts resembling the whole itself and that patterns remain similar at different
scales. In the following, I discuss two commonly used SBS methods: similarity
analysis and allometric scaling.

7.4.1.1 Similarity analysis
Similarity analysis aims to reduce dimensional quantities required for describ-
ing a phenomenon based on the known governing equations (Blöschl and
Sivapalan 1995). Barenblatt (1996) provided a “general recipe” for similarity
analysis that included seven steps: (1) to specify a system of governing variables
that are necessary to describe the phenomenon of interest, such that a mathe-
matical relation of the form, a=f (a1, . . . , ak, b1, . . . , bm), can be assumed tohold;
(2) to determine the dimensions of variables and select those variables whose
dimensions are independent of each other; (3) to represent or transform the
relations under study as products of powers (or dimensionless ratios) of vari-
ables with independent dimensions; (4) to estimate the numerical values of the
similarity parameters (dimensionless variables) using empirical data; (5) to for-
mulate scaling laws (i.e., relationshipsbetweennondimensionalgroups)under
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theassumptionof complete similarity, and test themagainst empiricaldata; (6)
if the test in step 5 fails, then formulate scaling laws under the assumption of
incomplete similarity (or self-similarity) and test them against empirical data
(in this case, scaling analysis cannot be completed using dimensional analysis
because the power laws are fractal); and (7) to formulate similarity laws with as
few similarity parameters as possible.

There have been a number of successful applications of similarity analysis in
geophysical sciences. The Monin–Obukhov theory assumes that atmospheric
boundary-layer flows can be viewed as being dynamically similar across scales
and relates turbulent fluxes to a mean vertical gradient of wind, temperature,
and specific humidity (Brutsaert 1982, Wu 1990). Thus, the gradient-diffusion
theory (or K-theory), originally developed for molecular-level diffusion pro-
cesses, has been used to estimate broader-scale turbulent transfer of heat and
massbasedon the small-eddy concept that treats turbulent transport as a result
of local mixing by small eddies. In other words, even though the turbulent
diffusivity (about 1m2 s−1) is as much as 10

5 times greater than the molecu-
lar diffusivity (about 10 to 20mm2 s−1), turbulent transfer may still be treated
as a dynamically similar process to molecular diffusion. Of course, this is not
always a valid treatment. While the K-theory has been successful in modeling
turbulent transfer for the boundary layer above vegetation, its success is lim-
ited within plant canopies where the small-eddy concept is less appropriate
(Brutsaert 1982, Wu 1990).

Similarity analysis has widely been used in soil and hydrological sciences
(Blöschl and Sivapalan 1995, Sposito 1998, Bierkens et al. 2000). A well-known
example is the derivation of scaling equations for soil-water transport on the
basis of the fine-scale similar-media concept known as the Miller–Miller simil-
itude (Miller and Miller 1956, Sposito 1998). Similarity analysis has not been
widely used in ecology maybe because the required governing equations for
most ecological processes are either nonexistent or analytically intractable.

7.4.1.2 Allometric scaling
Allometry usually refers to the study of the relationship of biological form
and process to the size of organisms (LaBarbera 1989, Niklas 1994, Brown and
West 2000). The allometric scaling relations are usually based on assumptions
of similarity (e.g., geometric similarity and self-similarity), and take the form
of a power law: Y=Y0Mb, where Y is some variable representing a pattern or
process of interest, Y0 is a normalization (or scaling) constant, M is some size-
related variable (e.g., body mass), and b is the scaling exponent. There are two
ways of obtaining allometric scaling relations: the analytical and empirical
approaches. This dichotomy may be generalized for all SBS methods in physi-
cal and biological sciences.



Scale and scaling: a cross-disciplinary perspective 127

The analytical approach derives scaling relations from the existing theory
of similarity using techniques such as dimensional analysis, and thus has the
ability to explain and predict cross-scale relationships. However, these analyt-
ically derived scaling relations must be tested against empirical observations
for their validity. The empirical approach is descriptive and inductive, andusu-
ally employs twokindsof regressionanalysis.Ordinary least squares regression
(OLS) can be used when the purpose of a study is only to predict one variable
basedon theother, or tofindout if the relationship is statistically significant (in
this case simplecorrelationanalysis canalsobeused).However, if thepurpose is
todetermine theexactvalueof thescalingexponent (i.e., the slopeof the regres-
sion line in a log–log plot), OLS regression is generally inadequate especially
when the coefficient of correlation is small (Niklas 1994). In this case, reduced
majoraxis (RMA) regression ismoreappropriate (LaBarbera1989,Niklas1994)
because it treats the two variables in the allometric equation in the same way
(i.e., no “independent” variables in the regression equation and both variables
have an error term).

Brown et al. (2002) discussed three classes of power laws that describe a vari-
ety of biological and ecological phenomena. Power laws of the first class have
a rather limited range of variation in the scaling constant (Y0) and the scaling
exponent (b), and are mostly quarter-power laws (e.g., animal metabolic rates,
developmental time, life span,maximumrate of populationgrowth, andother
organism-level allometric relations). The second class has a wide range of val-
ues of Y0 and b (e.g., population densities of different species). For the third
class of power laws (e.g., species-area relationship, species-time relationship,
and species-abundance distribution), not only are the scaling parameters not
well constrained, but also the power laws themselves donot holdupovermany
orders ofmagnitude.Brown et al. (2002) asserted that thefirst class “apparently
reflects the fractal-like designs of resources distribution networks,” whereas
the third class “maynot represent examples of self-similar behavior over awide
range of scales.” In the past decade, there has been a resurgence of interest in
biological allometry which has generated much excitement and controversy
(e.g., Dodds et al. 2001, Bokma 2004, Brown et al. 2004, Cyr and Walker 2004,
Kozlowski and Konarzewsk 2004). More than 15 years ago, LaBarbera (1989)
commented, “Whether a power law reflects a basic biological truth, the under-
lying structure of the universe we are embedded in, or whether it is simply
fairly robust at approximating a variety of data relations is yet to be deter-
mined.” Alas, this statement still seems to hold true today.

Biological allometry is not always relevant to spatial scaling unless spa-
tial scale is incorporated into the allometric equation. Schneider (2001, 2002)
provided a number of examples of spatial allometry for lake ecosystems and
aquatic mesocosms in terms of the geometric attributes of the systems (e.g.,
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the volume, area, perimeter, and depth of lakes or mesocosms) and biological
properties (e.g., fish catch and primary production). Landscape-scale studies
using this approach have been increasing in recent years. For example, Hood
(2002) identified several allometric scaling relations between slough attributes
(e.g., area, outlet width, perimeter, and length) for rivers, and showed that
detrital insect flotsamdensitywas also allometrically related to sloughperime-
ter. Similarly, Belyea and Lancaster (2002) found that the area, depth, width,
and length of peatland bog pools were allometrically related. It is tempting
to jump from empirically derived power-law relations to ecological explana-
tions of underlying mechanisms by invoking the theory of self-similarity and
self-organization. But this is unwarranted, be it in vogue. Nonetheless, spatial
allometry provides a general method to summarize and extrapolate observed
patterns over a range of scales, and to suggest underlying processes (Wu 2004).

7.4.2 The MBS approach

Unlike the SBS approach inwhich similarity goes bothways,MBSmeth-
ods for upscaling versus downscaling differ in terms of both general per-
spectives and detailed procedural steps (Fig. 7.2). Thus, they are discussed
separately here although both may be used interactively in a given scaling
project.

7.4.2.1 Upscaling methods
Upscaling with dynamic models typically consists of two major steps: char-
acterizing heterogeneity, and aggregating information by scaling up local (or
patch-level) models (Fig. 7.2). Characterizing heterogeneity usually involves
the classification and quantification of spatial patterns, which is a way of sim-
plifying the complexity of scaling by partitioning the heterogeneous land-
scape into a limited number of relatively homogeneous patches. The second
step is to aggregate information from the finer to the broader (target) scale
through manipulating the input and parameters or altering the formulation
of the local-scale model. Depending on the scaling context, this process may
correspond to one of two basic scaling operations: coarse-graining (increasing
grain size) or extrapolation (increasing extent). A number of upscaling meth-
ods have been developed in geophysical and biological sciences during the past
decades. King (1991) presented four methods: extrapolation by lumping (EL),
direct extrapolation (DE), extrapolation by expected value (EEV), and explicit
integration (EI). This list can be expanded to include additional methods, such
as extrapolation by effective parameters (EEP), spatially interactive modeling
(SIM), and the scaling ladder method (SL). Each method is described below.
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Extrapolation by lumping is to estimate the target-scale result by running
the local-scale model with the mean values of parameters and inputs averaged
across the entire landscape. The major procedural steps of this scaling method
can be depicted in a “scaling flow diagram” (see the upper panel of Fig. 7.2A).
EL does not deal explicitly with spatial heterogeneity; rather, it suppresses it
in average values of model arguments. EL is the simplest and most error-prone
upscaling method. In theory, it only works well when the local model is lin-
ear and still valid at the target scale, and when horizontal interactions between
patches are weak and symmetric.

Instead of averaging parameters and inputs before running the local model
as inEL,DEobtains the target-scale resultsbyaveraging theoutputsof the local
model that is run, with spatially varying parameters and inputs, for all patches
of the entire landscape (King 1991). The scaling flow diagram of DE is in sharp
contrastwith thatofEL (see the lowerpanelofFig.7.2A).Averagingtheoutputs
rather than inputs of the localmodel can significantly reduce scaling errorsdue
to the nonlinearity in the model (Bierkens et al. 2000), and eliminates the need
to apply the localmodeldirectly at the landscape scale.DE treats spatial hetero-
geneity explicitly but not interactively, assuming that horizontal interactions
and feedbacks are negligible or at steady state. Typically, DE does not consider
any processes that operate at scales larger than the patch on which the local
model isdeveloped.DE isdata-demandingandcomputationally intensive, and
thus may not be feasible when the landscape is too large.

EEV obtains the target-scale results by deriving the expected value of the
outputs from the local model, which is run based on joint probability density
functions or a sampling approach (e.g., Monte Carlo simulation) to account for
spatial heterogeneity (King 1991, Rastetter et al. 1992). The scaling flow dia-
grams of EEV and DE are the same in terms of the general steps, but differ in
the specifics of how to go from one step to the next. EEV does not treat spa-
tial heterogeneity explicitly, but in statistical terms. By so doing, EEV allevi-
ates the problems of excessive computational and data demands that DE may
suffer, and is amenable to uncertainty analysis (Rastetter et al. 1992, Li and Wu
2005).AswithDE,EEVneitherexplicitly considers thepatchconfigurationnor
feedbacks and interactions among patches.

EI refers to directly integrating the local-scale model to the landscape scale
analytically or numerically based on explicitmathematical formulations (King
1991). In this case, the spatial heterogeneity of the landscape must be rep-
resented as mathematical functions of space in closed forms, and the indef-
inite integral of the local model with respect to space must be obtainable.
When all of its requirements are met, EI is the most elegant, efficient, and
accurate upscaling method. Unfortunately, this is rarely the case with real
landscapes.
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Similar to EL, EEP also assumes that the local model applies to the target
scale, but uses “effective” or “representative” parameters, instead of spatial
averages, to produce the target-scale estimates (Blöschl and Sivapalan 1995,
Bierkens et al. 2000). Because both methods run the local-scale model with
landscape-scale input and parameters, EEP and EL share the same scaling flow
diagram (Fig. 7.2A). EEP has been widely used in soil physics, hydrology, and
micrometeorology, and finding effective parameters can be quite difficult for
nonlinear models (Blöschl and Sivapalan 1995, Bierkens et al. 2000).

When horizontal or lateral interactions must be considered explicitly (e.g.,
metapopulation processes, disturbance spread, and land–water interactions),
spatially interactive modeling seems to be the only option (Judson 1994, Wu
and Levin 1997, Tenhunen and Kabat 1999, Rastetter et al. 2003, Peters et al.
2004). SIM is able to incorporate feedbacks, time delays, and new features on
larger scales. Spatially interactive models include variables, parameters, and
input at multiple scales. Thus, the scaling flow diagram of SIM would be dif-
ferent from those in Fig. 7.2A; rather it needs to reflect the multi-scaled nature
of the models themselves (e.g., Fig. 2 in Wu and Levin 1997). Such models
can easily become ecologically too complex and computationally overwhelm-
ing (Levin et al. 1997, Levin and Pacala 1997). This is particularly true when
the number of scales becomes more than just a few. In this case, a hierarchi-
cal scaling scheme is useful to simplify complexity and reduce aggregation
errors.

All the upscaling methods discussed above typically are of “short-range”
because the assumptions behind themare less likely to be satisfied over a broad
rangeof scales andbecause theybecome technically less feasiblewhenmultiple
scale breaks (or thresholds) are encountered. In these cases, the scaling ladder
method may be used (Wu 1999). SL is based on the hierarchical patch dynamics
(HPD) paradigm, which integrates hierarchy theory and patch dynamics (Wu
and Loucks 1995). The basic idea is to establish a spatial patch hierarchy con-
sisting of a series of nested scale domains, and then use it as a scaling ladder to
move information between two adjacent scales one step a time (Wu 1999, Wu
andDavid2002).Thus, the short-rangescalingmethodsdiscussedabovecanall
be used in a hierarchical scaling framework. Examples of patch hierarchies for
upscaling purposes include levels of biological organization (e.g., leaf–plant–
stand as in Reynolds et al. 1993) and different types of nested landscape units
(e.g., Reynolds and Wu 1999, Wu and David 2002, Hall et al. 2004).

7.4.2.2 Downscaling methods
Downscaling also consists of two general steps: disaggregating information
and singling out (Fig. 7.2). The goal of disaggregating coarse-grained infor-
mation is to derive the fine-scale pattern within a given areal unit (e.g., pixel
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or patch), a process also known as fine-graining (Blöschl and Sivapalan 1995,
Bierkens et al. 2000). Downscaling often uses stochastic or probabilistic meth-
ods with auxiliary information on the finer scale. Singling out is simply to
locate the site of interest in the disaggregated pattern. Much of the research
on downscaling in the past few decades has been done in the context of global
climate change, and the primary goal is to translate general circulation model
(GCM) output into regional-scale predictions for scientific research as well as
decision-making purposes. These methods are usually classified into two gen-
eral categories: empirically based statistical and process model-based down-
scaling approaches (Hewitson andCrane1996,Wilby andWigley1997, Kidson
and Thompson 1998, Wilby et al. 1998, Murphy 1999, 2000).

The empirically based statistical downscaling approach aims to derive
regional climate conditions (e.g., temperature, precipitation, and wind veloc-
ity) from large-scale synoptic circulation features (e.g., upper-level winds,
geopotential heights, and sea-level pressure) predicted by GCMs. This is usu-
ally done through “transfer functions” which are obtained through multiple
linear regression, artificial neural networks, classification and regression trees,
or other statisticalmethods (HewitsonandCrane1996,Wilby et al.1998, Li and
Sailor2000, Crane et al.2002). The empirical downscaling approachworkswell
for temporally continuous variables such as temperature, but much less effec-
tively for temporally discontinuous and highly intermittent variables such as
precipitation (Li and Sailor 2000).

The process model-based downscaling approach, on the other hand, uses
nested dynamic models of different scales to disaggregate information down-
ward. For example, a higher-resolution regional climate model may be embed-
ded within a global GCM, so that the GCM output drives the regional model
which in turn produces downscaled results. The models are coupled either
through one-way or two-way nesting schemes. In a two-way nesting scheme,
GCM and the embedded regional climate model are run simultaneously and
interact with each other across scales (Hewitson and Crane 1996, Kidson and
Thompson 1998, Murphy 1999).

While the current literature on downscaling is dominated by meteorolog-
ical and climatologic studies, other methods exist in hydrological and soil
research that focus on regional down to local scales. Thesemethodsmay also be
grouped into the two general downscaling approaches discussed above. Exam-
ples of disaggregating informationon soil properties, hydrological time series,
and precipitation patterns are abundant (Blöschl and Sivapalan 1995, Bierkens
et al. 2000). Also, in the social sciences, as mentioned earlier in this chapter,
the methods of “ecological inferences,” including “ecological regression,” the
neighborhood model, and the EI model (Freedman et al. 1998, Freedman et al.
1999, King 1999), may also be used for ecological downscaling, particularly,
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when the research goal is to decipher the behavior of lower-level elements from
higher-level aggregate relationships.

Inaddition, the commonproblemof“pixelmixing” in remote sensingarises
from the fact that a single pixel is often amixture ofmultiple spectrally unique
land cover types (i.e., the “endmembers”), which leads to errors in image clas-
sification. Remote-sensing scientists have developed a series of subpixel anal-
ysis methods to “unmix” individual pixels to estimate the relative areal pro-
portions of different land-cover types within a pixel. The most widely used has
been the linear spectral unmixing model, which assumes that the reflectance
spectrum of any pixel is the result of linear combinations of the spectra of all
constituent land-cover types within that pixel (Rosin 2001, Song 2005). The
relative abundance of each land-cover type within a pixel is obtained by solv-
ing a closed system of n linear equations where n is the number of bands in
an image. In recent years, a number of other methods have been developed
for pixel unmixing, including fuzzy membership functions (Foody 2000), the
leastmedianof squaresmethod (Rosin2001), andwavelet andneural network-
basedmethods (e.g.,Mertens etal.2004). Thepotential of thesepixelunmixing
methods for ecological downscaling studies is yet to be explored.

7.4.3 Uncertainty analysis

Scaling practices always come with uncertainties because of spatial het-
erogeneity, nonlinearity, data inadequacy, and problems with scaling tech-
niques. Themainpurposes of uncertainty analysis (or error propagation analy-
sis) are to identify the various sources ofuncertainties andquantify their effects
on scaling results (Rastetter et al. 1992, Heuvelink 1998a, 1998b). Different
scalingmethods are amenable todifferentuncertainty analysis techniques. For
example, many empirically based statistical scaling methods produce scaling
results with some relevant information on uncertainty (e.g., variance, confi-
dence intervals, and regression or correlation coefficients). Monte Carlo tech-
niques may be used with dynamic modeling methods, such as extrapolation
by expected value and other stochastic models, to estimate confidence inter-
vals.Whileuncertainty analysis canbequite challenging, anumberofmethods
have been developed in recent years (Rastetter et al. 1992, Heuvelink 1998a).

Li and Wu (2005) reviewed different aspects of uncertainty analysis, includ-
ing sources of uncertainty in scaling, evaluation of scaling algorithms, error
propagation from parameters and input data to scaling results, and presen-
tation of prediction accuracy and error partitioning. Several techniques for
uncertainty analysis have been used in ecology and environmental sciences,
including probability theory, Taylor series expansion, Monte Carlo simula-
tion, generalized likelihood uncertainty estimation, Bayesian statistics, and
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sequential partitioning. They recommended the following desirable outputs
of uncertainty analysis: (1)measures ofmodel adequacy, (2) full probability dis-
tributions of model outputs (e.g., density function and probability-weighted
values), (3) reliability of model results (e.g., accuracy, confidence level, and
error), (4) relative contributionor importanceof each factor as anerror source to
total uncertainty, (5) the likelihood of different scenarios (probability or rank-
ing), and (6) identification of the least understood or critical components of the
model.

From the above discussion it is clear that uncertainty analysis should be
regarded as an essential part of the scaling process. But this has not been
the case in ecological studies. Given the increasing importance of cross-scale
studies in today’s scientific research and environmental decision-making, it is
crucial to properly quantify and report uncertainties with scaling results.

7.5 Discussion and conclusions

The increasing prominence of scale issues in ecology and other sciences
since the 1980s seems inevitable for several reasons. First, ecology as a sci-
ence has become progressively more explanatory, and mechanistic explana-
tions inevitably invoke multiple scales in space and time as well as multiple
levels of organization. Second, for the increasing need to understand and solve
broad-scale environmental problems, scientists have to translate information
across spatial and temporal scales or organizational hierarchies. Third, the
past two decades have witnessed significant advances in theory and method-
ology for tackling the complexity of spatially extended, heterogeneous sys-
tems such as landscapes. Important theories and methods for scaling include
hierarchy theory (Allen and Starr 1982, O’Neill et al. 1986), fractal geom-
etry (Mandelbrot 1982), phase transition and percolation theory (Gardner et al.
1987, Milne 1992), cellular automata (Wolfram 1984), self-organized critical-
ity (Bak 1996), and complex adaptive systems (Cowan et al. 1994, Levin 1999).
Fourth, recent advances in remote sensing, geographic information systems
(GIS), and computing technologies have equipped scientists with powerful
tools for dealing with issues of heterogeneity and scale. In addition, the rapid
development of landscape ecology since the 1980s has certainly contributed
to the widespread recognition of the importance of scale within ecology and
beyond.

Today, landscape ecologists are generally aware that scale may directly influ-
ence the results of a study whenever spatial heterogeneity cannot, or should
not, be assumed away. Heterogeneity makes no sense without the explicit con-
sideration of scale, and scale matters little without heterogeneity. There seems
to be a consensus among landscape ecologists today that, whenever possible, a
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multiple-scale orhierarchical approach is preferable to a single-scale approach.
Scaling, as the process of translating information across spatiotemporal scales
andorganizational levels,hasbeen increasingly emphasized inecological stud-
ies. Indeed, scaling is the essence of understanding and prediction, and has a
central role in ecological theory and application (Levin 1992, Levin and Pacala
1997).

There are still numerous problems and challenges in dealing with scale and
scaling issues acrossdisciplines. I conclude this chapterbyhighlighting several
of them as follows:

� First, scale and scaling are unifying concepts that cut across all disci-
plines in both natural and social sciences, and the diversity of connota-
tions presents both problems and opportunities. To avoid unnecessary
confusion, these terms should always be specified when they are used.
Beyond that, to take a leading role in developing a science of scale, land-
scape ecologists must familiarize themselves with the scale-related ter-
minology andmethodsdeveloped inotherfields, suchasgeography, soil
science, hydrology, and the social sciences.

� Second, while scale effects are pervasive in the study of heterogeneous
landscapes, we must move beyond simply reporting the occurrences of
scale effects, which would be an endless effort. Instead, the emphasis
should be placed on the search for scaling relations that can be used to
identify underlying processes and translate information across scales. A
straightforward and powerful approach is to construct empirical scalo-
grams in which variations of patterns, processes, and their relationships
are plotted directly against scale (Turner et al. 1989b, Ludwig et al. 2000,
Wu 2004). Such scalograms provide not only direct evidence to test scal-
ing theories, but also a simple yet reliable way of scaling up and down
information across landscapes.

� Third, the two general scaling approaches, similarity-based and
dynamic modeling, need to be better understood and integrated in
ecological studies. No matter how authentic it may sound, the classic
definition of scaling that hinges on power laws is not adequate; it only
covers part of what has actually taken place in ecological scaling. The
two scaling approaches are not contradictory, but complementary to
each other. Scale-invariance theory and hierarchy theory may seem at
odds, but they are simply different perspectives on the same multi-
scaled world. A hierarchical system is composed of a number of scale
domains within which scale-invariance may well exist. Similarly, a hier-
archical scaling scheme may include similarity-based methods. Future
scaling studies in landscape ecology should clearly recognize the pros
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and cons of both approaches, and emphasize the integration between
the two whenever necessary. Neither brutal forces with overwhelmingly
complex models nor scale-free power laws with elegantly simplistic
equations alone would be adequate for understanding and predicting
the dynamics of landscapes.

� Fourth, for both approaches it is important to properly identify scal-
ing thresholds atwhich scaling relations change abruptly. These thresh-
olds suggest fundamental shifts in underlying processes or controlling
factors (Gardner et al. 1989, Turner et al. 1989a, King et al. 1991, Wu
and Loucks 1995), and define the domains of applicability of the various
scaling methods.

� Fifth, one of the greatest challenges for scaling in real landscapes is to
integrate biophysical with socioeconomic processes. This is especially
true for human-dominated landscapes (e.g., agricultural and urban
landscapes) where natural and anthropogenic processes are intertwined
and often operate on different scales. The mechanics and rules of scaling
for different processes may also vary dramatically. When it comes to the
practice of scaling, universality is elegant, but more of utopia; idiosyn-
crasy is torturous, but more of reality. Complex interdisciplinary issues
call for a hierarchical, pluralistic scaling strategy that integrates both
empirical statistical and dynamic modeling methods.

� Finally, scaling without known accuracy is unreliable, and uncertainty
analysis needs to be an integral part of the scaling process. Ecological
scaling, especially with dynamic models, has rarely been done with rig-
orous accuracy assessment. While it is challenging, uncertainty analysis
should be emphasized in future scaling studies because it provides crit-
ical information about the accuracy of scaling results. This uncertainty
issue of scaling becomes particularly important when scaling results are
expected to be used for management and policy-making purposes.
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8

Optimization of landscape pattern

8.1 Introduction

Wu and Hobbs (2002) state that:

A fundamental assumption in landscape ecology is that spatial patterns
have significant influences on the flows of materials, energy, and
information while processes create, modify, and maintain spatial
patterns. Thus, it is of paramount importance in both theory and
practice to address the questions of landscape pattern optimization . . .
For example, can landscape patterns be optimized in terms of both the
composition and configuration of patches and matrix characteristics
for purposes of biodiversity conservation, ecosystem management, and
landscape sustainability?

Physical restructuring of landscapes byhumans is a prominent stress on eco-
logical systems (Rapport et al. 1985). Landscape restructuring occurs primar-
ily from land-use conversions or alteration of native habitats through natural
resource management. A common faunal response to such land-use intensifi-
cation is an increased dominance of opportunistic species leading to an over-
all erosion of biological diversity (Urban et al. 1987). Slowing the loss of bio-
diversity in managed systems will require interdisciplinary planning efforts
that meld analysis approaches from several fields including landscape ecology,
conservation biology, and management science. Again from Wu and Hobbs
(2002), “Such studies are likely to require theories and methods more than
those in traditional operations research (e.g., different types of mathematical
programming), as well as the participation of scientists and practitioners in
different arenas.”

Key Topics in Landscape Ecology, ed. J. Wu and R. Hobbs.
Published by Cambridge University Press. C©Cambridge University Press 2007.
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The objective of this chapter is to review emerging methods from this set
of disciplines that allow analysts to make explicit recommendations (prescrip-
tions) concerning the placement of different features in managed landscapes.
We will refer to this general set of methods as “spatial optimization.” As used
here, spatial optimization refers to methods that capture spatial relationships
between different land areas in the process of maximizing or minimizing an
objective function subject to resource constraints. We will begin with a terse
review of the state-of-the-science in spatial optimization and then proceed to a
discussion of prominent research questions in need of attention.

8.2 State-of-the-science in spatial optimization

In our view, four basic approaches have been taken to address optimiza-
tion of landscape pattern: adjacency constraints (with augmentation), spa-
tial enhancement of the reserve-selection problem, direct spatial-optimization
approaches, and automated manipulation of simulation models. We will
review each of these in turn.

8.2.1 Adjacency constraints

In the forestry literature, the predominant perception of spatial consid-
erations has been that of adjacency relationships. Concerns regarding adjacent
timber harvests emerged from legal and regulatory restrictions on the effec-
tive size of harvests – if two seemingly legal-size clearcuts, for example, occur
within a short time of each other in adjacent areas, the effective size of the
clearcut may not be legal. The basic formulation for avoiding adjacent harvests
is:

X1 + X2 ≤ 1, X1, X2 ∈ (0, 1)

where the X1 and X2 are binary (integer) management prescriptions that have
harvests within the prohibited time limit of each other, for areas that are adja-
cent. If “n-tuples” (triplets, quadruplets, etc.) ofmutually adjacent areas canbe
defined for i=1, . . . , I, then:∑

i
Xi ≤ 1, Xi ∈ (0, 1) ∀i

can cover the set. Many other sophistications are possible. These approaches
require that the management variables be binary (integer), and considerable
effort has been expended towards solution of these problems – typically with
heuristic methods such as tabu search or simulated annealing (see, for exam-
ple, Martell et al. 1988, Murray and Church 1995, Boston and Bettinger 1999).
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Because the original motivations for the clearcut size limits included concerns
for aesthetics, wildlife habitat, water quality, and so forth, addressing adja-
cency constraints has often been interpreted (or even advertised) as addressing
those underlying concerns. Adjacency constraints are most clearly applicable
when the problem is avoidance of adjacent management actions, per se. They
do not necessarily address any other spatial relationship. However, there have
been a few recent attempts at augmenting thebasic adjacency formulation that
show more promise in addressing the underlying ecological problems (see, for
example, Bettinger et al. 1997, Barrett et al. 1998, Falcao and Borges 2001). We
will not discuss this approach further here, because we believe that as spatial
relationships in addition to adjacency are captured, this approach becomes a
special (simple) case of direct spatial optimization or heuristic manipulation
of simulation models, as described below.

8.2.2 Spatial enhancement of the natural reserve-selection models

It has been said that the next great challenge for conservation science is
the design and implementation of comprehensive and ecologically adequate
reservenetworks (Lubchenco etal.2003,Williams etal.2004).Becauseconserva-
tion reserve areas are rare (at least in areal extent) and human impacts on natu-
ral ecosystemsare increasing, there is agrowing realization thatwhen there are
alternative locations for reserve lands the choice should be, in some sense, opti-
mal (Pressey et al. 1993, Reid 1998). Quite a large body of literature has devel-
opedbasedon the set-covering formulation (Toregas andReVelle1973) applied
to the natural reserve-selection problem (see, for example, Williams and
ReVelle 1997, Polasky et al. 2001, and Rodrigues and Gaston 2002). The basic
formulation is as follows:

Minimize:
∑

i

c i Xi

Subject to:
∑
i∈� j

Xi ≥ kj ∀ j

Xi ∈
{
0, 1

}
∀i

where Xi = 1 if site i is selected and 0 if site i is not selected for the reserve sys-
tem, ci = the cost of selecting site i for the reserve network, �j = the set of sites
that contain species j, and kj = the number of sites required for adequate rep-
resentation of species j (k = 1 for the most basic set-covering problem; k > 1 if
some degree of redundancy is desired).

Because the choice variables are often defined in a fairly spatially explicit
manner, this formulation is sometimes referred to as a form of spatial
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optimization. This provides a good opportunity for us to draw a distinction
between “spatially explicit optimization” (of which this is an example) and
what we refer to as “spatial optimization,” which (as defined above), refers to
methods that capture spatial relationships between different land areas in the
process ofmaximizingorminimizing anobjective function subject to resource
constraints.

Just as attempts have been made to augment the adjacency constraint for-
mulation, recent contributions in the literature (for a review see Williams et al.
2004) have endeavored to add spatial relationships to the set-covering reserve
selection model (some examples are Possingham et al. 2000, Nalle et al. 2002,
Onal and Briers 2002, 2003, Fischer and Church 2003). And, similar to our
point about the augmented adjacency constraint formulation, we will not dis-
cuss this approach further here, becausewebelieve that as spatial relationships
are captured, this approach will be best described as being one of the next two
approaches.

8.2.3 Direct approaches to spatial optimization

The basic approach that we favor is to directly include the spatial rela-
tionships of concern in a formulation that is focused on the optimization of
landscape pattern, per se. We would characterize the approach as having a
closed-formformulationwitha formal solutionmethod.HofandBevers (1998,
2002) explore a number of formulations along these lines, including static
models, dynamicmodels,models of spatial autocorrelation, andmodels of sus-
tainability. Other authors that have taken relatively direct approaches include
Nevo and Garcia (1996), Farmer and Wiens (1999), and Loehle (1999).

As an example, wildlife habitat fragmentation (spatial division into disag-
gregatedpatches) is a commonconcernwith regard toplacementof timberhar-
vests. The approach is to directly model the wildlife population growth and
dispersal patterns that make habitat connectivity (nonfragmentation) impor-
tant. This is a dynamic problem where management activities must be sched-
uled over time, wildlife habitat (determined by forest age) must be tracked as
forest stands age andgrow, anddifferentwildlife species responddifferently to
thosehabitats.Themethod is related to the classic “reaction-diffusionmodels”
(Skellum 1951, Kierstead and Slobodkin 1953, Allen 1983).

First, the land is divided into cells, where the cell could be scaled to the ecol-
ogy of the species (e.g., average home range or territory size) or could be scaled
simply to provide adequate spatial resolution for the optimization problem.
Then, a set of choice variables is defined for each cell, each of which represents
a complete scheduled management prescription. For example, each prescrip-
tion could define the time periods for harvesting the given celone, including
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a no-harvest option. Any harvest would reset the forest age class to zero, and
would change the habitat for each wildlife species accordingly. Initial forest
age classes are assigned to each cell, as well as initial population numbers for
each wildlife species included.

The following definitions will be used for the further discussion of these
approaches: i indexes species, k indexes the management prescription, h
indexes the cells, as doesn, t indexes the timeperiod, qh = thenumber of poten-
tialmanagement prescriptions for cell h, T= the number of timeperiods,Xkh =

the area in cell h that is allocated to management prescription k, Kh = the total
area in cell h, Siht = the expected population of species i in cell h at time period
t, aihtk = a coefficient set that gives the expected carrying capacity of animal
species i in cell h at timeperiod t, ifmanagementprescription k is implemented
(based on forest age class), Nih = the initial population numbers for species i in
cell h, and ginh = the probability that an animal of species i will disperse from
cell n in any time period to cell h in the subsequent time period. This includes a
probability for n = h, so that the ginh sum to one for each combination of h and
i. In addition, ri is the “r value” of population growth rate (net of mortality not
related to dispersal) for species i, and Fit is the total population for species i in
time period t.

The simplest objective function would be to maximize a given species’
expected total population:

Maximize
∑

t
Fit for a given i

Theminimumpopulation over all timeperiods (m), for a given species could be
maximized as follows:

Maximizem

Subject tom ≤ Fit t = 1, . . . , T for a given i

Or, a weighted (Vi) sum of multiple species’ populations could be
maximized:

Maximize
∑

i
Vi

(∑
t
Fit

)
.

Many other objective functions are also possible. The basic constraint set for
such a model is:

qk∑
k=1

Xkh = Kh ∀h (8.1)

Sih0 = Nih
∀i

∀h
(8.2)
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Siht ≤
∑

k
aihtk Xkh

∀i

∀h
(8.3)

t = 1, . . . , T

Siht ≤
∑

n
ginh

[
(1 + r )Sin(t−1)

] ∀i

∀h
(8.4)

t = 1, . . . , T

Fit =
∑

h
Siht

∀i

∀t
(8.5)

0 ≤ Xkh ≤ Kh
∀k

∀h
(8.6)

This model is linear, with continuous variables, and can be solved with stan-
dard solution software. Equation (8.1) limits the total management prescrip-
tion allocation to the area in each cell. The management prescriptions are
defined with no action in the first time period (t = 0), which is used simply
to set initial conditions. Equation (8.2) sets the initial population numbers
for each species, by cell. The Siht (expected population by species by cell, for
each time period) is determined by whichever of Equation (8.3) or Equation
(8.4) is binding. Constraint set of Equation (8.3) limits each cell’s population
to the carrying capacity of the habitat in that cell, determined by forest age
classes.Theconstraint setofEquation (8.4) limits eachcell’spopulationaccord-
ing to the growth and dispersal from other cells and itself in the previous time
period. The growth anddispersal characteristics of each species are reflected by
the parameters in constraint set of Equation (8.4). The constraint set of Equa-
tion (8.4) adds up the expected value of the population dispersing from all
cells in the previous time period to the given cell in the given time period. It
is important to note that whenever Equation (8.3) is binding for a cell, some
of the animals assumed to disperse into that cell are lost because of limited
carrying capacity. Reaction–diffusion models assume that organisms dispers-
ing into unsuitable regions will perish. This mechanism provides a probabilis-
tic basis for the expectation that mortality (beyond the nondispersal-related
mortality accounted for in the r value) occurs in proportion to the usage of
inhospitable surroundings. Thus, actual population growth is determined by
a combination of potential growth, dispersal, and spatially located carrying
capacities determined by the management prescription allocations. The con-
straint set of Equation (8.5) defines the total population of each species, in each
time period. And finally, the constraint set of Equation (8.6) limits the choice
variables to be between zero and the area in each cell.

Hof and Bevers (1998, 2002) applied this basic type of model structure
to problems of habitat placement for the black-footed ferret, which also
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accounted for release schedules of captive-born animals. As a follow up, it was
applied to the black-tailed prairie dog, accounting for population-dependent
dispersal behavior. Hof and Bevers also modified this structure to account
for water-borne seed dispersal and for habitat edge effects, converted the
model to optimize the location of control measures in managing exotic pests,
and applied these basic ideas to problems other than organism management
(especially stormflow management and fire management).

8.2.4 Heuristic manipulation of simulation models

The primary criticism that can be leveled at the approaches in the previ-
ous section is that there are limits to the complexity of ecological relationships
that can be captured in a closed-form optimization formulation. An alterna-
tive that has been suggested by several authors (see, for example, Haight and
Travis 1997, Boston 1999, Jager and Gross 2000, Calkin et al. 2002) is to start
with a more complex ecological model and use heuristic procedures to direct
repeated predictions with different management regimes, hopefully converg-
ing on a near-optimum.

A number of ecological modeling approaches are available to serve this pur-
pose, includingempiricalmodelsderived fromstatistical estimation (e.g.,Mor-
rison et al.1987), analyticalmodels that have exact solutionsderived froma few
fundamental mathematical relationships (e.g., Lande 1987), and simulation
models derived from mechanistic mathematical relationships whose number
and complexity requires that solutions be explored numerically with digital
computers (e.g., Fahrig 1997). Because empirical models tend to be correlative
in nature and have not performed well in prediction (Block et al. 1994), and
because analytical models tend to become intractable in all but the simplest
cases of spatial heterogeneity (Fahrig 1991), simulation modeling has become
the method of choice for management problems (Simberloff 1988). It is hard
to provide a general formulation for this approach because it depends on the
simulation model chosen.

The primary shortcoming of this approach is, of course, that the out-
come is only “the best” alternative from among the landscape layouts investi-
gated. Even with a large number of layouts, near-optimality is not assured. To
demonstrate the point, suppose we have 100 land units (for example, in a
10 × 10 grid). Even if we must consider only one action (versus none), with
no scheduling component, there are still 2

100 or 1.2676 × 10
30 possible

spatial layouts. Even if 99.9999999 percent (all but a trillionth) of the
layouts can be eliminated as undesirable, we still have 1.2676 × 10

21

options. Even if there are a trillion layouts that are acceptable, we only have
a 7.886 × 10

−13 (1 × 10
9 ÷ 1.2676 × 10

21) chance of hitting an acceptable
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solution if we randomly arrange our management actions. This suggests the
need for optimization procedures in all but the simplest spatial problems. In
addition, the implicit response surface may or may not be convex, such that a
solution that appears to be near-optimal may actually not be at all.

Thus, the choice is between a precise optimum to a simplified model and an
approximate optimum to a more precise model. Figure 8.1 depicts this trade-
off and how it might change as progress is made in this research area. We have
previously drawn the analogybetween these twoalternatives and the twoalter-
natives faced early in the US space program between the X-15 plane and the
Mercury program rocket as the direction for future manned space exploration
(von Braun et al. 1985). The simulation approach, like the Mercury rocket, can
do more immediately (especially in terms of ecological complexity and uncer-
tainty). The closed-form optimization, however, is more like the X-15 plane in
that it is of the basic structure that we would eventually like to get to (it finds
global optima and is of the mathematical form that most closely captures the
concept of landscape pattern optimization in the first place). Like the choice
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faced by the US space program, it is really hard to say which approach might be
themost fruitful in the longrun,andbothareprobablyworthresearchinguntil
proven otherwise. In a given planning application, the answer may depend on
the questions being asked and the circumstances surrounding the planning
problem. For example, habitat placement choices may be limited because the
pattern of landdevelopmenthas reduced the configurationpossibilities (Saun-
ders et al. 1991). When habitat-placement options are restricted to a small set,
simulation modeling may offer a very useful approach for ranking alterna-
tive configurations. If, however, placement choices are numerous, then formal
spatial optimization may be more useful in determining a layout that really
is “the best” given the objectives and constraints of the planning problem.
Joint use of both strategies as in Hof and Raphael (1997) or Haight et al. (2002)
might offer planners the opportunity to take advantage of both the ecological
detail capturedbysimulationmodels andtheanalyticalpowerof formal spatial
optimization to select the best solution.

A very pragmatic version of theheuristic approach that is commonly applied
is to use simulation modeling to evaluate population response to alternative
landscapes a posteriori. Management choices are thus made by ranking a small
number of landscape alternatives according to some criterion (e.g., organism
abundance, persistence) and selecting the strategy that ranks highest. This use
of simulated predictions in conservation planning has been termed “relative
ranking” by Turner et al. (1995) and is a form of prescriptive planning because
the result specifies a habitat arrangement that will “best” address some set of
management objectives. This approach is severely limited (as just discussed) by
the small number of landscape layouts investigated (Conroy 1993).

8.3 Critical research questions

It should be fairly clear from the preceding section that the state-of-
the-science in optimization of landscape pattern borrows heavily from the
operations-research or management-sciences fields. Thus, ecology in general
and landscape ecology in particular could probably benefit from more uti-
lization of management-science methodology. It should be pointed out that
the flow of knowledge also goes the other way. The study of natural pro-
cesses has inspired several heuristic procedures in optimization. In particu-
lar, a class of heuristic solution algorithms called “genetic algorithms” (Reeves
1993) solvesmathematical programmingproblemsby emulating evolutionary
processes. In the heuristic search, new trial solutions are created by “mating”
previous solutions so as to emphasize positive traits much like natural selec-
tion promotes evolution in natural systems. Another example is “simulated



152 john hof and curtis flather

annealing” (Reeves 1993) which was originally developed to simulate the
annealing process of cooling metals, but which is now commonly used as an
optimization search routine. There is sufficient interest in this line of thought
that an advertisement appeared in OR/MS Today (April 1999), the online ver-
sion of the INFORMS magazine of the Institute for Operations Research and
theManagementSciences, foranendowedchair in industrial andsystemsengi-
neering at a major university that focused on “the design of sustainable man-
made systems drawing upon understanding of efficiencies of natural systems”
and “the introduction of efficiencies from natural systems to industrial opera-
tions.” At any rate, our focus here is on the application of optimization to man-
age natural systems (and not the other way around).

8.3.1 Randomness

The most glaring weakness in the state-of-the-science in spatial opti-
mization is in the treatment of stochastic variables. In Hof and Bevers (1998),
we treat randomness with “chance constraint” formulations that assume nor-
mal distributions, and knowledge of the means and variances for all random
variables (as well as the spatial covariances between them). With knowledge
of random variable distributions, stochastic programming as well as Monte
Carlo and other numerically intensive approaches may show promise in both
evaluating the impact of risk on optimization model solutions and in modify-
ing those solutions to better account for the randomness in the systems being
modeled. This knowledge allows rigorous analysis of randomvariables, butwe
must admit that it is rarely available in real-world resource management and
planning problems.

In order to discuss the less rigorous possibilities, let us make sure that a few
definitions are clear. Under conditions of “risk,” we face randomness in the
systems that we must manage, but we have knowledge of the probabilities of
the possible outcomes, and we know the effects that our alternative courses
of action have on those probabilities. Under “uncertainty” we do not know
the probabilities or the effects of our potential actions on those probabilities.
And, there is a third condition, usually referred to (rather unsympathetically)
as “ignorance,” where we do not even know what outcomes are possible with
our alternative courses of action. Obviously, uncertainty is more difficult to
dealwith thanrisk, and ignorance ismoredifficult thanuncertainty.Analytical
approaches are quite potent in managing risk, but are less so with uncertainty
and ignorance. Stochastic programming, Monte Carlo simulations, expert sys-
tems, etc. all need information on probabilities of outcomes in order to man-
age randomness rigorously. The fundamental research problem for landscape
(andother) ecologists is to reduce ignoranceanduncertainty,butweoftenmust
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manage systems that are inherently stochastic so that the best we could ever
hope to do is convert ignorance and uncertainty into risk. At least, if the prob-
lemcanbe so-reduced, it is conducive to rigorous analysis.Under conditions of
significant uncertainty or ignorance, there is really not very much that can be
done analytically to spatially optimize landscape pattern.

Thebest that canprobablybedone fromamanagementviewpoint is todiver-
sify the land management portfolio in the short term, and use that as a start
to an adaptive management process (Walters and Holling 1990) in the long
term. This approach is quite analogous to how a portfolio manager diversifies
a client’s investments in order to reduce the chance of a catastrophic loss. The
two basic principles of diversifying a land management portfolio in the short
termare: (1)within areas that are subject to the same randomevents,we should
dodifferent things thatwill responddifferently to those randomevents, and (2)
when we do the same things in different areas, we should do them far enough
apart that they are subject to different random events.

In both cases, the objective is to reduce the random variability of system
response by diversifying what we are doing across elements that are relatively
noncovariant (that have covariances that are smaller than the variances of the
individual elements). We can do this (imperfectly) without knowing the actual
variances or covariances, but just knowing that landscapes are spatially auto-
correlated, such that areas aremore independent the farther theyareaway from
each other. This diversification also presents a good beginning for an adap-
tive management process where we use management actions as experiments
so as to learn more about the systems that we are managing. By diversifying
our approach to management, we will learn more, sooner. It will be critical
that monitoring systems be put into place if we are going to learn anything
from these “management experiments” (monitoringwill be discussed as a sep-
arate research need below). With this approach, we will adapt our manage-
ment strategy as we go along, learning what we can in a continuous process.
Thus, research is integratedwithmanagement in this approach todealingwith
uncertainty and ignorance.

8.3.2 Organism movement

The second most obvious set of research questions emanates from
the most fundamental reason that spatial pattern matters in ecological
systems – the fact that organisms move around on the nonhomogeneous land-
scape. The recognition that environmental heterogeneity and organism move-
ment (in particular organism dispersal) interact to affect population dynam-
ics has been key to what Turchin (1998) called a “. . . paradigmatic shift from
the aspatial equilibrium view . . . to a spatially explicit view.” Unfortunately,
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organism movement is poorly understood and is an extremely difficult area
of empirical research (Clobert et al. 2001), particularly at the landscape scale
(Harrison and Bruna 1999). It may seem trivial to highlight species movement
as a knowledge gap given its oft-cited importance, but we would be remiss not
to emphasize the need for more empirical data regarding how (e.g., random or
biased diffusion), when (e.g., what ecological conditions promote dispersal),
and to what degree (e.g., how often and how far) species move in landscapes.

Techniques for studying animal movement are less well developed than are
methods for estimating demographic parameters (Turchin 1998). Choice of
methods will depend to a large degree on whether one needs to quantify the
movement paths or simply the population-level pattern of redistribution. The
kind of movement data required will be dictated by the information needed
to address the planning problem. For example, quantifying species-specific
search rules used to locate vacant territories would require information on the
actual movement paths taken by individual organisms. Alternatively, estimat-
ing the distribution of dispersal distances or the resistance of the interpatch
environment tomovementmayonly require informationon the rate anddirec-
tionality of population spread. Turchin (1998) and Clobert et al. (2001) pro-
vided a comprehensive review of data collection and analysis methods that are
appropriate for both types of questions.

Although the use of new approaches to study species movement will extend
our abilities to prescribe landscape configurations, the spatial and temporal
extent of conservation plans often make it very difficult to detect population
response, replicate conservation treatments, and identify mechanisms under-
lying population change. These problems pervade empirical testing of con-
servation plans and they have been addressed with several atypical research
protocols. Carpenter (1990) reviews pre- and post-treatment time-series anal-
yses to infer nonrandom change in system response. Similarly, Hargrove and
Pickering (1992) outline the use of “quasi-experiments” to take advantage of
natural disturbances that alter habitat configuration. An approach directed
specifically at increasing replication is to repeat unreplicated studies in differ-
ent systems (Carpenter 1990). Such an approach can be approximated by accu-
mulating the efforts of others and analyzing independent research effortswith
meta-analysisprocedures (Arnqvist andWooster1995).Andagain,where repli-
cation and experimental controls within the planning problem are feasible,
active adaptive planning (Walters and Holling 1990) could provide opportu-
nities for stronger inferences from management experiments.

8.3.3 Monitoring of spatially explicit plans

Even if landscape planners had access to complete information on
species movement, a more fundamental empirical gap is the paucity of tests
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of spatially explicit conservation plans. An especially critical need is for well-
designed and active monitoring programs that are linked to plan implementa-
tion.Monitoring information isneededtoassess the successor failureofagiven
plan, to testbasic ecological conceptsuponwhich theplan isbased, andto iden-
tify the mechanisms underlying population response to habitat prescriptions
(Hansson and Angelstam 1991). For example, critical thresholds have been
demonstrated theoretically, but there have been very few attempts to establish
the existence of critical thresholds in field studies of species distribution and
abundance (but see With and Crist 1995 and Trzcinski et al. 1999).

Regardless of the protocol used, it is critical that a more concerted effort be
directed at designing and implementing monitoring strategies that allow con-
servation plans to be tested (Havens and Aumen 2000). Because long time peri-
ods are required to quantify species response to modified landscapes, research-
ing the relative merits of alternative monitoring designs will be difficult.
Wennergren et al. (1995) offer an intriguing suggestion for researchers – use
spatially explicit population models to test the ability of alternative monitor-
ing designs to predict the consequences of habitat layouts prior to implement-
ing them in the field. Failure to devote more effort toward monitoring will
perpetuate our current reliance on untested concepts and will heighten the
contention and uncertainty that surrounds the use of planning models to
derive spatially explicit habitat prescriptions.

8.3.4 Multiple species/community level models

Another important theoretical gap concerns how one prescribes habitat
layouts that are relevant to the broader species assemblage occupying the land-
scape. The discussion above was limited to the response of individual popula-
tions to varying habitat arrangements, avoiding the issue of conflicting habi-
tat requirements among multiple species. Even if planning models could be
developed for some suite of species inhabiting the planning area, the feasibil-
ity of deriving habitat prescriptions that are relevant to the group is question-
able due to species interactions. The extension to biodiversity conservation as
a whole is even less clear (Turner et al. 1995).

Moving from single-species to multi-species conservation planning is cer-
tainly difficult and we know of no definitive strategy. One approach that
has emerged repeatedly is the use of indicator species (related incarnations
include keystone, umbrella, or focal species) to reflect the status of the over-
all species assemblage. Unfortunately, indicators are often chosen opportunis-
tically (e.g., well-studied and well-surveyed taxa). Tests of this strategy using
broad taxonomicgroups (e.g., birds,mammals, butterflies) havenot supported
its general applicability (Flather et al. 1997). However, rejection at broad tax-
onomic levels should not preclude the search for indicators among finer sets
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of species. MacNally and Fleishman (2002) are developing statistical model-
ing approaches to defining efficient sets of indicator species within taxonomic
groups (e.g., butterflies) that are showingpromise, at least amongbutterflies.A
more refined search to identify life-history attributes that could serve to group
species based on critical vital rates (e.g., reproductive potential, dispersal abil-
ity) may offer an alternative approach to defining indicators because species
that share similar life histories may respond to habitat geometry in a similar
fashion (see Noon et al. 1997). In a slight variation of this approach, mathe-
matical taxonomy and ordination techniques (Gauch 1982) could be used to
define clusters of species based on measured life-history attributes such that
the species pool for a given planning area is partitioned into sets that may be
similarly sensitive to habitat arrangement effects.

8.3.5 Synthesis

Even though theoretical developments in spatial ecology are relatively
recent, theoretical researchon the concepts reviewed in this chapterhas far out-
paced empirical research. The disparity between theory and empirical research
has resulted in a baffling array of models and results that can appear contra-
dictory to conservation planners (de Roos and Sabelis 1995). Consequently,
the lack of theoretical synthesis is an important knowledge gap hindering
the application of these concepts in conservation planning. There is a need to
summarize how different modeling approaches and parameterizations affect
habitat prescriptions so that domains of applicability can be recognized by
thosewhodevelop and implement conservationplans. In the absence of amore
comprehensive synthesis, landscape planners will continue to be reluctant to
implement the habitat prescriptions derived.

Although synthesis may lack the intellectual excitement associated with
new theoretical developments, it is nonetheless important. We identify two
broad approaches to theoretical synthesis. The first is through structured
reviews of the literature. This will not be an easy task. There are numerous
nuances to spatial planning models that can quickly overwhelm attempts to
distill rules for application (de Roos and Sabelis 1995). It is not uncommon
for models of similar ecological phenomena to reach divergent conclusions
(e.g., compare the conclusions reached by Hill and Caswell 1999 and Fahrig
1998 regarding the importance of habitat arrangement in facilitating popu-
lation persistence). Part of the problem is that both structure and parameter-
ization differ among models, making it difficult to determine what is causing
the variability in model results. It is this complexity that may render tradi-
tional narrative reviews for theoretical synthesis flawed, suggesting that the
more structured analyses formalized inmeta-analysismightbebetter suited to
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identifying commonpatterns amongpublishedmodels (Arnqvist andWooster
1995).

A second approach to synthesis involves the systematic manipulation of
specific models using sensitivity analysis (Conroy et al. 1995). This would
involve the quantification of model response following purposeful and sys-
tematic alteration of model parameters (singly and in combination). Compre-
hensive exploration of model behavior under a wide range of ecologically rel-
evant parameter settings is important for at least two reasons. First, it can
help identify those aspects of species life history or habitat arrangement that
are critically important for understanding population response to landscape
changes. Second, it can determine whether there are fundamental shifts in
habitat arrangements in response to relatively small changes in the parameter
space.

8.4 Conclusion

The most fundamental research need in optimizing landscape pattern
is the ability to better capture the relevant ecological relationships in an opti-
mization analysis. The other chapters in this book provide summaries of the
state-of-the-science in the most important research areas in landscape ecology.
Thus, anappropriate concluding remarkwouldbe that research in spatial opti-
mization of landscape pattern should strive to capture the state-of-the-science
described elsewhere in this book, wherever appropriate. Also, the other chap-
ters identify themostpressing researchquestions in landscapeecology, soobvi-
ously the future challengewill be to continue to capture this landscape ecology
research in spatial optimization models.

Anatural reaction to the ideaofoptimizingspatialpatternacross a landscape
is thatwesimplydonotknowenoughaboutecological systems toactuallyopti-
mize them. Indeed, we will probably never know as much about ecology as we
would like to. Our reaction is that it is important to apply spatial optimization
in the context of an adaptive learning process (as we have noted previously).
We will probably never have a level of knowledge that is adequate to find a per-
manent optimal strategy for a managed ecosystem in a one-time optimization
analysis. On the other hand, an adaptive management process that does not
take advantage of optimization methods is much less likely to make progress
either in learning about the ecological system or in managing it.

Applied in a careful, learning process, spatial optimization of landscape pat-
tern has the potential to illuminate new hypotheses for landscape ecology
research as well as providing a mechanism to apply landscape ecology research
in landscape management. We will close this chapter as we began it, with a
quote from Wu and Hobbs (2002): “Research into the spatial optimization
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of landscape pattern . . .” as it relates to ecological structure (e.g., species
distribution, community composition) and function (e.g., disturbance spread,
species dispersal) across landscapes, “. . . presents a new and exciting direction
for landscape ecology.” We definitely hope so.
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9

Advances in detecting landscape
changes at multiple scales: examples
from northern Australia

9.1 Introduction

As we move into a new century, changes in the cover and condition
(or “state of health”; see Section 9.3) of different landscapes continue under
human influences. Our responses to landscape changes are often slow because
subtle problems often go undetected, resulting in costly long-term environ-
mental and socio economic problems (Scheffer et al. 2003). Landscape changes
are also spatially heterogeneous and occur at different scales, and it is difficult
to select the appropriate scale for analysis (Gustafson 1998). As landscape ecol-
ogists, we are perhaps best at quantifying biophysical changes at fine scales
(e.g., plots of 1–100m2) using ground-based data and at coarse scales (e.g.,
regions and catchments of >100km2) using satellite imagery (Ludwig et al.
2000). However, between fine plots and coarse regions, that is, at local water-
shed andpasture scales (e.g.,1–100km2), wheremanagement actions are often
most urgently needed, changes in land condition often go undetected. A key
challenge for us is to develop methods and indicators that will readily detect
changes in land cover and condition at these watershed and pasture scales, as
well as at fine plot and coarse regional scales.

Thus, landscape change information is needed at multiple scales, from fine
to coarse. In Australia, land cover and condition changes are used at the very
coarse national scale (i.e., 7.7 millionkm2) for periodic reporting on the “State
of the Environment” (Hamblin 2001), which is used to guide national envi-
ronmental policies. At state-territory, regional, and property scales in north-
ern Australia, information on changes in land cover and condition are used
to develop natural resource management plans (Landsberg et al. 1998, Karfs
et al. 2000) and to set land-use regulations, for example, on clearing remnant
vegetationonpastoral leases (Wilson et al.2002).Qualitativelymonitoring land
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condition at the paddock scale (e.g., 100–1000km2) has aided rangeland man-
agers in developing strategies and tactics for improving the condition of their
grazing lands (Landsberg et al. 1998). However, as landscape ecologists, our
goal is to quantify changes in land cover and condition at multiple scales so
that landscape changes can be better managed across all scales.

Landconditionchangesatonescalehaveflow-onorsecondaryeffectsatother
scales. For example, in northern Australia, changes in land cover and condi-
tion in upper watersheds have impacts on streamside riparian zone vegetation
and on in-stream water quality and aquatic organisms lower in the watershed
(Burrows and Butler 2001, Douglas et al. 2003). Some land condition changes
canhave far-reaching environmental, social, and economic effects as, for exam-
ple, soil erosion in catchments draining into the Great Barrier Reef estuary of
Australia is causing environmental damage (Prosser et al. 2001), which reduces
the aesthetic andeconomic valueof this reef for tourism. Identifying suchflow-
oneffects of land condition change across a rangeof scales, andpredicting their
consequences using tools such as models (Strayer et al. 2003), is another key
challenge facing landscape ecologists.

Identifying changes in land cover and condition, and their flow-on effects, is
important, butperhaps agreater challenge for landscape ecologists is tounder-
stand the ecological processes that drive landscape changes, and the interac-
tions between patterns of change and processes across a range of scales (Turner
et al. 2001). A good understanding of pattern–process relationships is needed,
along with tools such as simulation models, if we want to counteract problems
or restore landscapes by appropriate management. For example, simulation
models have been used to explore how pastoral activities influence the inter-
actions between fire and grazing, and how these factors change savanna land-
scapes in northern Australia (Liedloff et al. 2001).

In this paper, I provide my perspective on recent advances in develop-
ing methods for addressing three key challenges facing landscape ecologists:
(1) detecting changes in land cover and condition, and its spatial heterogeneity,
atmultiple scales, (2) identifyingflow-on effects from landscape changes at dif-
ferent scales, and (3) understanding the ecological processes that drive changes
in landscape condition so that effective management actions can be taken. To
illustrate these three challenges, I use examples from the savanna landscapes
of northern Australia.

9.2 Examples of detecting landscape changes from
northern Australia

9.2.1 Source of examples

For the sake of brevity and author familiarity, examples will be drawn
from recent ecological research in the landscapes of northern Australia. These
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landscapes are mostly savannas, as comprehensively described on a tropical
savannas website (http://savanna.cdu.edu.au/information/). Briefly, savannas
vary from nearly treeless grasslands to open woodlands (Mott et al. 1985).
Corymbia andEucalyptus species dominate the tree layer and tall tropical grasses
characterize the grass layer. The climate is tropical with distinctive wet and dry
seasons. Near the north coast of Australia, rainfall often exceeds 1000mm dur-
ing the wet season (December to March), declining inland to less than 500mm
towards the center at Alice Springs. Soils vary from sands and calcareous loams
to cracking clays, depending on geological parent materials and topography.

9.2.2 Defining landscape condition

Before proceeding with examples, some definitions are provided. Land-
scapes in good condition, or “healthy” landscapes, have been defined (White-
head et al. 2000) as those landscapes in northern Australia that:

� maintain basic functions at all spatial scales, including functions such
as nutrient cycling, water capture, and provision of food and shelter for
fauna;

� maintain viable populations of all native species of plants and animals
at appropriate spatial scales and time scales; and

� reliably meet the long-term material, aesthetic, and cultural needs of
people who have an ongoing interest in the savannas.

At the time thisdefinitionwasdeveloped, throughaseriesofworkshopsheld
in Darwin, Australia, in 1999, it was considered a working definition, that is,
one subject to changeandrefinement. In2003,werefinedourviewofwhat con-
stitutes healthy savannas to include the notion that landscapes in good condi-
tion also provide a “home” for different groups of people, that is, a place where
they can enjoy their own culture and freely share their culture with others.

The condition of landscapes falls along a continuum, which can be simply
illustrated as varying from good to poor (Fig. 9.1a). To evaluate where a partic-
ular landscape falls on this continuum, one can assess specific attributes and
indicators of the landscape, for example, the capacity of the landscape to retain
resources (e.g., capture runoff). Good condition savannas, for example, have
a dense ground-layer of perennial grasses under an open tree layer (Fig. 9.1),
which functions to retain soil sediments and organic matter flowing in runoff
(Tongway and Ludwig 1997). In contrast, poor condition savannas have little
vegetation cover and mostly bare soils, which do not retain, but leak resources.
Other landscape attributes and indicators can also be assessed, such as natural
soil fertility and the complexity of habitats, and these indicators can be used to
position a landscape along this continuumof conditionorhealth.Theposition
of a landscape along this continuum based on one attribute or indicator can be
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(a) Continuum of landscape condition
Good
condition Attributes & indicators

Conserving Resource retention

Poor
condition

Leaky

Low N and P 

Simple

Poor

Poor condition, 1973

Natural soil fertility

Habitat complexity

Biodiversity

High N and P

Complex

Rich

Good condition, 2002
(b)

f igure 9 .1
(a) Landscapes can be positioned along a continuum from good to poor condition
using attributes and indicators related to their functionality (see text), which is
illustrated by fixed-point photographs, (b) where a landscape was in good condition
in 2002 after recovering from a poor condition due to an exclosure being established
in 1973

different from that for another attribute or indicator. For example, a fertilized
site (a field) with high N and P could have a simple habitat structure (a single
crop) with poor biological diversity.

9.3 Key challenges

9.3.1 Key challenge 1: detecting changes in landscape condition
at multiple scales

Ground-based methods are used to detect changes in land cover and
condition. For example, changes in vegetation density and biomass have been
monitored using fixed plots (1400 m2) in the savannas of northern Australia
(Bastin et al. 2003). Fixed photo points were also used to record and illustrate
landscape changes. The two photos in Fig. 9.1 were taken at the same point
in 2002 and 1973 (left to right), which illustrates vegetation recovery within
an exclosure built in 1973 after the land was subject to 90 years of cattle,
horse, and donkey grazing. Land condition data are also being collected on
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ground-based monitoring plots in the savannas of the Northern Territory
(Karfs et al. 2000).

Although useful for detecting changes in landscape cover and condition at
specific plot locations, this fine-scale, ground-based monitoring does not pro-
vide a broader view of vegetation change, which is needed for improving land
management at coarserwatershedandproperty scales (i.e.,100–1000km2) and
at regional scales (i.e., >1000km2). At watershed, property and regional scales,
remote-sensing data have proven useful for monitoring changes in rangeland
cover and condition, and the spatial heterogeneity of these changes (e.g., Karfs
et al. 2000). The usefulness of different ground- and remote-based methods for
monitoring changes in Australia’s rangelands at different scales has been com-
prehensively reviewed (TS-CRC 2000).

An example of a useful method, applicable at the property and regional
scales, is the use of time sequences of Landsat TM imagery. Karfs et al. (2000)
acquired this imagery from 1987 to 1998 to assess changes in land cover
and condition across the Victoria River District of the Northern Territory of
Australia. With this “cover-change” method, the region is spatially parti-
tioned into different lithology types and, within each type, the ground cover
reflectance data from Landsat TM time-series imagery are first corrected and
then statistically evaluated to define spatial trends and patterns of heterogene-
ity (Wallace and Campbell 1998). Changes in cover over different time periods
are color-coded and regionalmaps are produced (Karfs et al.2000). These cover-
changeassessments aregenerated ina timelymanner toprovide landmanagers
with early warnings of land condition problems so that they can take remedial
action. Regional, color-coded maps also help land managers better understand
thedynamicsof theirproperty relative to thegeneral region, andrelative tonat-
ural rainfall patterns and their own land management practices.

At finer watershed scales (i.e., a few km2), Landsat TM imagery has proven
useful for investigating landscape patterns of soil erosion and deposition in
theNorthernTerritory ofAustralia (Pickup1985). Imagery at this scalehas also
beenused for assessing trends in the conditionofpastoral lands in theTerritory
(Pickup et al. 1998). With this method, Landsat TM time-series data, reflecting
changes in ground cover near cattle watering-points, are compared between
wet and dry periods. If time-series data document that only ephemeral vege-
tation occurs near watering-points, this indicates that the pasture is likely to
be in poor condition, whereas good condition is indicated if the imagery data
suggests that perennial vegetation occurs near these watering-points. Such
land condition assessments assist land managers set stocking levels for their
pastures.

These Landsat TM land cover and condition indicators are based on well-
established remote-sensing methods. New advances are aimed at developing
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indicators that reflect the functionality of landscapes in terms of how well
resources are likely to be retained in, not leaked from, landscapes (Ludwig
et al. 2000). Ideally, indicators of landscape functionality should be based on
remotely sensed land-cover data, and on the spatial configuration and hetero-
geneity of this cover. A landscape leakiness index has been developed based on
high-resolution, remotely sensed imagery (aerial videography) from fine-scale
(i.e.,1000m2), relativelyuniformhillslopes innorthernAustralia (Ludwig et al.
2002). This “directional” leakiness index strongly reflected the observed con-
dition or health of these uniform hillslopes.

This landscape leakiness index also has a number of conceptual and com-
putational advantages over related landscape metrics such as the Lacunar-
ity index, which correctly ranked sites from poor to good condition, but did
not strongly distinguish the poor condition sites (Bastin et al. 2002). Current
work by these authors is to develop a new landscape leakiness index based on
remotely sensed imagery of coarser-scale (i.e., 1–100km2), relatively rough-
terrain landscapes (i.e., with variable topography). The aim is to derive a leak-
iness index that is more widely applicable and that can be rapidly assessed to
provideearlywarning indicatorsofundesirable changes in landscape function-
ality so that effective action can be taken.

9.3.2 Key challenge 2: flow-on effects at multiple scales

Identifying how land-use, cover and condition changes affect various
componentsof the landscape remainsa challenging research topic in landscape
ecology (Wu and Hobbs 2002). Ecological studies on how natural and anthro-
pogenicdisturbances affect organismsandecosystemshavebeenconducted for
decades, and books (e.g., Pickett and White 1985) and journals (e.g., Restoration
Ecology) are dedicated to this topic. However, placing such disturbance effects
into a landscape context requires a broadperspective of patchpatterns and eco-
logical processes (Turner et al. 2001).

For example, in northern Australia’s savannas, the killing of individual or
clumps of trees (Fig. 9.2a,b) and the general clearing of trees for creating more
open pastures (Fig. 9.2c) is a common practice (Ash et al. 1997). Tree clearing
greatly alters the patterning of vegetation patches and the action of hydrolog-
ical processes in savanna landscapes (Ludwig and Tongway 2002). Vegetation
patchiness is reduced and the cleared landscape is typically sown with exotic
grasses such as buffel grass (Cenchrus ciliaris). This loss of trees and thenewopen
grassy habitat has a flow-on effect to favor birds such as the red-backed fairy-
wren (Malurus melanocephalus).

A review of the literature by Ludwig and Tongway (2002) also documented
other flow-on or secondary effects. Cleared savanna landscapes can have
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(a)

(c)

(b)

f igure 9 .2
Photos of savannas in northern Australia where (a) individual trees and (b) clumps of
trees have been killed, and (c) where tree have been cleared and exotic grasses sown
to create open pastures
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significantly greater rates of runoff and soil erosion than uncleared lands on
similar topographies and soils. Further, soil carried in runoff can pollute other
systems such as the Great Barrier Reef estuary (Prosser et al. 2001).

In the rangelands of northern Australia, the disturbance of vegetation pat-
terns and ecological processes in savannas and grasslands can have flow-on
effects over a range of scales (Ludwig et al. 2004). For example, at fine plot-
scales (i.e.,1–100m2), the composition anddiversity of fauna such as grasshop-
pers and spiders is strongly reduced near cattle watering-points due to a
loss of vegetation patches, that is, habitat (Ludwig et al. 1999, Churchill and
Ludwig 2004). These findings suggest that the structure and spatial pattern
of vegetation patches can be used as indicators of how well landscapes pro-
vide habitats for a diverse fauna. Advances are being made in identifying habi-
tat indicators for monitoring biodiversity at these fine plot-scales, and such
habitat indicators are now being incorporated into rangeland monitoring pro-
grams (Woinarski and Fisher 2003, Smyth and James 2004). However, further
advances are needed on how these habitat indicators can be related to biodiver-
sity at coarser property and regional scales (i.e., 100–1000km2) (TS-CRC 2000,
Ludwig et al. 2004).

9.3.3 Key challenge 3: ecological processes driving landscape change

Another key research challenge is to advance our understanding of how
ecological processes drive the changes and flow-on effects we are observing at
different landscape scales. For example, as noted above, we have a basic under-
standing of how reducing the ground cover, and the patchiness of this cover,
on a hillslope can increase runoff and erosion (Ludwig and Tongway 2002),
and how this can have downstream or flow-on effects (Burrow and Butler 2001,
Prosser et al. 2001). However, when it comes to accurately predicting the con-
sequences of altering landscape processes by our management actions (e.g.,
Liedloff et al. 2001), we need an in-depth ecological and socioeconomic under-
standing.

An example of research that is advancing our understanding on how land-
scape processes control and drive changes at different scales comes from a
hierarchical geo-ecological approach (Pringle and Tinley 2001, Pringle 2002).
This approach aims to identify key geomorphic “nick-points” in the land-
scape where incisions, such as head-cutting gullies caused by cattle impacts,
are altering surface-flow processes, which then drive changes in vegetation
(Fig.9.3). In this example fromnorthernAustralia, notehowhead-cuttinggul-
lies have formed to “nick” water flowing off higher slopes (foreground), starv-
ing savanna trees of vital water, causing their death. The grassy ground-layer
has also been lost. Such drastic vegetation and hydrological changes will also
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figure 9 .3
An oblique aerial photo of a landscape in northern Australia where head-cutting
gullies have altered water flows causing tree death, hence, a change from a savanna
to a barren, eroded plain

alter other components in this landscape, such as the composition of flora and
fauna assemblages, as found for other savanna systems (e.g., Ludwig et al.1999,
Woinarski et al. 2002). This understanding of how such “nick-points” drive
landscape changes can be used to predict how repairing landscape incisions
could restore former hydrologic and geomorphic processes and hence return
the vegetation to something similar to, but not necessarily identical to, what
was there before.

9.4 Summary

In this chapter, I have presented my perspective on what I consider to be
threekey research topics in landscape ecology thatneedadvancement.First,we
need new indicators that are sensitive to subtle changes in landscape cover and
condition, and that can be derived from remotely sensed imagery at different
scales of resolution so that we can take a fine-to-coarse view of landscapes. Ide-
ally, these new indicators should reflect the functionality of landscapes, that is,
howthey retainvitalnatural resources, providehabitats forournativeflora and
fauna, andmeet theneeds of people, and they shouldprovide earlywarnings of
negative changes so that appropriatemanagement action canbe taken. Second,
we need to improve our understanding of how changes in a landscape at one
scale canhaveflow-onor secondary effects at other scales.Third,wealsoneed to
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better understand the ecological and socio economic processes that drive land-
scape changes so that we can improve our predictive capacity and, hence, our
management of changing landscapes.
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10

The preoccupation of landscape research
with land use and land cover

10.1 Introduction

For most people, their initial contact with the landscape is by the obser-
vation of landform and land cover. Human-perception analysis evaluates what
is observed in a holistic way and interprets simultaneously according to the
available knowledge. Landscape can be approached in multiple ways (Muir
1999, Cosgrove 2003, Claval 2005) and similar concepts have subtle differ-
ences in meaning. In common language and disciplines related to policy and
planning, the concepts of land use and land cover are sometimes erroneously
used as synonyms, while scientific communities use clearly distinct defini-
tions (Baulies and Szejwach 1997). An important conceptual difference also
exists between landscape and land (Zonneveld1995, Antrop2001,2003,Olwig
2004). Land is more associated with territory, terrain, soil, and land value,
whichdependon itsutility.The landscape is consideredasaperceivableexpres-
sion of the dynamic interaction between natural processes and human activi-
ties in an area (Council of Europe 2000). Although land use and land cover are
essential components in the characterization of the landscape, the concept of
landscape is broader and encompasses social, economic, and symbolic aspects
aswell. The increasingmagnitude andpace of the changes in landuse and land
cover have become of worldwide concern in policy-making (Fresco et al., 1996),
land management (Dale et al. 2000, Pontius et al. 2004), and modeling land-use
changes (VeldkampandLambin2001, Agarwal et al.2002). Issues suchasglobal
warming, land degradation, and deforestation rarely are focused directly upon
the landscape as a whole, integrating natural, cultural, and scenic values.

For landscape ecologists and geographers, land use and land cover are pri-
mary features of the landscape to be studied. The central paradigm is the
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continuous interaction between patterns formed by patches of land use and
land cover and the processes that define the functioning of the landscape
(Forman and Godron 1986). The study of changes in land use and land cover
thus forms a key issue in landscape ecological research. A basic question,
when applying landscape ecological principles in spatial planning, landscape
management, and conservation, is: “What forms and spatial arrangements of
land use can be suggested as being ecologically appropriate?” The mission
statement and objectives of the International Association for Landscape Ecol-
ogy (IALE) centers on interdisciplinary synergism involving all activities deal-
ing with the landscape (http://www.landscape-ecology.org/). The increasingly
faster changes of the landscape demand more comprehensive land-use policy
and planning, and the members of IALE have an important role to play in
this.

The use of landscape ecological knowledge in planning and management is
still in its infancy (Dale et al. 2000). Landscape planning is a complex problem
as multiple approaches are possible and many aspects need to be dealt with.
Applying landscape ecological knowledge demands increasingly an inter- and
transdisciplinary approach (Bastian 2001, Opdam et al. 2001, Tress et al. 2003).
In highly dynamical complex landscapes, such as urbanized ones, the dis-
cussion focuses on issues of multifunctional land use (Fry 2001, Brandt and
Vejre 2004), sustainability of landscapes (Haines-Young 2000), and designing
future landscapes (Nassauer1997, Steinitz2001). Spatialplanning, ruraldevel-
opment, landscape conservation, and landscape design are directly involved
in many aspects of land-use or land-cover changes. Changes in land use and
land cover are important indicators of processes that act on different spatial
scales ranging from action by local agents to global processes (Dale et al. 2000,
Agarwal et al. 2002). Thus land use and land cover are essential data sources in
landscape classification and typology (Mücher et al. 2003) as well as modeling
changes and predictions (Baulies and Szejwach 1997, Veldkamp and Lambin
2001).

Thepurposeof thispaper is toexplore thegeneral context inwhich the terms
land use/land cover and land-use/land-cover changes occur in relation to land-
scape research, planning, and design activities, different landscape types, and
possible causes and processes of change. The goal is to detect correspondences
and differences between different approaches and activities dealing with the
landscape and land use/land cover at a global scale. For this an Internet search-
based approach has been used. The results reveal different patterns of associa-
tions in dealing with these concepts, indicating how disciplines in landscape
research, planning, management, and design are involved differently. Thus,
areas and topics for further integration of landscape ecological objectives can
be formulated.
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10.2 Method

As the aim of this analysis is to explore the global context for the use of
thekey concepts related to landuse and landcover, theuseof an Internet search
seems a straightforward and appropriate approach. Google was chosen as it is
a general search engine that allows searches on an equal basis in all domains
and allows one to cover a broad variety of activities related to landscape, land
use, and land-use change. Landscape and land-use/land-cover changes are the
result of many factors combining natural processes and human activities (Dale
et al. 2000). Decisions on land use involve agents at several scales and affect a
wide range of spatial extent and duration (Agarwal et al. 2002). Consequently,
it is important not to restrict this search to scientific databases alone, as many
agents outside the scientific community are involved in the landscape and in
land-use change.

Google uses the PageRank algorithm to define the significance and import-
ance of the web pages that match the search, which reduces the sensitivity
of the search for repeating and common words within the web pages. Page-
Rank defines the importance of a web page by analyzing the link structure
from and to the page (Brin and Page 1998), and is similar to a citation index
(Ridings and Shishigin 2002). Google also uses stemming to find word and
spelling variations, thus entering “land use” will also search for “land-use.”
Google automatically uses the Boolean AND-operator between keywords.
Using the advanced search facilities, explicit word combinations can be
searched for. A search of “landscape ecology” AND “land use” gave 34200

hits and included “land-use” and “Landscape Ecology” as a consequence
of the stemming and because Google is not case sensitive. The search for
“landscape ecology” AND “land cover” gave 11900 hits, for “landscape
ecology” AND “land-use change” 6640 hits, and “landscape ecology” AND
“land-cover change” only 3760 hits. The number of hits resulting from
a search for a single keyword or keywords in specific combinations gives
an indication of their absolute importance (magnitude) at the time of the
search.

In the example above, “land use” was associated with “landscape ecology”
two times more frequently than “land cover.” The combination of “land use”
AND “land-use change” is meaningless and will result in the same number
of hits as “land-use change.” The relative importance of certain keywords in
association was expressed as a percentage. A search for “landscape ecology”
resulted in 121000 hits, while “land use” returned 5660000 hits and “land
cover” 602000 hits. Thus the combinations of “land use” and “land cover”
with “landscape ecology” resulted in an correspondence of 28 percent of “land
use” in “landscape ecology” and 10 percent of “land cover.” In a similar way
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“land-use change” occurs only 3 percent in the total of “land use,” and “land-
cover change” occurs twice as much (6 percent) in the total of “land cover.”
Acronyms such as LULC, LU/LC for a combination of the terms “land use”
and “land cover,” and LUCC (Land Use Land Cover Change), the acronym of
the important international and interdisciplinary project by the International
Geosphere Biosphere Programme and the International Human Dimension
Programme (Fresco et al. 1996)), were not used as search keywords, as many
nonrelevant topics are included as well.

The large number of hits and the important differences between the results
of different combinations of keywordswere used to explore general correspon-
dences at a certain moment. First, keywords were selected and grouped into
different sets. The selection of the keywords was based upon their frequent use
invarious landscapedisciplines.Commonwordswere avoidedbyusing combi-
nations with land and landscape; so the search term “landscape management”
was used instead of simply “management.” These were analyzed according to
their absolute responseand to their relativeoccurrencewithin thedifferent cat-
egorical sets. In the following, the exact formulation of the keywords as used in
the searches is represented in italics: landscape ecologymeansa searchwith“land-
scape ecology” in Google.

The first set of keywords consisted of terms related to landscape (and equiv-
alents in five other languages), countryside, environment, land use and land cover.
Landscape types were searched using following keywords: natural landscape,
urban landscape, cultural landscape, rural landscape and countryside. The second set
explored the responses for different disciplines: landscape architecture, landscape
ecology, landscape history, landscape science, landscape geography, and land-use plan-
ning. The third set referred to activities such as landscaping, landscape design, land-
scape management, landscape protection, landscape conservation, landscape assessment,
landscape evaluation, and landscape classification. Landscape planning was consid-
ered here arbitrarily as a discipline while land-use planning as an activity. To
make an integrated analysis easier, disciplines and activities are combined in
one table. The next set consisted of keywords related to causes and processes,
grouped in three subsets: (1) mainly natural causes and processes, (2) human-
social factors and (3) economical factors. Finally, keywords related to education
and teaching as well as the use of landscape metrics and landscape indicators were
searched.

10.3 Results

The English term landscape is the most dominant compared to the
other selected languages (German, Dutch, Spanish, French, and Portuguese).
The relative importance of countryside compared to landscape should be noted
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table 10 .1 . Hits of selected keywords related to
landscape, land use, and land cover

Keyword Hits Percentage

landscape 6 170 000 80.6

Landschaft 738 000 9.6

paisaje 373 000 4.9

paysage 185 000 2.4

landschap 177 000 2.3

paisage 10 800 0.1

100.0

countryside 2 120 000

land 44 800 000

environment 39 700 000

ecology 4 370 000

land use 2 160 000 88.8

land cover 254 000 10.4

land use/land cover 19 300 0.8

100.0

land-use change 95 600 87.5

land-cover change 13 700 12.5

100.0

landscape change 12 600

(Table 10.1). The keyword land use occurs approximately 8.5 times more than
land cover and the combined use of both terms is very limited (Table 10.1).
Table 10.2 gives the total hits of disciplines related to landscape research and
the percentage of common occurrence. Landscape architecture is by far the most
dominant, and landscape ecology offers about a quarter of all the hits on the
selected disciplines. Landscape architecture has the most hits with landscape plan-
ning (43.1 percent), landscape ecology (29 percent) and landscape history (10.8 per-
cent), while the correspondence between other pairs of disciplines is not sig-
nificant. A recently introduced term, landscape science, obtains more hits than
landscape geography. Table 10.3 summarizes the correspondences between the
disciplines and three selected activities. Obviously landscape design and land-
scaping scores are high in landscape architecture, but also within landscape history
and landscape planning.However, landscape architecture corresponds to only about
1 percent of all hits in landscaping, which is also more associated with other
terms such as gardening. Both disciplines seem to be least involved in landscape
management. Landscape ecology, landscape science and landscape geographyhave a sim-
ilar correspondence to all three activities, but all score low in the total number
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table 10 .2 . Total hits of disciplines and percentage of correspondence between disciplines

Total hits Percentage

Landscape

architecture

Landscape

ecology

Landscape

planning

Landscape

history

Landscape

science

Landscape

geography

Landscape

architecture

145000 60 – 29.0 43.1 10.8 0.9 0.1

Landscape

ecology

57500 24 – 4.2 0.7 0.3 0.1

Landscape

planning

27000 11 – 3.2 5.3 2.8

Landscape

history

9260 4 – 0.2 0.2

Landscape

science

1560 <1 – 0.2

Landscape

geography

620 <1 –

Sum 240940 100

table 10 .3 . The relative importance of selected activities and disciplines: percentage of all activity hits
and percentage of all discipline hits

Percentage of activities Percentage of disciplines

Landscaping

Landscape

design

Landscape

management Landscaping

Landscape

design

Landscape

management

Landscape architecture 1 11 1 17 18 <1

Landscape ecology <1 1 6 3 4 5

Landscape planning <1 2 4 15 20 8

Landscape history <1 1 1 15 21 3

Landscape science <1 <1 <1 4 9 7

Landscape geography <1 <1 <1 4 2 6

of hits on the discipline. Landscape ecology and landscape planning score highest
of all disciplines within the total hits on landscape management. Comparing dis-
ciplines in relation to countryside (Table 10.4) shows the importance of land-use
planning and landscape history, while the other disciplines, including landscape
planning, are less correlated to the term countryside. Table 10.5 shows a clear dif-
ference in the use of the terms landscape and countryside in the different activity
types; countryside and landscape assessment and conservation/protection have much
in common.
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table 10 .4 . Hits of countryside as percentage of the
total hits per discipline

Disciplines Percentage of countryside

Land-use planning 17

Landscape history 12

Landscape geography 7

Landscape planning 6

Landscape science 5

Landscape architecture 4

Landscape ecology 3

table 10 .5 . Hits of activity types as percentage of the total hits of
landscape and countryside

Activities

Percentage of total

landscape hits

Percentage of total

countryside hits

Landscaping 28 2

Landscape design 3 2

Landscape management 1 6

Landscape protection <1 17

Landscape conservation <1 25

Landscape assessment <1 29

Landscape evaluation <1 15

Landscape classification <1 11

Table 10.6 shows the correspondences between land use, land cover and associ-
ations of these with change with the selected disciplines and activities. The use
of the combined land use/land cover is slightly higher for the discipline landscape
ecology and the activities landscape evaluation and classification. The ratio between
the hits on land use and land cover differs a lot between disciplines and activities.
Landscape architecture and related keywords use almost exclusively land use as a
concept, and so do, to a lesser extent, activities related to landscape management
and conservation. The term land use occurs only about four times more than land
cover in landscape ecology. For the activities land cover scores clearly higher with
landscape assessment, evaluation, and classification. In most cases the term change
can be considered as an important issue as it matches one third to one half of
all the hits in disciplines and in particular with the activities. The low scores of
landscape planning (26 percent), landscape architecture (31 percent) and the activi-
ties landscaping (25 percent) and landscape design (19 percent) should be noted.
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table 10 .6 . Correspondence between land use, land cover and change with disciplines and
activities: the occurrence of the land use and land cover in combination with disciplines and activities is
expressed as a percentage of the total hits on discipline or activity

Land use as

percentage of

discipline or activity

Land cover as

percentage of

discipline or activity

Change as percentage

of hits for disciplines

or activities

Disciplines

Landscape architecture 14 1 31

Landscape ecology 26 7 40

Landscape planning 23 3 26

Landscape history 16 2 34

Landscape science 13 2 30

Landscape geography 20 4 42

Activities

Landscaping 8 <1 25

Landscape design 6 <1 19

Landscape management 20 2 30

Landscape conservation 36 5 45

Landscape protection 33 2 48

Landscape assessment 40 9 50

Landscape evaluation 44 10 48

Landscape classification 43 20 49

Table 10.7 compares the main categories of landscape types in combination
with the search terms change, land use, land cover and combinations, as well as
their associationwith thedisciplines geography,history, ecology, and landscape ecol-
ogy. The most frequently occurring keyword is countryside, which is considered
here as a landscape type. It has at least30 timesmorehits than natural landscape,
cultural landscape, and urban landscape, and even more than 50 times the number
of hits on rural landscape. Again, the number of hits on land use is greater than
on land cover or their combined use. However, the association of land use with
countryside is only 4 percent, indicating that countryside covers much more than
landuse. For the other landscape types this association varies from11percent to
18 percent. The number of hits of land cover and the combined used of land
use/land cover is rather similar. As a common term, the keyword history has the
largest number of hits and is associated from 31 percent to 54 percent with
the landscape types and in particular with cultural and rural landscapes. Geogra-
phy scores relatively high with cultural landscape (14 percent) and ecology with
natural (12 percent) and cultural landscapes (11 percent). Landscape ecology scores
very low in relation to the landscapes types, indicating that the keywords of the
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table 10 .7 . Main landscape types in relation to change, land use, land cover
and the main disciplines (percentage of total hits of landscape type)

Countryside

Natural

landscape

Urban

landscape

Cultural

landscape

Rural

landscape

Total hits 2200000 72900 66900 66300 41400

Land use 4 18 11 13 19

Land cover <1 2 1 1 2

Land use/cover <1 2 1 1 2

History 31 32 37 48 54

Geography 4 7 9 14 8

Ecology 3 12 9 11 9

Landscape ecology <1 1 1 2 2

landscape types are associated with many more other things and the concept of
landscape ecology is not well penetrated here.

Table 10.8 compares keywords related to causes and processes of change, land
use or land cover, which are grouped in three categories: nature and environ-
ment, humans, andeconomy.For eachof thesegroups, thekeywords are sorted
in descending order according to the number of hits on land use. The absolute
numbers of hits for the different categories of causes and processes vary a lot,
but within each group the percentage of land use and land cover is very similar.
A similar observation can be made for the associations with land-use change and
land-cover change. The ratio between the number of hits of land use and land cover
shows the relative importance with respect to the associated causes and pro-
cesses. In the group of natural and environmental causes and processes, land
use and land cover are proportionally most important in relation to nature, pollu-
tion, climate, fire and degradation, and the other terms are significantly less repre-
sented. Land use is approximately 10 to 20 times more common than land cover,
except for the category global warming. Land use and land cover are highly asso-
ciated in the group “humans” with keywords such as population and man, but
least of all with urban issues and with landscaping and landscape design. How-
ever, the keyword land use is almost dominant in the landscaping and landscape
design. In the group of economical related causes and processes, the keyword
development is the most important one, followed by the keywords agriculture
and economy. The association varies between land use and land cover in a similar
way, except that the term land use is relatively more used in relation to agricul-
ture and mobility than land cover. Land cover occurs more associated with forestry
in this group. The pattern given by the associations with land-use change and
land-cover change is similar. The dominance of land use over land cover does not



182 marc antrop

table 10 .8 . The relative importance of land use, land cover and change in
different groups of causes and processes

Causes/processes Land use Land cover Land-use change Land-cover change

Nature/environment

Nature 28 27 19 19

Pollution 22 13 14 12

Climate 20 29 29 27

Fire 19 13 10 12

Degradation 7 9 10 12

Desertification 2 3 4 5

Land degradation 1 2 3 4

Soil degradation 1 1 1 2

Saliniz(s)ation 0 1 1 1

Global warming 0 3 7 6

Sum 100 100 100 100

Humans

Population 41 47 40 38

Man 20 19 13 13

Population growth 10 6 13 11

Landscape design,

landscaping

8 2 4 1

Humans 8 8 9 11

Urbaniz(s)ation 5 7 11 12

Population density 3 6 5 7

Urban growth 3 3 4 5

Urban sprawl 2 2 0 3

Sum 100 100 100 100

Economy

Development 38 46 40 35

Agriculture 21 27 20 22

Economy 16 5 11 9

Farming 8 5 7 6

Grazing 4 5 5 6

Accessibility 4 5 4 4

Mobility 4 1 2 2

Forestry 2 4 8 12

Globaliz(s)ation 1 1 2 3

Industrializ(s)ation 1 1 1 2

Sum 100 100 100 100
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table 10 .9 . Percentage of the keywords education,
teaching, and courses in the total hits per discipline,
activity and for land use and land cover

Percentage of total hits

Landscape architecture 87

Landscape geography 53

Landscape history 49

Landscape science 47

Landscape ecology 41

Landscape conservation 46

Landscape management 43

Landscape assessment 43

Landscape evaluation 41

Landscape planning 37

Landscape classification 30

Land-use planning 56

Land use 48

Land cover 23

Land-use change 31

Land-cover change 41

Landscape change 44

exist except for the categories landscaping and landscape design. Also, urbanization
showsahigher scorewith land-use changeand land-cover change thanthesamekey-
words without the term “change.” Land-cover change is also clearly more associ-
ated with forestry.

The keywords education, teaching and courses score almost half of all the hits
of landscape disciplines, activities, land use and land cover, with an important
exception for landscape architecture, which clearly uses the Internet for promot-
ing education and training activities (Table 10.9).

In a similar way, Table 10.10 compares the keywords metrics as well as indi-
cator, index, and indices with the disciplines, activities, and land use and land
cover, in terms of the number of hits in each group. The terms indicator,
index, or indices occur more frequently than metrics. Although the number of
hits on metrics is much lower, the variation shows a clear pattern. Metrics are
mainly used in landscape classification, evaluation, and assessment in relation to
landscape change and in particular to land cover. Of all the disciplines considered,
landscape ecology and landscape science refer most frequently to landscape
metrics.


