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Land surface temperature (LST) is essentially considered to be one of the most impor-
tant indicators used for assessment of the urban thermal environment. It is quite
evident that land-use/land-cover (LULC) and landscape patterns have ecological impli-
cations at varying spatial scales, which in turn influence the distribution of habitat and
material/energy fluxes in the landscape. This article attempts to quantitatively analyse
the complex interrelationships between urban LST and LULC landscape patterns with
the purpose of elucidating their relation to landscape processes. The study employed an
integrated approach involving remote-sensing, geographic information system (GIS),
and landscape ecology techniques on bi-temporal Landsat Thematic Mapper images of
Southwestern Sydney metropolitan region and the surrounding fringe, taken at approxi-
mately the same time of the year in July 1993 and July 2006. First, the LULC categories
and LST were extracted from the bi-temporal images. The LST distribution and changes
and LST of the LULC categories were then quantitatively analysed using landscape met-
rics and LST zones. The results show that large differences in temperature existed in
even a single LULC category, except for variations between different LULC categories.
In each LST zone, the regressive function of LST with fractional vegetation cover (FVC)
indicated a significant relationship between LST and FVC. Landscape metrics of LULC
categories in each zone in relation to the other zones showed changing patterns between
1993 and 2006. This study also illustrates that a method integrating retrieval of LST and
FVC from remote-sensing images combined with landscape metrics provides a novel
and feasible way to describe the spatial distribution and temporal variation in urban
thermal patterns and associated LULC conditions in a quantitative manner.

1. Introduction

The global urbanization rate is increasing and will continue to accelerate in the near
future. It has been reported that over 45% of the world’s population now live in urban
areas, with over 60% projected by 2030. As the major global cities, particularly those
in developing countries, continue to grow in both population and physical size, rural
land-cover categories, such as soil, water, and natural vegetation, are increasingly being
depleted and replaced with city impervious surfaces, such as buildings, streets, etc. These
impervious surfaces have significant environmental implications, including reduction in
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evapotranspiration, promotion of more rapid surface runoff, increased storage and trans-
fer of sensible heat, and reduction of air and water quality (Goward 1981; Owen, Carlson,
and Gillies, 1998; Wilson et al. 2003; Chen et al. 2006). These changes, in turn, have an
important impact on the local urban climate and environment, such as land surface tem-
perature (LST), landscape aesthetics, energy efficiency, human health, and quality of life
(Mcpherson et al. 1997; Xian and Crane 2006).

The assessment of urban heat condition is important for gauging the urban ecological
environment. As a key surface parameter controlling most physical, chemical, and biologi-
cal processes of the Earth system, LST is a consequence of surface–atmosphere interactions
and energy fluxes between the land surface and Earth’s atmosphere (Wan and Dozier 1996).
LST is generally defined as the radiative skin temperature of the land surface (Qin and
Karnieli 1999). Previous studies of measuring heat environment have been mainly based
on ground observations and digital space simulation. In general, the ground observation
studies provide detailed temporal variations of thermal environments, but the number of
observations may be limited due to physical and economical constraints (Voogt and Oke
2003). Recent advances in remote sensing have enabled the use of satellite remote-sensing
data at various spatial and temporal resolutions for estimating surface temperatures over
an entire urban region (Xian and Crane 2006; Zhang et al. 2009). These advances have
also enabled the estimation and inventorying of the spatial pattern of the thermal emission
from the land surface over a region instantly. Hence, satellite remote sensing is increasingly
growing to be a useful tool for gaining an overview of thermal variations within an urban
ecosystem (Weng 2003).

Studies on LST characteristics of urban areas using satellite remote sensing have
been conducted primarily using the National Oceanic and Atmospheric Administration’s
(NOAA’s) advanced very high resolution radiometer (AVHRR) data (Owen, Carlson, and
Gillies 1998; Gallo and Owen 1999; Voogt and Oke 2003; Kato and Yamaguchi 2007;
Zhang, Odeh, and Han 2009). However, the 1.1 km spatial resolution of AVHRR data
is suitable only for mapping temperature at the continental or global scale. As Moderate
Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) data have become readily available in recent
years, the multiple thermal infrared (TIR) bands of these sensors provide better results
for LST studies at various spatial scales (Kato and Yamaguchi 2007) than AVHRR data.
Moreover, both MODIS and ASTER data have multiple bands in visible and near-infrared
(VNIR), shortwave infrared (SWIR), and TIR wavelengths, although the MODIS spatial
resolution varies, i.e. 250 m for bands 1 and 2, 500 m for bands 3–7, and 1000 m for
bands 8–36. MODIS data, therefore, would be more suitable for continental and global
scale studies related to Earth’s surface thermal features than for local scales. ASTER data,
with spatial resolutions varying from 15 m for the visible bands to 30 m for the near-
infrared bands and 90 m for the TIR bands, thus provide much more detailed information
than MODIS, and are more suitable for urban-related studies at local scales than either
AVHRR or MODIS data. However, for a regional study, ASTER products are too expensive
for such a large coverage. The alternatives are the Landsat Thematic Mapper (Landsat-
TM or Enhanced Thematic Mapper Plus (ETM+)) products characterized by 30 m spatial
resolution for bands 1–5 and 7, and 120 m (TM) or 60 m (ETM+) band 6, which are
now available at no cost from NASA. Although images produced by the Landsat-TM sen-
sors (Wilson 1988) are generally too coarse for identification of individual structures, they
are sufficient to detect significant spatial and temporal variations in urban vegetation and
surface temperature (Woodcock and Strahler 1987).

A related feature that is closely linked to LST is the fractional vegetation cover
(FVC). It is one of the most important variables in land surface modelling that provides a
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170 Y. Zhang et al.

continuous field to complement discrete land-cover classification. As an important param-
eter in the physics of land surface processes at regional and global scales, vegetation is an
important component of the urban ecosystem, influencing urban thermal characteristics that
have been the subject of much basic and applied research in recent years (Gallo et al. 1993;
Carlson, Gillies, and Perry 1994; Nichol 1996; Gillies et al. 1997; Owen, Carlson, and
Gillies 1998). Urban vegetation influences the physical environment of cities through selec-
tive absorption and reflection of incident radiation and regulation of latent and sensible heat
exchange (Carlson, Gillies, and Perry 1994; Gillies et al. 1997). The abundance of urban
vegetation, through its spatial distribution, also influences air quality and human health.
Urban forests provide shadows and block winds that help to maintain relatively low LSTs
in urban areas, which may lead to lower fuel usage (Liu and Weng 2008). Remote sensing
is a useful tool for studying and quantifying the extent and the change of urban vegetation.
Thus, by integrating remote-sensing and geographic information system (GIS) techniques,
we can apply FVC to study the relationship between landscape patterns and LST.

A combination of vegetation cover and LST provides a powerful parameter for describ-
ing the characteristics of landscape patterns and processes. To understand the dynamics
and processes and their interactions of a heterogeneous land cover such as an urban land-
scape, one must be able to accurately quantify its spatial pattern and temporal changes (Wu
et al. 2000). Landscape or land-use/land-cover (LULC) patches in a region may have dif-
ferent sizes, shapes, and spatial arrangements, the consequence of spatial heterogeneities
of the landscape (Liu and Weng 2008, 2009). It is known that LULC categories have signif-
icant effects on many ecological processes (Pan et al. 2001; Bain and Brush 2004; Bender
et al. 2005) and are linked to distinct behaviours of the urban thermal environment (Voogt
and Oke 1997; Weng, Lu, and Schubring 2004). Therefore, to understand the landscape
dynamics and processes, one must be able to accurately quantify the spatial pattern and
its temporal changes (Wu et al. 2000). A series of landscape metrics have been devel-
oped to characterize the spatial patterns of landscapes, to study the ecological quality, and
to elucidate the influence of LULC patterns on the environment (O’Neill, Krummel, and
Gardner 1988; Riitters, O’Neill, and Hunsaker 1995; Gustafson 1998; Yue et al. 2007;
Liu and Weng 2008). However, landscape metrics are not commonly used to analyse the
relationship between LULC and LST.

Landsat imagery has an appropriate spatial resolution for the spatial scale of the study
area. The methodology employed Landsat-TM data to explore landscape patterns in rela-
tion to urban thermal characteristics. Specifically, the study aimed at (1) examining the
relationship between landscape (LULC) patterns and thermal properties at the regional
scale as characterized by landscape metrics and (2) exploring the landscape composition
and the structure of each LST zone to understand the relationship between LULC and LST.
To achieve these aims, two bi-temporal Landsat-TM images covering much of metropoli-
tan Sydney and its fringe area – acquired at approximately the same season in 1993 and
2006 – were used as a case study. LST, LULC, FVC, and landscape metrics were derived
from the images to quantify the spatial characteristics of the landscape (LULC) pattern and
associated surface thermal spatial distribution and variability over time.

2. Data and methods

2.1. The study region

The study region is southwestern metropolitan Sydney and its fringe area (Figure 1).
Sydney is Australia’s largest city and is located on the east coast of the continent, at approx-
imate latitude 34o 00′ S and longitude 151o 00′ E. According to the 2008 estimate, Sydney
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Figure 1. Geographical location of the study area.

had a population of approximately 4.34 million, and attained this level from a population of
3.5 million in 2003 (Smith 2003). The study area is approximately 3310 km2. Climatically,
Sydney is temperate and is characterized by warm summers and cool winters. The warmest
month is January, with an average air temperature range of 18.6–25.8◦C. There are, on
average, 14.6 days in a year with air temperatures over 30◦C. The winter is mildly cool; the
coldest month is July, with an average range of 8–16.2◦C. Rainfall is spread fairly evenly
throughout the year, and the average annual rainfall, with moderate to low variability, is
1217 mm.

In recent years, Sydney has experienced a fast population growth, which invariably
has led to urban expansion (Smith 2003; ABS 2003). This expansion is noticeable in the
western and southwestern parts of the city, where accelerated development has been taking
place since the early 1990s. The urban sprawl of Sydney occurs through encroachment into
the adjacent agricultural and peri-urban areas, which has caused large-scale land-use/land-
cover change (LUCC), leading to perturbation of the ecosystems.

2.2. Image acquisition and land-use/land-cover mapping

Bi-temporal Landsat-TM images (path 89/row 84) acquired on 25 July 1993 and 29 July
2006, respectively, were the primary data for deriving LST and LULC types. Because the
urban vegetation in Sydney in the winter months is green, the bi-temporal images taken in
middle of winter (July) were considered ideal for research on LST spatial distribution with
LULC and FVC and their changes. The two images (downloaded from the website http://
glovis.usgs.gov/) were processed at Level 1T by incorporating ground control points, while
also employing a digital elevation model (DEM) for topographic accuracy, leading to sys-
tematic radiometric and geometric accuracy (http://edcsns17.cr.usgs.gov/helpdocs/landsat/
product_descriptions.html#terrain_l5_l1t). The images were rectified and projected to the
universal transverse mercator (UTM) system (spheroid World Geodetic System (WGS) 84,
datum WGS 84, and zone 56). Further processing using a DEM for topographic accuracy
was also carried out in the Landsat terrain-corrected product Level 1T. Each of the Landsat-
TM images consists of seven spectral bands: bands 1–5 and band 7 with spatial resolution
of 30 m, and TIR band 6, which is resampled from its original resolution of 120 m onto
60 m using a cubical convolution algorithm.

The original pixel values of the two images were converted to exo-atmospheric
reflectance based on the methods of Chander and Markham (2003). Later, the atmospheric
correction was done by Second Simulation of the Satellite Signal in the Solar Spectrum
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172 Y. Zhang et al.

(6S) radiative transfer code, the outputs of bands 1–5 and band 7 take the unit of propor-
tional reflectance, ranging from 0 to 1. In order to analyse LULC patterns and LST on a
common spatial resolution, bands 1–5 and band 7 of two-temporal images were resampled
into 60 m using the cubical convolution algorithm. In addition, a rectified and projected
2000 IKONOS image of the Sydney region with a spatial resolution of 4 m was used as
a reference for the recognition and classification of LULC categories using the Landsat
images.

To produce LULC maps, we applied a supervised maximum-likelihood classifier using
all but band 6 in each case. Based on our preliminary analysis of the expected urban and
rural LULC categories in the study region, we used a modified Level II of the Australian
Collaborative Land-Use Mapping Program (ACLUMP) (BRS 2006). Therefore, five LULC
categories were identified: (1) urban, (2) water (excluding the sea), (3) grassland, (4) forest,
and (5) agriculture. Random sampling was adopted for the accuracy assessment, the refer-
ence LULC categories were based on visual interpretation of TM and IKONOS imagery,
and the overall classification accuracy in both cases was above 80%. It should be noted that
the purpose here was not to compare the accuracy using different images, but rather to pro-
duce consistent LULC maps in order to provide an insight into the relationships between
landscape patterns and the changing urban thermal environment. This would lead to a better
understanding of the environmental influence of LULC change on the urban ecosystems.

2.3. Derivation of LST and delineation of LST zones

The derivation of LST from the Landsat-TM thermal data requires several procedures:
sensor radiometric calibrations, atmospheric and surface emissivity corrections, and char-
acterization of spatial variability in land cover, among other procedures. As described
above, the Landsat-TM TIR (band 6) data were used to derive the LST. The study applied
the method for deriving LST in three steps as proposed by Yuan and Bauer (2007). In step
1, the digital numbers (DNs) of band 6 were converted to radiation luminance or top-
of-atmosphere (TOA) radiance (Lλ) using the following formula (Chander and Markham
2003):

Lλ = (Lmax − Lmin)

(QCALmax − QCALmin)
(DN − QCALmin) + Lmin, (1)

where λ is TIR band 6; Lλ is the TOA radiance at the sensor’s aperture in W m−2 sr−1

µm−1; QCALmin = 0, the lowest value in the range of rescaled radiance in DN; QCALmax

= 255, the highest value in the range of rescaled radiance in DN; Lmin is the TOA radiances
for band 6 at DNs QCALmin in W m−2 sr−1 µm−1; and Lmax is the TOA radiances for band
6 at DNs QCALmax in W m−2 sr−1 µm−1. QCALmin, QCALmax, Lmin, and Lmax are given
in the header file of the images.

Step 2 involves the conversion of TOA radiance to surface-leaving radiance by remov-
ing the effects of the atmosphere in the thermal region. An atmospheric correction tool –
Moderate-Resolution Atmospheric Transmission (MODTRAN)-4.0 for the thermal band
of Landsat sensors – was used in this study. This tool involves the MODTRAN radia-
tive transfer code and a suite of integration algorithms to estimate three parameters –
atmospheric transmission, upwelling radiance, and downwelling radiance – which allows
surface-leaving radiance LT or the radiance of a blackbody target of kinetic temperature T
to be calculated using Equation (2):
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LT = Lλ − Lμ − τ (1 − ε) Ld

τε
, (2)

where LT is the radiance of a blackbody target of kinetic temperature T ; Lµ is the upwelling
or atmospheric path radiance; Ld is the downwelling or sky radiance; τ is the atmospheric
transmission, and ε is the emissivity of the surface specific to the target type.

Radiance values are in units of W m−2 sr−1 µm−1 and the transmission and emissivity
are unitless. The emissivities are based on the land-cover classification and the emissivity
values as derived by Snyder et al. (1998).

In the final step, the radiance (LT) is converted to surface temperature using the
Landsat specific estimate of the Planck curve (Equation (3); Chander and Markham
(2003)):

T = K2

ln
[(

K1
/
LT

)
+ 1

] , (3)

where T is the temperature in kelvin (K), K1 is the pre-launch calibration constant in W
m−2 sr−1 µm−1, and K2 is another pre-launch calibration constant in kelvin. For Landsat
5 TM, K1 = 607.76 W m−2 sr−1 µm−1 and K2 = 1260.56 K.

As atmospheric water vapour content varies over time due to seasonality and inter-
annual variability of the atmospheric conditions, it is not appropriate to directly compare
the surface temperature or LST of different seasons or years. In order to circumvent
this, we subdivided the LST values into four different zones based on multiples of stan-
dard deviation (SD) by adding or subtracting the standard deviation of LST from its
mean, which was inspired by the methods used in data classification by Smith (1986) and
Liu and Weng (2008). The four zones were therefore created using the following LST
intervals:

Zone 1 = LST ≤ (MeanLST − 2 SD) ,
Zone 2 = LST > (MeanLST − 2 SD) ∪ LST ≤ MeanLST,
Zone 3 = LST > MeanLST ∪ LST ≤ (MeanLST + 2 SD) ,
Zone 4 = LST > (MeanLST + 2 SD) .

(4)

The LST intervals for the statistical zones are shown in Table 1. These statistical zones are
suited for comparison between the two periods and therefore can be used to quantitatively
analyse the spatial distribution and relationships of FVC, landscape metrics, and LST based
on each LST zone.

Table 1. Means, standard deviations (SD), and interval values used to create the LST zones.

Image acquisition date
Mean
LST SD Zone 1 Zone 2 Zone 3 Zone 4

25 July 1993 282.80 1.00 <280.80 280.80–282.80 282.80–284.80 >284.80
29 July 2006 285.60 1.31 <282.98 282.98–285.60 285.60–288.22 >288.22
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2.4. Derivation of FVC

FVC, the ratio of vegetation occupying a unit area, is a significant parameter in the devel-
opment of climate and ecological models. It is indispensable information of many global
and regional climate numerical models. FVC depicts the amount and nature of vegetation
cover, and modulates the proportions of vegetation and ground (e.g. bare soil) visible to
a sensor (Sandholt, Rasmussen, and Andersen 2002). The difference between the radia-
tive temperature of the vegetation canopy and that of the ground affects the magnitude of
LST. The FVC of each pixel was obtained by a spectral mixture analysis technique. In this
study, we used the simple and effective normalized difference vegetation index (NDVI) to
estimate FVC based on the following expression (Wittich and Hansing 1995):

NDVIi = fc × NDVIv + (1 − fc) × NDVIs, (5)

which can be rewritten as follows:

fc = NDVIi − NDVIs

NDVIv − NDVIs
, (6)

where NDVIi is NDVI value of a pixel i; fc is FVC ranging from 0 to 1; NDVIv is the value
for a pure green vegetation pixel; and NDVIs is the value for a bare soil pixel.

FVC has been used to study changes in vegetation cover using images for different
dates (Price 1987; Che and Price 1992; Carlson and Arthur 2000).

2.5. Computation of landscape metrics

The need to quantify the spatial heterogeneity of the landscape is to elucidate the rela-
tionships between landscape processes and spatial landscape patterns (Turner 1990; Turner
et al. 2003). Therefore, the measurement, analysis, and interpretation of spatial landscape
patterns have received much attention in landscape ecology (Haines, Young, and Chopping
1996). Landscape metrics are used to quantify landscape composition and configuration
on maps or remotely sensed images. Many of the applications focus on ecological analysis
(e.g. Frohn and Hao 2006). In the case of application on LULC analysis, the number of
LULC categories, their proportions, and spatial structure evidently affect LST (Weng et
al. 2004; Liu and Weng 2008). In this study, four selected landscape metrics were used to
quantitatively analyse the relationship between the metrics derived from LULC and LST.
The metrics were derived using the computer program FRAGSTATS (McGarigal et al.
2002).

Patch density (PD) is a useful metric of landscape configuration. Computation of the
number of patches per unit area of a specific LULC category is a good way to measure
the spatial heterogeneity of a given landscape, which facilitates comparisons among LULC
categories of varying sizes. PD for a particular LULC category could serve as a good index
of fragmentation. The density of a given LULC type for the entire landscape can be derived
as follows:

PD = N × 106

A
, (7)
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where N is the total number of patches in the landscape and A is the total landscape area
(m2).

As stated above, PD is expressed as a unit per 100 ha, which serves as a good index of
heterogeneity, and thus facilitates comparisons among landscapes of varying sizes.

In landscape ecology, the perimeter–area fractal dimension index (PAFRAC) is used to
measure the shape complexity of patch types. In applying it to LULC analysis, as was the
case here, it provides a measure of human impact on the landscape. This is based on the
assumption that natural boundaries have complex shapes, and that as human disturbance
increases, the PAFRAC decreases, approaching 1. Since the edges of one patch are also
edges of adjacent patches, the edge/area ratios also provide information about the overall
shape complexity of the landscape. Thus, the PAFRAC represents shape complexity (a
departure from Euclidean geometry), which has been effectively used to represent human-
induced disturbance. PAFRAC can be derived as follows:

PAFRAC = 2[
N

m∑
i=1

n∑
j=1

(
ln pij ln aij

)−
(

m∑
i=1

n∑
j=1

ln pij

)(
m∑

i=1

n∑
j=1

ln aij

)]
/

[(
N

m∑
i=1

n∑
j=1

ln2
pij

)
−
(

m∑
i=1

n∑
j=1

ln pij

)2] ,

(8)

where aij is the area of patch ij, pij is the perimeter of patch ij, and N is the total number of
patches in the landscape.

Another metric that could be useful for studying land-cover patterns is the aggregation
index (AI); it identifies the tendency of the spatial aggregations for specific patch types. AI
is calculated from an adjacency matrix of pixels, which is indicative of the frequency with
which different pairs of patch types (including adjacencies between the same patch types)
appear side-by-side in the landscape (McGarigal et al. 2002):

AI = gij

max
(
gij

)× 100
, (9)

where gij is the number of like adjacencies (joins) between pixels of patch type (class) i
based on the single-count method and max(gij) is the maximum number of like adjacencies
(joins) between pixels of patch type (class) i based on the single-count method.

The AI metric provides a quantitative basis to correlate spatial patterns with processes
that are typically class-specific (He, DeZonia, and Mladenoff 2000).

The last but not least of the metrics used here is the mean patch size (MPS), which rep-
resents the average area of all patches of the corresponding LULC types in the landscape.
It can be computed as follows:

MPS =

N∑
i=1

Ai

N
, (10)

where Ai is area of patch i of a given LULC and N is the total number of patches of a given
LULC.

These four landscape metrics can provide the quantitative link between landscape pat-
terns and ecological or environmental processes. They are derived at three levels: patch
level, class level, and landscape level (McGarigal et al. 2002). In this study, the selected
metrics were analysed at the class level, integrated for all of the patches of a given metric.
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These metrics were then applied to elucidate the spatial landscape patterns within the dif-
ferent LST zones. The landscape metric value is directly dependent on the resolution and
extent (scale) of the data and the classification scheme used to define landscape cover types
from remote-sensing images (Turner, Gardner, and O’Neill 2001). To minimize the effects
of these limitations, we consistently used images of the same spatial resolution (60 m) and
spatial extent.

3. Results

3.1. LULC change between the two dates

The spatial patterns of the LULC categories resulting from classification are presented
in Figure 2. Even though classification accuracy was not the main focus of this study, it
is worth noting that the overall classification accuracy of the two maps was above 85%.
On both dates, water LULC patches, the smallest in terms of areal proportion, were fairly
distributed throughout the study region. In contrast, although urban LULC category was
predominant in the northern part of the study region, grassland was mainly mosaicked
within urban and agricultural land uses. To complete the picture, forest was confined
mainly to the south of the study region with agriculture mainly distributed in the west
and southwest of the study region.

Comparison of the two LULC maps for the two dates indicated a remarkable urban-
ization increase in the region, which is not surprising. Table 2 shows the proportion of the
LULC categories for the two dates, with urban area increasing from 21.21% of the total
area in 1993 to 27.98% in 2006. Agriculture increased slightly from less than 22.35% in
1993 to 25.46% in 2006. In contrast, the proportion of grassland in 2006 was less than
half the proportion of 1993, i.e. declining from 14.08% in 1993 down to 6.95% in 2006.
While the water LULC category had the lowest areal proportion, forest had the largest areal
proportions in both years. However, the two LULC categories did not show any significant
change in proportions between the two dates. Further analysis of LULC indicated where
LULC changes had occurred (Table 2). The swap changes occurred mainly in the south-
west and west of the study area, which had experienced the most rapid urban expansion
and where grassland was being replaced by agriculture since the early 1990s. However, it
is worth mentioning that LULC change is not the focus of this study.

(b)(a)

Land use/cover

Urban

Water

Grassland

Forest

Agriculture

Urban

Water

Grassland

Forest

Agriculture

Land use/cover

25 July 1993 29 July 2006

0 5 10 20 30 40 0 5 10 20 30 40
km km

Figure 2. Spatial patterns of LULC types of the study area in two periods.
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Table 2. Land use/cover change (LUCC) in 1993 and 2006.

Urban Water Grassland Forest Agriculture

Date
Area
(km2) %

Area
(km2) %

Area
(km2) %

Area
(km2) %

Area
(km2) %

1993 702.051 21.21 124.787 3.77 466.048 14.08 1277.329 38.59 739.785 22.35
2006 926.138 27.98 83.743 2.53 230.045 6.95 1227.348 37.08 842.726 25.46
Changes −224.09 −6.77 41.05 1.24 236.01 7.13 49.98 1.51 −102.95 −3.11

3.2. LST patterns and variations within each LULC category

The spatial distribution patterns of LST, which is indicative of the relative magnitude of
surface temperature, are shown in Figure 3. Statistically, the bi-temporal LST derived for
the two dates had a mean value of 282.8 K in 25 July 1993 and 285.60 K in 29 July 2006.
The range of LST values is 273 K–289 K for 1993 and 273 K–293 K in the case of 2006.
On both dates, the estimated highest surface temperature mainly existed in the urban areas
(including the central business district, industrial districts, airport, and high-density resi-
dential areas) and in the unplanted agriculture fields of rural areas. The cooler areas were
mainly associated with forests, grass, and agricultural fields with actively growing crops.
The lowest temperature values were estimated for the southern and western forest LULC.
Also on both dates, the estimated water temperature values were close to the overall mean
LST. It is well known that the LST is characterized by seasonal variation, and that agricul-
tural activities are influential on the interpretation of LULC effects on LST (Vinnikov et al.
2008).

To explicate the LST patterns and variation within the different LULC categories, the
basic statistics (mean LST and its standard deviation) of each category were estimated
by averaging all corresponding pixel values. The mean LST of urban was 282.56 K on
25 July 1993, whereas the urban mean LST was slightly higher at 286.05 K on 29 July
2006 (Table 3). However, the mean LST values for the non-urban LULC categories were

(a) (b)
25 July 1993 29 July 2006

LST (K) LST (K)

273–279

279–282

283–284

284–285

285–286

286–287

287–292

0 5 10 20 30 40
km

273–279

279–282

283–284

284–285

285–286

286–287

287–292

Figure 3. Land surface temperature of the study region in (a) 1993 and (b) 2006.
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Table 3. Mean and standard deviation (SD) of LST in each LULC category for the two dates.

Urban Water Grassland Forest Agriculture

Date
Mean

LST (K) SD
Mean

LST (K) SD
Mean

LST (K) SD
Mean

LST (K) SD
Mean

LST (K) SD

1993 282.56 1.08 282.45
(0.11)

1.30 283.37
(–0.81)

0.83 282.36
(0.20)

0.85 283.26
(–0.70)

0.85

2006 286.05 1.27 285.47
(0.58)

1.18 286.28
(–0.23)

0.92 284.69
(1.36)

1.04 286.31
(–0.26)

1.01

Note: The LST differences between urban and other LULC categories are in parentheses.

slightly higher for grassland and agriculture and slightly lower for water and forest when
compared with the mean urban LST. It is interesting to note that in 2006, forest experienced
by far the largest difference in LST (−1.36 K) from that of urban, but much less so in 1993
(Figure 3). The physical basis for grassland and agriculture experiencing higher LST than
urban is covered in Section 4.

The results of zone creation are shown in Figure 4. It is evident that there were some
instances where significant zonal changes had occurred between the two dates, particu-
larly the zones associated with urban, grassland, and agriculture categories (Table 4). The
magnitude of differences in zonal areas between the two dates among the zones associated
with urban are more pronounced in zone 1, with urban LULC increasing more than 30-
fold between 1993 and 2006, followed by zone 2 (increased by 10 times between 1993 and
2006). The difference for zone 3 is insignificant. However, in zone 4, the difference is the
reverse, with the decline of urban LULC coverage by over 80 times. One reason for the
differences is urban expansion, which had increased by nearly one-third between 1993 and
2006 (Table 2). Another possible explanation may be ascribed to variations of the urban
LULC categories, characterized by juxtaposed concrete and hard surfaces interspersed with
spotty patches of vegetation (consisting of urban forest or parklands and recreational areas
covered by grassland). The latter may have been exaggerated by the differences in the pre-
vailing weather conditions at the time of satellite image acquisition. For this same reason,
grassland experienced decline in area in all of the zones between the two dates. However,
forest showed an obvious increase between 1993 and 2006 in zones 2 and 3. Note that the

Zone 1

Zone 2

Zone 3

Zone 4

(a)

Zone 1

Zone 2

Zone 3

Zone 4

(b)25 July 1993

0 5 10 20 30 40 0 5 10 20 30 40
kmkm

29 July 2006

Figure 4. Land surface temperature zones in (a) 1993 and (b) 2006.
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distribution pattern of forest in urbanized areas was in scattered spotty patterns in 1993,
but less so in 2006, which was probably due to some limited urban replacement of forest
patches in urban zones between 1993 and 2006 (Figure 2). During the same time span, the
proportion of water declined in all of the four zones (Table 4). In addition, it appears that
agriculture declined in zones 1 and 4, but increased in zones 2 and 3 between 1993 and
2006. As pointed out, this is because of a combination of seasonal climatic effect on the
LST as it was used for zoning and also because of swapping of LULC categories, e.g. urban
replacing grassland, agriculture swapping for grassland, and disappearance of some of the
within-urban forest areas due to urban development.

To identify the impact of each LULC on LST, the binary maps of individual LULC
category were created from Figure 2 and then overlain on the LST zonal maps (Figure 4)
to obtain zonal statistics (mean and standard deviation) of each LST zone. Table 5 shows
the summary of the two statistics for the two dates. As would be expected, urban zone
4 exhibited the largest LST for both dates, and with the exception of zone 1, it has the
highest dispersion as estimated by the standard deviation. In urban zone 1 for both dates
however, the mean LST was mainly lower than the mean for any other LULC categories.
In comparing all of the LST zones other than those of water, it can be observed that the
zonal LST standard deviations of urban areas were generally higher than those of the other
LULC categories, with only a few exceptions (grassland zone 3 on both dates). This is
particularly the case for urban zone 1. This is suggestive of the fact that the urban vegetation
is spotty with spotty sizes mostly less than the working 60 m resolution of the original
images used for the study. Moreover, the pixels of urban areas, in many instances, probably
consisted of a mixture of grassland (mainly grass lawns) and patchy forest interspersed
with impervious surfaces that generally characterize urban land cover. In general, both
zones 1 and 4 of urban have larger standard deviations than those of urban middle zones
(zones 2 and 3), indicating that the pixels of the middle zones are more homogeneous than
the lower or higher zones.

The zonal LST statistics in Table 5 also show that water, grassland, and forest had
nearly the same trend in mean zonal LST and standard deviation, with the latter higher for

Table 5. Summary statistics of LST zones for LULC categories determined for the two dates.

Date LST zone Mean LST and SD Urban Water Grassland Forest Agriculture

25 July 1993 Zone 1 Mean (K) 279.03 280.15 280.44 280.28 279.89
SD 1.60 0.38 0.00 0.28 0.79

Zone 2 Mean(K) 282.04 281.81 282.20 281.96 282.15
SD 0.43 0.53 0.34 0.45 0.35

Zone 3 Mean (K) 283.22 283.48 283.49 283.25 283.40
SD 0.48 0.52 0.49 0.43 0.48

Zone 4 Mean (K) 285.58 284.96 285.02 284.94 285.01
SD 0.68 0.25 0.36 0.23 0.34

29 July 2006 Zone 1 Mean (K) 280.96 281.94 282.60 282.30 281.75
SD 1.83 0.73 0.00 0.46 1.23

Zone 2 Mean (K) 284.96 284.96 285.12 284.50 285.07
SD 0.65 0.64 0.50 0.74 0.55

Zone 3 Mean (K) 286.49 286.32 286.60 286.21 286.67
SD 0.54 0.45 0.56 0.37 0.58

Zone 4 Mean (K) 289.21 288.46 288.58 288.30 288.50
SD 0.67 0.28 0.46 0.00 0.34

Note: SD, standard deviation.

D
ow

nl
oa

de
d 

by
 [

Io
ni

an
 U

ni
ve

rs
ity

] 
at

 0
8:

27
 2

1 
N

ov
em

be
r 

20
12

 



International Journal of Remote Sensing 181

the middle zones 2 and 3 than for zones 1 and 4. This is in contrast to the trend for the
urban zonal LST dispersion described above. It is also indicative of the fact that the more
homogeneous of these LULC types exhibit more uniform lower LST standard deviation
than the case otherwise. Water in the eastern area, comprising mainly rivers and dams, had
higher surface temperature than the western lakes because of the maritime influence on the
former. Forest in zone 4 was usually located in sunny slope and in zone 1 was usually in
shady slope. Like urban in zone 1, agriculture in zone 1 had the lowest LST with the highest
standard deviation; the reason being that the agriculture pixels in zone 1 were a mixture
of the actively growing crops and unplanted bare soil. For the same reason, agriculture
in zone 4 was characterized by the highest LST and had the lowest standard deviation,
which is probably due to the fact that these areas consisted of mainly unplanted bare soil,
as bare surfaces are usually characterized by higher LST than planted crop covers. Thus,
the trend of agriculture is that it shifts from actively growing crops in zone 1, decreasing
in vegetation coverage, to bare soil areas in zone 4. Based on this trend, we can explain
agriculture activities and analyse its impact on the thermal environment at any given time
in the season or year.

Generally, the 2006 LST and standard deviation values of LULC categories in each
LST zone were higher than those in 1993. The main reason is probably due to differences
in the prevailing weather conditions at the time of image acquisition and the change in
LULC between the two dates. Thus, the detailed analysis of LULC categories in relation
to the LST zones provides useful information about the urban thermal environment and
how different LULC categories affect the thermal signatures. This means that it is possible
to alleviate the urban heat island (UHI) effect by optimizing land-use planning based on
this type of information. It is well known that LULC change would influence the UHI
distributions, but proper land-use planning could alleviate temperature rise, for example by
allocating positive contributive LULC categories (Liu and Weng 2008).

3.3. Relationship between LST and FVC

As important basic data for describing ecosystems, FVC is also a key parameter in thermal
remote-sensing analysis from which surface emissivity can be estimated (Quattrochi and
Ridd 1998; Zhang, Odeh, and Han 2009). For an area characterized by partial vegetation
cover, surface thermal properties have a great influence on LST through the thermal pro-
cesses of conduction, convection, and radiation. Therefore, thermal responses by vegetation
cover can be highly varied as a function of the biophysical properties of the vegetation itself
(Quattrochi and Ridd 1998; Pena 2008). In addition, as explained in Section 3.1, because
the planted and fallow agricultural areas are characterized by difference in LST patterns,
FVC could be a useful tool for analysing agricultural activities.

Figure 5 shows the FVC of the study area on both dates. It is clear from the FVC
patterns in comparison to Figure 2 that vegetation LULC categories (grassland and forest),
which should have high FVC close to 100%, are less abundant in urban areas, and that
considerable urban expansion had occurred in the 13 years period.

In order to improve understanding the variance of FVC and LST in different LULC
categories, the pixel values of FVC and LST are derived based on the west–east pro-
files (Figure 6). The west–east profiles start with forest; through agriculture (planted and
unplanted areas); urban area (road, built-up area including industrial, commercial and resi-
dential areas, and so on) with forest, water (lake), and grassland (park); and end at airport
of urban area. For FVC profiles, values in built-up, water, and unplanted areas are far lower
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Figure 5. Spatial distribution of fractional vegetation cover derived from the bi-temporal images
acquired in (a) 1993 and (b) 2006 (red lines represent west–east profiles of FVC and LST across the
research area).
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Figure 6. FVC and LST variance along the west–east profiles in Figure 5.

than other areas. As for LST profiles, the effect of the urban thermal environment is obvi-
ous from suburb to urban, LST values are relatively higher in urban area and unplanted
agriculture areas than other areas. Figure 6 shows that the peaks of FVC appear at forest
and grassland (park). The peaks of LST are usually the areas where unplanted agriculture
and urban built-up areas are located, whereas the troughs are areas where water, grassland,
and forest are found. FVC had a reverse trend with LST, except for water, and their change
trends are closely related to the urban sprawl and impacted by agriculture activities.

In Figure 6, FVC has an inverse relationship with LST. In support of this notion and
by comparing Figures 3 and 5, we derived the mean zonal FVC shown in Table 6. Clearly,
there is a decrease in %FVC as the zone number increases, meaning higher LST, which
illustrates a clear relationship of %FVC with LST, as the latter was used for the creation of
the zones.
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Table 6. Mean zonal FVC as derived for each LST zone.

Zonal mean FVC (%)

Date Zone 1 Zone 2 Zone 3 Zone 4

25 July 1993 0.35 0.34 0.31 0.30
29 July 2006 0.45 0.45 0.27 0.25

In order to elucidate the relationship of LST with %FVC, a number of zonal regres-
sion functions were fitted, with LST as a dependent variable and FVC as an independent
variable. Table 7 shows the regression functions for the two dates and all LULC categories,
except the water LULC type. With the exception of a few cases for zone 1, Pearson’s corre-
lation coefficients (r) show a significant but moderate to high inverse linear relationship of
LST with FVC. For most of the latter cases, while FVC decreased, LST increased. In zone
1, NDVI usually has saturation values, FVC values are high, and the correlation coeffi-
cients between LST and FVC are comparatively low. Zone 4 is the high-density urban and
unplanted agricultural areas, and the correlations are also not obvious here. The results
indicate that FVC is an indicator of LST with a linear relationship, especially in LST zones

Table 7. Linear regression of LST as a function of FVC for each LST zone versus LULC for the
two dates.

Regression equation

Image
LULC

category Zone 1 Zone 2 Zone 3 Zone 4

1993 Urban y = 279.02+2.42x y = 282.27–0.70x y = 283.27–0.47x No data
N : 269 N :258 N :117
r: 0.47 r: –0.43 r: –0.63
SD:1.023 SD: 0.367 SE: 0.381

Grassland y = 280.27+0.86x y = 282.24–0.13x y = 283.83–0.13x y = 285.12–0.20x
N : 66 N :217 N :2147 N :756
r: 0.53 r: –0.66 r: –0.54 r: –0.67
SE: 0.22 SE: 0.316 SE: 0.459 SE: 0.280

Forest y = 280.08+0.285x y = 281.97–0.21x y = 283.26–0.357x y = 284.80–0.23x
N : 1228 N :2009 N :692 N :132
r: 0.30 r: –0.46 r: –0.51 r: –0.49
SE: 0.343 SE: 0.36 SE: 0.406 SE: 0.192

Agriculture y = 279.9–1.69x y = 281.93–1.44x y = 283.29–0.9x y = 285.03–0.62x
N : 24 N :38 N :295 N :671
r: –0.51 r: –0.64 r: –0.73 r: –0.42
SE: 0.85 SE: 0.365 SE: 0.459 SE: 0.345

2006 Urban y = 281.347+1.28x y = 284.79–0.03x y = 286.63–0.48x y = 288.08–2.41x
N : 135 N :108 N :2496 N :77
r: 0.403 r: –0.51 r: –0.78 r: –0.65
SE: 1.160 SE: 0.56 SE: 0.433 SE: 0.372

Grassland y = 279.70+4.48x y = 285.30–0.08x y = 287.19–1.1x y = 289.48–1.07x
N : 18 N :585 N :1906 N :485
r: 0.65 r: –0.74 r: –0.76 r: –0.57
SE: 0.912 SE: 0.34 SE: 0.50 SE: 0.575

Forest y = 281.735+0.97x y = 284.96–0.663x y = 286.16–0.10x No data
N : 361 N :8863 N :1047
r: 0.49 r: –0.53 r: –0.44
SE: 0.38 SE: 0.573 SE: 0.305

Agriculture y = 282.35–1.06x y = 284.92–0.10x y = 286.73–0.42x y = 290.94–1.01x
N : 82 N :433 N :3528 :875
r: –0.66 r: –0.68 r: –0.62 r: –0.473
SE: 0.900 SE: 0.531 SE: 0.490 Std: 0.585

Note: Dependent variable y: LST, land surface temperature; independent variable x: FVC, fractional vegetation
cover; N , number of samples; r: correlation coefficient; SE: standard error.
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2 and 3. The analyses were based on winter images; however, it can be concluded that the
correlation coefficients of LST and FVC would be expected to be higher if summer images
were used.

In general, the result shows an inverse correlation relationship with some variations
between LST and FVC within the LULC categories of LST zones, and the correlation
coefficients associated with LULC categories and LST zones are different. It is known that
FVC and NDVI differ due to strong seasonal variation, which may further complicate the
relationship of FVC with LST. Thus, the use of FVC to understand urban heat environment
should be cautiously done.

3.4. Landscape metrics and LST zones analysis

A key aspect of this study was to examine the relationship between landscape (LULC) pat-
terns and LST through landscape metric analysis. Accordingly, it is noticeable that urban,
grassland, and agriculture had changed significantly between 1993 and 2006; the spatial
patterns of these three LULC categories were analysed and discussed in detail (Figures 7).
In this analysis, the landscape metrics derived from LULC and LST zones were applied
to examine the graphic relationships of LULC metrics with the four LST zones derived
from the bi-temporal images. As can be implied from Figures 2 and 3 and Table 4, the
zonal distribution patterns, represented by the landscape metrics, obviously vary with the
different LULC categories and dates (and hence, season and the weather), which has some
implications for the LST and LST zone classification. However, there are similar trends
in PD and PAFRAC between the two dates (Figure 7). The trends also indicate that zone
1 LST exhibited the lowest PD and PAFRAC values, and then both metrics increased to
maximum values in zone 3 or 2, which then decreased in zone 4. This is indicative of the
complexity or heterogeneity of landscapes in zones 2 and 3. Moreover, there is a difference
between PD and PAFRAC values for LST zones 2 and 3 in 1993 in comparison to these
zones in 2006 for the urban and grassland LULC categories. This is less so for agriculture.
The reason for the latter is probably due to the fact that agricultural activities involving
market gardening that is reliant on irrigation do not vary very much from season to season.

In the case of MPS and AI (Figure 7), their trends in relation to the LST zones are not as
clear-cut as is the case with PAFRAC and PD. The trends exhibited by urban are remarkably
similar, with only a slight variation in the zonal MPS and AI in 1993, and the 2006 MPS
and AI peaking in zone 3. This is probably because urban expansion occurred more in zone
3 than in other zones, in addition to the influence of prevailing weather conditions at the
time of image acquisition.

When examining the detailed comparison of each of the metrics of the LST zones for
the two dates, starting with urban trends, it is noticeable that urban had higher PD values
in zones 2 and 3, although much less so in 2006 compared with the values in 1993, the
PD values are close to zero in zones 1 and 4 for the two dates (Figure 7). This means that
urban LULC had expanded mainly in zones 2 and 3 and was interspersed with grassland,
agriculture, and forest (Figure 2). Urban also had a similar trend in PAFRAC to PD, peaking
in zones 2 and 3 and then declining to a value much larger than zero in zones 1 and 4 for
both 1993 and 2006, although its decline from 1993 to 2006 is less than was the case for
PD. This means that humans had an obvious impact on these landscape zones. In the case
of MPS and AI (Figure 7), the two dates had similar trends from zones 1–4. In 1993, both
urban MPS and AI were slightly higher in zone 1 and then declined gradually through to
zone 4, whereas in 2006, there was a sharp rise in both MPS and AI from zone 2, peaking
in zone 3, and declining in zone 4. This indicates that the average area of urban patches
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Figure 7. The landscape metrics versus LST zones created from the bi-temporal Landsat images.

in zone 3 obviously increased from much smaller patches in 1993 to larger ones in 2006.
As urban PD values for zones 2 and 3 declined between the two dates, urban in zone 3 had
been aggregated, which was compensated by the more compact urban patches in zone 4.

Grassland had similar trends in PD and PAFRAC as urban (Figure 7), with both metrics
peaking in zone 3. Both had declined in most of the zones from 1993 to 2006. This can
be explained by grassland being mainly distributed in a dot pattern interspersed with urban
and agriculture, as impacted by human disturbances. Grassland also showed similar change
trends in MPS and AI between the two dates (Figure 7). The MPS and AI values in zone
2 of 1993 were lower than those in 2006; in zones 1, 3, and 4, especially in zones 3 and
4, MPS and PD declined from 1993 to 2006, which means that grassland had decreased
patch sizes and a smaller number of patches. This may be explained by the fact that the
distribution of changes in grassland was due to the changing patterns of LUCC.

Agriculture in the study area had different change trends from urban and grassland.
Evidence from Table 3 indicates that agricultural area in peri-urban and in the vicinity had
increased from 739.785 km2 in 1993 to 842.726 km2 in 2006. The PD and PAFRAC values
of agriculture have similar trends for the two dates; it increased and reached the peak in
zone 3 and declined to close to zero for PD and just over 1.25 for PAFRAC (Figure 7). The
PAFRAC value in zones 3 and 2 increased from 1993 to 2006, but there were no changes
in zone 1 (mainly growing crops) and 4 (mainly unplanted bare soil) in the same period.
There was hardly any change in the two metrics (PD and PAFRAC) between the two dates.
However, while agriculture has a similar trend of MPS across the zones for the two dates,
MPS had increased significantly in zone 4 between 1993 and 2006 (Figure 7). This was
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hardly the case with AI. By way of explanation, except for urban expansion, the change
in agriculture was also influenced by agricultural activities (due to increased irrigation
activities and crop area in 2006) and seasonal and weather effects on the LST zones.

4. Discussion and conclusions

LST is one of the key surface parameters in environmental studies. LULC categories are
linked to distinct behaviours of the urban thermal environment. In this study, the spatial
characteristics of the landscape and LST patches in Sydney were explored using FVC and
the interpretation of landscape metrics derived from LULC and LST maps.

Vegetation cover in urban areas reduces the surface radiant temperature, which results in
relatively low LST values. The analysis of LST and FVC showed that the vegetation fraction
had a significant effect on the urban heat environment and provides the linear correlation
recursive equation between LST zones and FVC. It is also noteworthy that the correlation
coefficients are different for different LST zones of southwest Sydney. It is also known that
FVC is strongly affected by season. The analysis was based on winter images, most likely
the correlation coefficients of LST and FVC are expected to be higher if summer images
were used. Therefore, further studies are needed to assess the LST over different seasons in
order to understand and capture the full picture of the process.

We also analysed the relationship between landscape pattern and LST, which provides
a conceptual framework for understanding the dynamics of the urban thermal environment;
this is useful for urban environmental management. We have demonstrated that remote-
sensing satellite imagery can be used to derive landscape patterns and LSTs and to identify
their complicated relationship. Thus, in conjunction with GIS, remote-sensing technology
can be applied to determine the location and shape of urban component surfaces, which
can be used as background information for urban planners and environmental managers to
minimize the negative thermal effects of urban development.

Few studies have used landscape metrics in the analysis of LST and the relationship
between landscape and LST patterns. This article has shown the relationship between
landscape patterns and LSTs of two-temporal images. The study has shown that with the
integration of remote sensing, GIS, and a landscape ecology approach, landscape metrics
are effective tools to quantify the landscape and LST patterns. These measurements can
provide precise characterization and quantification of the spatial characteristics of urbaniza-
tion and the urban thermal environment. From the analysis above, the spatial characteristics
of landscape metrics and LST can be used to evaluate the urban ecological environment.
They can also provide an effective tool for evaluating the environmental influences of
zoning in urban ecosystems using remote sensing and GIS.

Landscape metrics are widely used to quantify landscape patterns at different scales.
These metrics may be applicable in comparing LULC and LSTs for different urban areas
at different times. It is also worth noting that the landscape metrics are sensitive to spatial
scales (Turner 1990) and vary with the spatial resolution of satellite images. Choosing
proper scales is important for landscape pattern analysis. It may be necessary to determine
an appropriate scale prior to the study on interactions between landscape pattern and ther-
mal environment. In this study, the relationship between landscape and LST patterns was
based on landscape metrics at 60 m spatial resolution. In future studies, there is the need to
focus on the study of the relationship between landscape pattern and thermal environment
by multi-scale and multi-resolution analysis.

From the above analysis, the metrics of LST zones appear to correspond to the met-
rics of LULC categories. This correspondence indicates that the spatial configuration of a
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specific temperature zone is closely related to the spatial configuration of dominant LULC
categories in that zone. It is known that LULC and LST vary with seasons. Therefore, fur-
ther studies are required to examine the seasonal impacts on the relationship between LULC
pattern and LST, and the impact of the distribution pattern of different LULC categories on
the urban landscape.
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