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Landscape Metrics for Categorical Map Patterns

Instructor:  K. McGarigal

Assigned Reading:  Turner et al. 2001 (Chapter 5); McGarigal (Lecture notes)

Objective:  Provide an overview of common landscape metrics and insights into their use and
interpretation. Highlight importance of selecting the “right” metric for the “right” problem. 

Topics covered:
1. Overview of landscape metrics
2. Area/density/edge metrics
3. Shape metrics
4. Core area metrics
5. Contrast metrics
6. Contagion/interspersion metrics
7. Isolation/proximity metrics
8. Connectivity metrics
9. Diversity metrics
10. Insights on the use of landscape metrics
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1. Introduction and Overview

FRAGSTATS computes several statistics for each patch and class (patch type) in the landscape
and for the landscape as a whole. At the class and landscape level, some of the metrics quantify
landscape composition, while others quantify landscape configuration. Landscape composition
and configuration can affect ecological processes independently and interactively (see
FRAGSTATS Foundation). Thus, it is especially important to understand for each metric what
aspect of landscape pattern is being quantified. In addition, many of the metrics are partially or
completely redundant; that is, they quantify a similar or identical aspect of landscape pattern. In
most cases, redundant metrics will be very highly or even perfectly correlated. For example, at
the landscape level, patch density (PD) and mean patch size (MPS) will be perfectly correlated
because they represent the same information. These redundant metrics are alternative ways of
representing the same information; they are included in FRAGSTATS because the preferred
form of representing a particular aspect of landscape pattern will differ among applications and
users. It behooves the user to understand these redundancies, because in most applications only 1
of each set of redundant metrics should be employed. It is important to note that in a particular
application, some metrics may be empirically redundant as well; not because they measure the
same aspect of landscape pattern, but because for the particular landscapes under investigation,
different aspects of landscape pattern are statistically correlated. The distinction between this
form of redundancy and the former is important, because little can be learned by interpreting
metrics that are inherently redundant, but much can be learned about landscapes by interpreting
metrics that are empirically redundant.

Many of the patch metrics have counterparts at the class and landscape levels. For example,
many of the class metrics (e.g., mean shape index) represent the same basic information as the
corresponding patch metrics (e.g., patch shape index), but instead of considering a single patch,
they consider all patches of a particular type simultaneously. Likewise, many of the landscape
metrics are derived from patch or class characteristics. Consequently, many of the class and
landscape metrics are computed from patch and class statistics by summing or averaging over all
patches or classes. Even though many of the class and landscape metrics represent the same
fundamental information, naturally the algorithms differ slightly. Class metrics represent the
spatial distribution and pattern within a landscape of a single patch type; whereas, landscape
metrics represent the spatial pattern of the entire landscape mosaic, considering all patch types
simultaneously. Thus, even though many of the metrics have counterparts at the class and
landscape levels, their interpretations may be somewhat different. Most of the class metrics can
be interpreted as fragmentation indices because they measure the configuration of a particular
patch type; whereas, most of the landscape metrics can be interpreted more broadly as landscape
heterogeneity indices because they measure the overall landscape pattern. Hence, it is important
to interpret each metric in a manner appropriate to its scale (patch, class, or landscape).

In the sections that follow, each metric computed in FRAGSTATS is described in detail. Metrics
are grouped loosely according to the aspect of landscape pattern measured – but note that these
groupings are done for mostly for convenience as these are not independent aspects of landscape
pattern and most metrics can fall into more than one group – as follows:
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• Area/density/edge metrics
• Shape metrics
• Core area metrics
• Contrast metrics
• Contagion/interspersion metrics
• Isolation/proximity metrics
• Connectivity metrics
• Diversity metrics

Within each of these groups, metrics are further grouped into patch, class, and landscape metrics,
as follows:

1.1. Patch Metrics

Patch metrics are computed for every patch in the landscape; the resulting patch output file
contains a row (observation vector) for every patch, where the columns (fields) represent the
individual metrics. The first three columns include header information about the patch:

(P1) Landscape ID.--The first field in the patch output file is landscape ID (LID).
Landscape ID is set to the name of the input image obtained from the input file (see Run
Parameters).

(P2) Patch ID.--The second field in the patch output file is patch ID (PID). If a Patch ID
image is specified that contains unique ID's for each patch, FRAGSTATS reads the patch ID
from the designated image. If an image is not specified, FRAGSTATS creates unique ID's
for each patch and optionally produces an image that contains patch ID's that correspond to
the FRAGSTATS output.

(P3) Patch Type.--The third field in the patch output file is patch type (TYPE).
FRAGSTATS contains an option to name an ASCII file (class properties file) that contains
character descriptors for each patch type. If the class properties option is not used,
FRAGSTATS will write the numeric patch type codes to TYPE.

There are two basic types of metrics at the patch level: (1) indices of the spatial character and
context of individual patches, and (2) measures of the deviation from class and landscape norms;
that is, how much the computed value of each metric for a patch deviates from the class and
landscape means. The deviation statistics are useful in identifying patches with extreme values
on each metric. Because the deviation statistics are computed similarly for all patch metrics, they
are described in common below:
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Patch Deviation Statistics.-
-In addition to the standard
patch metrics,
FRAGSTATS computes
several deviation statistics
for each patch that
measures how much it
deviates from the class or
landscape norm (i.e., how
extreme an observation it
is) for each metric.
Specifically, for each patch
and each patch metric,
FRAGSTATS computes
the following four
measures of deviation: (1)
standard deviations from
the class mean, (2) percentile of the class distribution, (3) standard deviations from the landscape
mean, and (4) percentile of the landscape distribution.

1.2. Class Metrics

Class metrics are computed for every patch type or class in the landscape; the resulting class
output file contains a row (observation vector) for every class, where the columns (fields)
represent the individual metrics. The first two columns include header information about the
class:

(C1) Landscape ID.--The first field in the class output file is landscape ID (LID). Landscape
ID is set to the name of the input image obtained from the input file (see Run Parameters).

(C2) Patch Type.--The second field in the class output file is patch type (TYPE).
FRAGSTATS contains an option to name an ASCII file (class properties file) that contains
character descriptors for each patch type. If the class descriptor option is not used,
FRAGSTATS will write the numeric patch type codes to TYPE.

There are two basic types of metrics at the class level: (1) indices of the amount and spatial
configuration of the class, and (2) distribution statistics that provide first- and second-order
statistical summaries of the patch metrics for the focal class. The latter are used to summarize the
mean, area-weighted mean, median, range, standard deviation, and coefficient of variation in the
patch attributes across all patches in the focal class. Because the distribution statistics are
computed similarly for all class metrics, they are described in common below:

Class Distribution Statistics.--Class metrics measure the aggregate properties of the patches
belonging to a single class or patch type. Some class metrics go about this by characterizing the
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aggregate properties
without distinction among
the separate patches that
comprise the class. These
metrics are defined
elsewhere. Another way to
quantify the configuration
of patches at the class level
is to summarize the
aggregate distribution of
the patch metrics for all
patches of the
corresponding patch type.
In other words, since the
class represents an
aggregation of patches of
the same type, we can
characterize the class by summarizing the patch metrics for the patches that comprise each class.
There are many possible first- and second-order statistics that can be used to summarize the
patch distribution. FRAGSTATS computes the following: (1) mean (MN), (2) area-weighted
mean (AM), (3) median (MD), (4) range (RA), (5) standard deviation (SD), and (6) coefficient of
variation (CV). FRAGSTATS computes these distribution statistics for all patch metrics at the
class level. In the class output file, these metrics are labeled by concatenating the metric
acronym with an underscore and the distribution statistic acronym. For example, patch area
(AREA) is summarized at the class level by each of the distribution statistics and reported in the
class output file as follows: mean patch area (AREA_MN), area-weighted mean patch area
(AREA_AM), median patch area (AREA_MD), range in patch area (AREA_RA), standard
deviation in patch area (AREA_SD), and coefficient of variation in patch area (AREA_CV).

1.3. Landscape Metrics

Landscape metrics are computed for entire patch mosaic; the resulting landscape output file
contains a single row (observation vector) for the landscape, where the columns (fields)
represent the individual metrics. The first column includes header information about the
landscape:

(L1) Landscape ID.--The first field in the landscape output file is landscape ID (LID).
Landscape ID is set to the name of the input image obtained from the input file (see Run
Parameters).

Like class metrics, there are two basic types of metrics at the landscape level: (1) indices of the
composition and spatial configuration of the landscape, and (2) distribution statistics that provide
first- and second-order statistical summaries of the patch metrics for the entire landscape. The
latter are used to summarize the mean, area-weighted mean, median, range, standard deviation,
and coefficient of variation in the patch attributes across all patches in the landscape. Because
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the distribution statistics are computed similarly for all landscape metrics, they are described in
common below:

Landscape Distribution Statistics.--Landscape metrics measure the aggregate properties of the
entire patch mosaic. Some landscape metrics go about this by characterizing the aggregate
properties without distinction among the separate patches that comprise the mosaic. These
metrics are defined elsewhere. Another way to quantify the configuration of patches at the
landscape level is to summarize the aggregate distribution of the patch metrics for all patches in
the landscape. In other words, since the landscape represents an aggregation of patches, we can
characterize the landscape by summarizing the patch metrics. There are many possible first- and
second-order statistics that can be used to summarize the patch distribution. FRAGSTATS
computes the following: (1) mean (MN), (2) area-weighted mean (AM), (3) median (MD), (4)
range (RA), (5) standard deviation (SD), and (6) coefficient of variation (CV). FRAGSTATS
computes these distribution statistics for all patch metrics at the landscape level. In the landscape
output file, these metrics are labeled by concatenating the metric acronym with an underscore
and the distribution statistic acronym. For example, patch area (AREA) is summarized at the
class level by each of the distribution statistics and reported in the class output file as follows:
mean patch area (AREA_MN), area-weighted mean patch area (AREA_AM), median patch area
(AREA_MD), range in patch area (AREA_RA), standard deviation in patch area (AREA_SD),
and coefficient of variation in patch area (AREA_CV). Note, the acronyms for the distribution
statistics are the same at the class and landscape levels, so they can only be distinguished by the
output file they belong to (i.e., “.basename”.class or “basename”.land).

1.4. General Comments

Not all groups of metrics (see previous list) have metrics at all levels. For example, diversity
metrics only exist at the landscape level. Also note that the organizational hierarchy used here is
opposite of that used in the FRAGSTATS graphical user interface (GUI). In the GUI, metrics are
first grouped by level
(patch, class, and landscape)
and then further grouped by
the aspect of landscape
pattern measured. The GUI
organization strives to be
consistent with the way
most users conduct a
FRAGSTATS analysis.
Often times, for example,
users are only interested in
class level metrics. Here,
however, the discussion of
the metrics is facilitated by
reversing the hierarchy and
first grouping them
according the aspect of
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pattern measured, then by the level of organization (patch, class, and landscape). In this manner,
issues common to all metrics that relate to the same aspect of landscape pattern can be discussed
once.

Following this convention, each metrics section begins with a brief introduction to the metrics in
the group, followed by an overview of the various metrics computed by FRAGSTATS and a
discussion of important limitations in their use and interpretation. Following this overview, each
metric is defined, including a  mathematical definition, measurement units, theoretical range in
values, and any special considerations or limitations in the use of the metric. For each metric, the
mathematical formula is described in narrative terms to facilitate interpretation of the formula.
The acronym for the metric given on the left-hand side of the equation is the field name used in
the ASCII output files. To facilitate interpretation of the algorithm, we intentionally separate
from each equation any constants used to rescale the metric. For example, in many cases the
right-hand side of the equation is multiplied by 100 to convert a proportion to a percentage, or
multiplied or divided by 10,000 to convert m2 to hectares. These conversion factors are separated
out by parentheses even though they may be factored into the equation differently in the
computational form of the algorithm.
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2. Area/Density/Edge Metrics

Background.--This group of metrics represents a loose collection of metrics that deal with the
number and size of patches and the amount of edge created by these patches. Although these
metrics could easily be subdivided into separate groups or assigned to other already recognized
groups, there is enough similarity in the basic patterns assessed by these metrics to include them
under one umbrella.

The area of each patch comprising a landscape mosaic is perhaps the single most important and
useful piece of information contained in the landscape. Not only is this information the basis for
many of the patch, class, and landscape indices, but patch area has a great deal of ecological
utility in its own right. For example, there is considerable evidence that bird species richness and
the occurrence and abundance of some species are strongly correlated with patch size (e.g.,
Robbins et al. 1989). Most species have minimum area requirements: the minimum area needed
to meet all life history requirements. Some of these species require that their minimum area
requirements be fulfilled in contiguous habitat patches; in other words, the individual habitat
patch must be larger than the species minimum area requirement for them to occupy the patch.
These species are sometimes referred to as “area-sensitive” species. Thus, patch size information
alone could be used to model species richness, patch occupancy, and species distribution patterns
in a landscape given the appropriate empirical relationships derived from field studies.
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Similarly, the size and number of patches comprising a class or the entire landscape mosaic is
perhaps the most basic aspect of landscape pattern that can affect myriad processes. For
example, although there are myriad effects of habitat fragmentation on individual behavior,
habitat use patterns, and intra- and inter-specific interactions, many of these effects are caused
by: (1) a reduction in habitat area (area effects), and (2) an increase in the proportion of edge-
influenced habitat (edge effects). Briefly, as a species’ habitat is lost from the landscape (without
being fragmented), at some point there will be insufficient area of habitat to support a viable
population, and with continued loss eventually there will be insufficient area of habitat to
support even a single individual and the species will be extirpated from the landscape. This area
relationship is expected to vary among species depending on their minimum area requirements.
Moreover, the area threshold for occupancy may occur when total habitat area is still much
greater than the individual’s minimum area requirement. For example, an individual may not
occupy available habitat unless there are other individuals of the same species occupying the
same or nearby patches of habitat, or an individual’s occupancy may be influenced by what other
species are occupying the patch. Similarly, as habitat is lost and simultaneously fragmented into
smaller and more isolated patches, at some point there will be insufficient area of suitable habitat
within a home range size area to support an individual. In either case, the effect of habitat area
on the occurrence and abundance of a species (or species) is referred to as the “area effect.” This
is the ultimate consequence of habitat loss and fragmentation–insufficient habitat quantity and
quality to support individuals and viable populations.

Total amount of edge in a landscape is important to many ecological phenomena. In particular, a
great deal of attention has been given to wildlife-edge relationships (Thomas et al. 1978 and
1979, Strelke and Dickson 1980, Morgan and Gates 1982, Logan et al. 1985). In landscape
ecological investigations, much of the presumed importance of spatial pattern is related to edge
effects. The forest edge effect, for example, results primarily from differences in wind and light
intensity and quality reaching a forest patch that alter microclimate and disturbance rates (e.g.,
Gratkowski 1956, Ranney et al. 1981, Chen and Franklin 1990). These changes, in combination
with changes in seed dispersal and herbivory, can influence vegetation composition and structure
(Ranney et al. 1981). The proportion of a forest patch that is affected in this manner is
dependent, therefore, upon patch shape and orientation, and by adjacent land cover. A large but
convoluted patch, for example, could be entirely edge habitat. It is now widely accepted that
edge effects must be viewed from an organism-centered perspective because edge effects
influence organisms differently; some species have an affinity for edges, some are unaffected,
and others are adversely affected.

One of the most dramatic and well-studied consequences of habitat fragmentation is an increase
in the proportional abundance of edge-influenced habitat. Early wildlife management efforts
were focused on maximizing edge habitat because it was believed that most species favored
habitat conditions created by edges and that the juxtaposition of different habitats would increase
species diversity (Leopold 1933). Indeed this concept of edge as a positive influence guided land
management practices for most of the twentieth century. Recent studies, however, have
suggested that changes in microclimate, vegetation, invertebrate populations, predation, brood
parasitism, and competition along forest edges (i.e., edge effects) has resulted in the population
declines of several vertebrate species dependent upon forest interior conditions (e.g., Strelke and
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Dickson 1980, Whitcomb et al. 1981, Kroodsma 1982, Brittingham and Temple 1983, Wilcove
1985, Temple 1986, Noss 1988, Yahner and Scott 1988, Robbins et al. 1989). In fact, many of
the adverse effects of forest fragmentation on organisms seem to be directly or indirectly related
to these so-called edge effects. Forest interior species, therefore, may be sensitive to patch shape
because for a given patch size, the more complex the shape, the larger the edge-to-interior ratio.
Total class edge in a landscape, therefore, often is the most critical piece of information in the
study of fragmentation, and many of the class indices directly or indirectly reflect the amount of
class edge. Similarly, the total amount of edge in a landscape is directly related to the degree of
spatial heterogeneity in that landscape.

FRAGSTATS Metrics.--FRAGSTATS computes several simple statistics representing area and
perimeter (or edge) at the patch, class, and landscape levels. Area metrics quantify landscape
composition, not landscape configuration. As noted above, the area (AREA) of each patch
comprising a landscape mosaic is perhaps the single most important and useful piece of
information contained in the landscape. However, the size of a patch may not be as important as
the extensiveness of the patch for some organisms and processes. Radius of gyration (GYRATE)
is a measure of patch extent; that is, how far across the landscape a patch extends its reach. All
other things equal, the larger the patch, the larger the radius of gyration. Similarly, holding area
constant, the more extensive the patch (i.e., elongated and less compact), the greater the radius of
gyration. The radius of gyration can be considered a measure of the average distance an
organism can move within a
patch before encountering the
patch boundary from a random
starting point. When aggregated
at the class or landscape level,
radius of gyration provides a
measure of landscape
connectivity (known as
correlation length) that
represents the average
traversability of the landscape
for an organism that is confined
to remain within a single patch.

Class area (CA) and
percentage of landscape
(PLAND) are measures of
landscape composition; specifically, how much of the landscape is comprised of a particular
patch type. This is an important characteristic in a number of ecological applications. For
example, an important by-product of habitat fragmentation is habitat loss. In the study of forest
fragmentation, therefore, it is important to know how much of the target patch type (habitat)
exists within the landscape. In addition, although many vertebrate species that specialize on a
particular habitat have minimum area requirements (e.g., Robbins et al. 1989), not all species
require that suitable habitat to be present in a single contiguous patch. For example, northern
spotted owls have minimum area requirements for late-seral forest that varies geographically;
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yet, individual spotted owls use late-seral forest that may be distributed among many patches
(Forsman et al. 1984). For this species, late-seral forest area might be a good index of habitat
suitability within landscapes the size of spotted owl home ranges (Lehmkuhl and Raphael 1993).
In addition to its direct interpretive value, class area (in absolute or relative terms) is used in the
computations for many of the class and landscape metrics.

FRAGSTATS computes several simple statistics representing the number or density of patches,
the average size or radius of gyration of patches, and the variation in patch size or radius of
gyration at the class and landscape levels. These metrics usually are best considered as
representing landscape configuration, even though they are not spatially explicit measures.
Number of patches (NP) or patch density (PD) of a particular habitat type may affect a variety of
ecological processes, depending on the landscape context. For example, the number or density of
patches may determine the number of subpopulations in a spatially-dispersed population, or
metapopulation, for species exclusively associated with that habitat type. The number of
subpopulations could influence the dynamics and persistence of the metapopulation (Gilpin and
Hanski 1991). The number or density of patches also can alter the stability of species interactions
and opportunities for coexistence in both predator-prey and competitive systems (Kareiva 1990).
The number or density of patches in a landscape mosaic (pooled across patch types) can have the
same ecological applicability, but more often serves as a general index of spatial heterogeneity
of the entire landscape mosaic. A landscape with a greater number or density of patches has a
finer grain; that is, the spatial heterogeneity occurs at a finer resolution. Although the number or
density of patches in a class or in the landscape may be fundamentally important to a number of
ecological processes, often it does not have any interpretive value by itself because it conveys no
information about the area or distribution of patches. Number or density of patches is probably
most valuable, however, as the basis for computing other, more interpretable, metrics.

In addition to these primary metrics, FRAGSTATS also summarizes the distribution of patch
area and extent (radius of gyration) across all patches at the class and landscape levels. For
example, the distribution of patch area (AREA) is summarized by its mean and variability. These
summary measures provide a way to characterize the distribution of area among patches at the
class or landscape level. For example, progressive reduction in the size of habitat fragments is a
key component of habitat fragmentation. Thus, a landscape with a smaller mean patch size for
the target patch type than another landscape might be considered more fragmented. Similarly,
within a single landscape, a patch type with a smaller mean patch size than another patch type
might be considered more fragmented. Thus, mean patch size can serve as a habitat
fragmentation index, although the limitations discussed below may reduce its utility in this
respect.

Mean patch size at the class level is a function of the number of patches in the class and total
class area. In contrast, patch density is a function of total landscape area. Therefore, at the class
level, these two indices represent slightly different aspects of class structure. For example, two
landscapes could have the same number and size distribution of patches for a given class and
thus have the same mean patch size; yet, if total landscape area differed, patch density could be
very different between landscapes. Alternatively, two landscapes could have the same number of
patches and total landscape area and thus have the same patch density; yet, if class area differed,
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mean patch size could be very different between landscapes. These differences should be kept in
mind when selecting class metrics for a particular application. In addition, although mean patch
size is derived from the number of patches, it does not convey any information about how many
patches are present. A mean patch size of 10 ha could represent 1 or 100 patches and the
difference could have profound ecological implications. Furthermore, mean patch size represents
the average condition. Variation in patch size may convey more useful information. For
example, a mean patch size of 10 ha could represent a class with 5 10-ha patches or a class with
2-, 3-, 5-, 10-, and 30-ha patches, and this difference could be important ecologically. For these
reasons, mean patch size is probably best interpreted in conjunction with total class area, patch
density (or number of patches), and patch size variability. At the landscape level, mean patch
size and patch density are both a function of number of patches and total landscape area. In
contrast to the class level, these indices are completely redundant (assuming there is no internal
background). Although both indices may be useful for "describing" 1 or more landscapes, they
would never be used simultaneously in a statistical analysis of landscape structure.

In many ecological applications, second-order statistics, such as the variation in patch size, may
convey more useful information than first-order statistics, such as mean patch size. Variability in
patch size measures a key aspect of landscape heterogeneity that is not captured by mean patch
size and other first-order statistics. For example, consider 2 landscapes with the same patch
density and mean patch size, but with very different levels of variation in patch size. Greater
variability indicates less uniformity in pattern either at the class level or landscape level and may
reflect differences in underlying processes affecting the landscapes. Variability is a difficult
thing to summarize in a single metric. FRAGSTATS computes three of the simplest measures of
variability–range, standard deviation, and coefficient of variation.

Patch size standard deviation (AREA_SD) is a measure of absolute variation; it is a function of
the mean patch size and the difference in patch size among patches. Thus, although patch size
standard deviation conveys information about patch size variability, it is a difficult parameter to
interpret without doing so in conjunction with mean patch size because the absolute variation is
dependent on mean patch size. For example, two landscapes may have the same patch size
standard deviation, e.g., 10 ha; yet one landscape may have a mean patch size of 10 ha, while the
other may have a mean patch size of 100 ha. In this case, the interpretations of landscape pattern
would be very different, even though absolute variation is the same. Specifically, the former
landscape has greatly varying and smaller patch sizes, while the latter has more uniformly-sized
and larger patches. For this reason, patch size coefficient of variation (AREA_CV) is generally
preferable to standard deviation for comparing variability among landscapes. Patch size
coefficient of variation measures relative variability about the mean (i.e., variability as a
percentage of the mean), not absolute variability. Thus, it is not necessary to know mean patch
size to interpret the coefficient of variation. Nevertheless, patch size coefficient of variation also
can be misleading with regards to landscape structure in the absence of information on the
number of patches or patch density and other structural characteristics. For example, two
landscapes may have the same patch size coefficient of variation, e.g., 100%; yet one landscape
may have 100 patches with a mean patch size of 10 ha, while the other may have 10 patches with
a mean patch size of 100 ha.  In this case, the interpretations of landscape structure could be very
different, even though the coefficient of variation is the same. Ultimately, the choice of standard
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deviation or coefficient of variation will depend on whether absolute or relative variation is more
meaningful in a particular application. Because these measures are not wholly redundant, it may
be meaningful to interpret both measures in some applications.

It is important to keep in mind that both standard deviation and coefficient of variation assume a
normal distribution about the mean. In a real landscape, the distribution of patch sizes may be
highly irregular. It may be more informative to inspect the actual distribution itself, rather than
relying on summary statistics such as these that make assumptions about the distribution and
therefore can be misleading. Also, note that patch size standard deviation and coefficient of
variation can equal 0 under 2 different conditions: (1) when there is only 1 patch in the
landscape; and (2) when there is more than 1 patch, but they are all the same size. In both cases,
there is no variability in patch size, yet the ecological interpretations could be different.

FRAGSTATS computes several statistics representing the amount of perimeter (or edge) at the
patch, class, and landscape levels. Edge metrics usually are best considered as representing
landscape configuration, even though they are not spatially explicit at all. At the patch level,
edge is a function of patch perimeter (PERIM). At the class and landscape levels, edge can be
quantified in other ways. Total edge (TE) is an absolute measure of total edge length of a
particular patch type (class level) or of all patch types (landscape level). In applications that
involve comparing landscapes of varying size, this index may not be useful. Edge density (ED)
standardizes edge to a per unit area basis that facilitates comparisons among landscapes of
varying size. However, when comparing landscapes of identical size, total edge and edge density
are completely redundant. Alternatively, the amount of edge present in a landscape can be
compared to that expected for a landscape of the same size but with a simple geometric shape
(square) and no internal edge. Landscape shape index (LSI) does this. This index measures the
perimeter-to-area ratio for the landscape as a whole. This index is identical to the habitat
diversity index proposed by Patton (1975), except that we apply the index at the class level as
well.  Landscape shape index is identical to the shape index at the patch level (SHAPE), except
that it treats the entire landscape as if it were one patch and any patch edges (or class edges) as
though they belong to the perimeter. The landscape boundary must be included as edge in the
calculation in order to use a square standard for comparison. Unfortunately, this may not be
meaningful in cases where the landscape boundary does not represent true edge and/or the actual
shape of the landscape is of no particular interest. In this case, the total amount of true edge, or
some other index based on edge, would probably be more meaningful. If the landscape boundary
represents true edge or the shape of the landscape is particularly important, then the landscape
shape index can be a useful index, especially when comparing among landscapes of varying
sizes.

Limitations.--Area metrics have limitations imposed by the scale of investigation. Minimum
patch size and landscape extent set the lower and upper limits of these area metrics, respectively. 
These are critical limits to recognize because they establish the lower and upper limits of
resolution for the analysis of landscape composition and configuration. Otherwise, area metrics
have few limitations. All edge indices are affected by the resolution of the image. Generally, the
finer the resolution (i.e., the greater the detail with which edges are delineated), the greater the
edge length. At coarse resolutions, edges may appear as relatively straight lines; whereas, at finer
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resolutions, edges may appear as highly convoluted lines. Thus, values calculated for edge
metrics should not be compared among images with different resolutions. In addition, patch
perimeter and the length of edges will be biased upward in raster images because of the stair-step
patch outline, and this will affect all edge indices. The magnitude of this bias will vary in
relation to the grain or resolution of the image, and the consequences of this bias with regards to
the use and interpretation of these indices must be weighed relative to the phenomenon under
investigation. 
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3. Shape Metrics

Background.--The interaction of patch shape and size can influence a number of important
ecological processes. Patch shape has been shown to influence inter-patch processes such as
small mammal migration (Buechner 1989) and woody plant colonization (Hardt and Forman
1989), and may influence animal foraging strategies (Forman and Godron 1986). However, the
primary significance of shape in
determining the nature of patches
in a landscape seems to be related
to the ‘edge effect’ (see
discussion of edge effects for
Area/Density/Edge Metrics).
Shape is a difficult parameter to
quantify concisely in a metric for
the reasons discussed below.

FRAGSTATS Metrics.--
FRAGSTATS computes several
metrics that quantify landscape
configuration in terms of the
complexity of patch shape at the
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patch, class, and landscape levels.
Most of these shape metrics are
based on perimeter-area
relationships. Perhaps the
simplest shape index is a
straightforward perimeter-area
ratio (PARA). A problem with
this metric as a shape index is that
it varies with the size of the
patch. For example, holding
shape constant, an increase in
patch size will cause a decrease in
the perimeter-area ratio. Patton
(1975) proposed a diversity index
based on shape for quantifying
habitat edge for wildlife species and as a means for comparing alternative habitat improvement
efforts (e.g., wildlife clearings). This shape index (SHAPE) measures the complexity of patch
shape compared to a standard shape (square) of the same size, and therefore alleviates the size
dependency problem of PARA. This shape index is widely applicable in landscape ecological
research (Forman and Godron 1986).

Another other basic type
of shape index based on
perimeter-area
relationships is the fractal
dimension index. In
landscape ecological
research, patch shapes are
frequently characterized
via the fractal dimension
(Krummel et al. 1987,
Milne 1988, Turner and
Ruscher 1988, Iverson
1989, Ripple et al. 1991).
The appeal of fractal
analysis is that it can be
applied to spatial features
over a wide variety of
scales. Mandelbrot (1977,
1982) introduced the concept of fractal, a geometric form that exhibits structure at all spatial
scales, and proposed a perimeter-area method to calculate the fractal dimension of natural planar
shapes. The perimeter-area method quantifies the degree of complexity of the planar shapes. The
degree of complexity of a polygon is characterized by the fractal dimension (D), such that the
perimeter (P) of a patch is related to the area (A) of the same patch by P . /AD (i.e., log P . ½D
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log A). For simple Euclidean
shapes (e.g., circles and
rectangles), P . /A and D =
1 (the dimension of a line).
As the polygons become
more complex, the perimeter
becomes increasingly plane-
filling and P . A with D 6 2.
Although fractal analysis
typically has not been used to
characterize individual
patches in landscape
ecological research, we use
this relationship to calculate
the fractal dimension of each
patch separately. Note that
the value of the fractal dimension calculated in this manner is dependent upon patch size and/or
the units used (Rogers 1993). Thus, varying the cell size of the input image will affect the patch
fractal dimension. Therefore, caution should be exercised when using this fractal dimension
index as a measure of patch shape complexity.

Fractal analysis usually is applied to the entire landscape mosaic using the perimeter-area
relationship A = k P2/D, where k is a constant (Burrough 1986). If sufficient data are available,
the slope of the line obtained by regressing log(P) on log(A) is equal to 2/D (Burrough 1986).
Note, fractal dimension computed in this manner is equal to 2 divided by the slope; D is not
equal to the slope (Krummel et al. 1987) nor is it equal to 2 times the slope (e.g., O'Neill et al.
1988, Gustafson and Parker 1992). We refer to this index as the  perimeter-area fractal
dimension (PAFRAC) in FRAGSTATS. Because this index employs regression analysis, it is
subject to spurious results
when sample sizes are small.
In landscapes with only a few
patches, it is not unusual to
get values that greatly exceed
the theoretical limits of this
index. Thus, this index is
probably only useful if
sample sizes are large (e.g., n
> 20; although PAFRAC is
computed in FRAGSTATS if
n $ 10). If insufficient data
are available, an alternative to
the regression approach is to
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calculate the mean patch
fractal dimension
(FRAC_MN) based on the
fractal dimension of each
patch, or the area-weighted
mean patch fractal dimension
(FRAC_AM) at the class and
landscape levels by
weighting patches according
to their size, although these
metrics do not have the same
interpretation or utility as
PAFRAC. In contrast to the
fractal dimension of a single
patch, which provides an
index of shape complexity
for that patch, the perimeter-
area fractal dimension of a patch mosaic provides an index of  patch shape complexity across a
wide range of spatial scales (i.e., patch sizes). Specifically, it describes the power relationship
between patch area and perimeter, and thus describes how patch perimeter increases per unit
increase in patch area. If, for example, small and large patches alike have simple geometric
shapes, then PAFRAC will be relatively low, indicating that patch perimeter increases relatively
slowly as patch area increases. Conversely, if small and large patches have complex shapes, then
PAFRAC will be much higher, indicating that patch perimeter increases more rapidly as patch
area increases–reflecting a
consistency of complex
patch shapes across
spatial scales. The fractal
dimension of patch
shapes, therefore, is
suggestive of a common
ecological process or
anthropogenic influence
affecting patches across a
wide range of scales, and
differences between
landscapes can suggest
differences in the
underlying pattern-
generating process (e.g.,
Krummel 1987).

An alternative method of assessing shape is based is based on the medial axis transformation
(MAT) of the patch (Gustafson and Parker 1992). The MAT skeleton is derived from a depth
map of the patch, where each pixel value represents the distance (in pixels) to the nearest edge.
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The MAT skeleton is then produced by removing all pixels from the depth map except local
maxima (pixels with no neighbors having greater values). The linearity index (LINEAR) is based
on the fact that elongated patches of a given area have MAT skeletons closer to their edges than
square patches of the same area. This index reflects linear features of the patch which may not
necessarily be the overall elongation of the patch. Dendritic patterns result in higher values of
LINEAR due to the elongated appendages of the patch. Inflated values may also result from
patches with even small interior openings since these represent edge, and the MAT skeleton will
surround the openings, resulting in
lower MAT values than if the openings
were not present.

Another method of assessing shape is
based on ratio of patch area to the area
of the smallest circumscribing square.
Related circumscribing circle
(CIRCLE) (Baker and Cai 1992). In
contrast to the linearity index, related
circumscribing square provides a
measure of overall patch elongation. A
highly convoluted but narrow patch
can have a high linearity index if the
medial axial skeleton is close to the
patch edge, but have a low related circumscribing square index due to the relative compactness
of the patch. Conversely, a narrow and elongated patch can have a high linearity index as well as
a high related circumscribing square index. This index may be particularly useful for
distinguishing patches that are both linear (narrow) and elongated.

A final method of assessing patch shape is based on the spatial connectedness, or contiguity, of
cells within a grid-cell patch to provide an index on patch boundary configuration and thus patch
shape (LaGro 1991). Contiguity index (CONTIG) is quantified by convolving a 3x3 pixel
template with a binary digital image
in which the pixels within the patch
of interest are assigned a value of 1
and the background pixels (all other
patch types) are given a value of
zero. A template value of 2 is
assigned to quantify horizontal and
vertical pixel relationships within the
image and a value of 1 is assigned to
quantify diagonal relationships. This
combination of integer values
weights orthogonally contiguous
pixels more heavily than diagonally
contiguous pixels, yet keeps
computations relatively simple. The



9.20

center pixel in the template is assigned a value of 1 to ensure that a single-pixel patch in the
output image has a value of 1, rather than 0. The value of each pixel in the output image,
computed when at the center of the moving template, is a function of the number and location of
pixels, of the same class, within the nine cell image neighborhood. Specifically, the contiguity
value for a pixel in the output image is the sum of the products, of each template value and the
corresponding input image pixel value, within the nine cell neighborhood. Thus, large
contiguous patches result in larger contiguity index values.

Limitations.--All shape indices
based on perimeter-area
relationships have important
limitations. First, perimeter
lengths are biased upward in
raster images because of the
stair-stepping pattern of line
segments, and the magnitude of
this bias varies in relation to the
grain or resolution of the
image. Thus, the computed
perimeter-area ratio will be
somewhat higher than it
actually is in the real-world.
Second, as an index of "shape",
the perimeter-to-area ratio
method is relatively insensitive
to differences in patch morphology. Thus, although patches may possess very different shapes,
they may have identical areas and perimeters. For this reason, shape indices based on perimeter-
area ratios are not useful as measures of patch morphology; they are best considered as measures
of overall shape complexity. Alternative indices of shape that are not based on perimeter-area
rations are less troubled by these limitations. But these too, generally do not distinguish patch
morphology, but instead emphasize one or more aspects of shape complexity (e.g., elongation).
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4. Core Area Metrics

Background.– Core area is defined as the area within a patch beyond some specified depth-of-
edge influence (i.e., edge distance) or buffer width. Like patch shape, the primary significance of
core area in determining the character and function of patches in a landscape appears to be
related to the ‘edge effect.’ As discussed elsewhere (see Area/Density/Edge Metrics), edge
effects result from a combination of biotic and abiotic factors that alter environmental conditions
along patch edges compared to patch interiors. The nature of the edge effect differs among
organisms and ecological processes (Hansen and di Castri 1992). For example, some bird species
are adversely affected by predation, competition, brood parasitism, and perhaps other factors
along forest edges. Core area has been found to be a much better predictor of habitat quality than
patch area for these forest interior specialists (Temple 1986). Unlike patch area, core area is
affected by patch shape. Thus, while a patch may be large enough to support a given species, it
still may not contain enough suitable core area to support the species. In some cases, it seems
likely that edge effects would vary in relation to the type and nature of the edge (e.g., the degree
of floristic and structural contrast and orientation). Thus, FRAGSTATS allows the user to
specified an edge depth file that contains edge influence distances for every pairwise
combination of patch types. In the absence of such information, the user can specify a single
edge depth for all edge types.
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In raster images, there are different ways to determine core area. FRAGSTATS employs a
method involving the use of a variably-sized masked placed on cells on the perimeter of a patch,
where the mask size varies depending the specified edge depth associated with the corresponding
combination of patch types. Actually, the mask is placed over cells just outside the patch
perimeter; referred to here as ‘bounding’ cells. Briefly, a mask is placed over each bounding cell.
The mask itself is near circular in shape (as circular as you can get in the raster world) and sized
according to the specified edge depth. Note, the resolution of the mask is constrained by cell
size; thus, the mask is rounded up or down to the nearest cell given the specified edge depth. For
example, given a 30 m cell size and a specified edge depth of 50 m, the mask will be rounded up
to 2 cells (60 m) wide in the orthogonal directions. The non-orthogonal directions will be
rounded similarly, producing a near circular mask. Cells within the mask are eliminated from the
‘core’ of the patch. After all bounding cells are treated in this manner, the remaining cells not
masked constitute the ‘core’ of the patch.

FRAGSTATS Metics.--FRAGSTATS computes several metrics based on core area at the patch,
class, and landscape levels. Most of the indices dealing with number or density of patches, size
of patches, and variability in patch size have corresponding core area indices computed in the
same manner after eliminating the specified edge from all patches. For example, patch area, class
area, total landscape area, and the percentage of landscape in each patch type all have
counterparts computed after eliminating edge area defined by the specified edge depth; these are
core area (CORE) at the patch level, total core area (TCA) at the class and landscape levels, and
core area percent of landscape (CPLAND) at the class level. The latter index quantifies the core
area in each patch type as a percentage of total landscape area. For organisms strongly associated
with patch interiors, this index may provide a better measure of habitat availability than its
counterpart, percentage of
landscape (PLAND). In
contrast to their
counterparts, these core area
indices integrate into a
single measure the affects of
patch area, patch shape, and
edge effect distance.
Therefore, although they
quantify landscape
composition, they are
affected by landscape
configuration. For this
reason, these metrics at the
class level may be useful in
the study of habitat loss and
fragmentation.

From an organism-centered perspective, a single patch may actually contain several disjunct
patches of suitable interior habitat, and it may be more appropriate to consider disjunct core
areas as separate patches. For this reason, FRAGSTATS computes the number of core areas
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(NCORE) in each patch, as well as the number in each class and the landscape as a whole
(NDCA). If core area is deemed more important than total area, then these indices may be more
applicable than their counterparts, but they are subject to the same limitations as their
counterparts (number of patches) because they are not standardized with respect to area. For this
reason, number of core areas can be reported on a per unit area basis (disjunct core area density,
DCAD) that has the same ecological applicability as its counterpart (patch density), except that
all edge area is eliminated from consideration. Conversely, this information can be represented
as mean core area (CORE_MN). Like their counterparts, note the difference between core area
density and mean core area at the class level. Specifically, core area density is based on total
landscape area; whereas, mean core area is based on total core area for the class. In contrast, at
the landscape level, they are both based on total landscape area and are therefore completely
redundant (at least if the landscape contains no background). Furthermore, mean core area can be
defined in 2 ways. First, mean core area can be defined as the mean core area per patch
(CORE_MN). Thus, patches with no core area are included in the average, and the total core
area in a patch is considered together as 1 observation, regardless of whether the core area is
contiguous or divided into 2 or more disjunct areas within the patch.  Alternatively, mean core
area can be defined as the mean area per disjunct core (DCORE_MN). The distinction between
these 2 ways of defining mean core area should be noted.

FRAGSTATS also computes an index that quantifies core area as a percentage of total area. The
core area index (CAI) at the patch level quantifies the percentage of the patch that is comprised
of core area. Similarly, at the class and landscape levels core area index area-weighted mean
(CAI_AM) quantifies core area for the entire class or landscape as a percentage of total class or
landscape area, respectively. Note, that this is equivalent to the total core area index reported in
FRAGSTATS 2.0. The core area index is basically an edge-to-interior ratio like many of the
shape indices (see Shape Metrics), the main difference being that the core area index treats edge
as an area of varying width and not as a line (perimeter) around each patch. In addition, the core
area index is a relative measure; it does not reflect patch size, class area, or total landscape area;
it merely quantifies the percentage of available area, regardless of whether it is 10 ha or 1,000
ha, comprised of core. This index does not confound area and configuration like the previous
core area indices; rather, it isolates the configuration effect. For this reason, the core area index
is probably best interpreted in conjunction with total area at the corresponding scale. For
example, in conjunction with total class area, this index could serve as an effective fragmentation
index for a particular class.

An alternative method of assessing core area is based is based on the medial axis transformation
(MAT) of the patch (Gustafson and Parker 1992). The MAT skeleton is derived from a depth
map of the patch, where each pixel value represents the distance (in pixels) to the nearest edge.
The MAT skeleton is then produced by removing all pixels from the depth map except local
maxima (pixels with no neighbors having greater values). The resulting MAT skeleton gives the
depth to the extreme core of the patch. As such, it provides explicit information on how far the
‘core’ of the patch is from the nearest edge. The average depth index (ADEPTH) and maximum
depth index (MDEPTH) provide two different ways to summarize the depth of the MAT
skeleton. Like most other core area metrics, indices based on the MAT skeleton integrate the
effects of patch area and shape. Holding area constant, more convoluted shapes will tend to have
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MAT skeletons closer to the perimeter. Similarly, holding shape constant, larger patches will
have MAT skeletons farther from the perimeter. However, in contrast to all other core area
metrics, metrics based on the MAT skeleton do not depend on user-specified edge depths. Thus,
the ecological interpretation of these metrics is done after-the-fact based on the ecological
phenomena under consideration; whereas the functional relevance of edge effects is explictly
incorporated into the edge depths used in all other core area metrics.

Limitations.--All core area indices are affected by the interaction of patch size, patch shape, and
the specified edge depths, except for those based on the MAT skeleton as noted above. In
particular, increasing edge depths or shape complexity, or decreasing patch size will decrease
core area, and vice versa. On the one hand, this may be desirable as an integrative measure that
has explicit functional relevance to the organism or process under consideration. On the other
hand, there are potential pitfalls associated with integrative measures like core area. In particular,
the confounding of patch area and configuration effects can complicate interpretation. For
example, if the core area is small, it indicates that very little core area is available, but it does not
discriminate between a small patch (area effect) and a large patch with a complex shape
(configuration effect). In addition, core area is meaningful only if the specified depth-of-edge
distance is meaningful to the phenomenon under investigation. Unfortunately, in many cases
there is no empirical basis for specifying any particular depth-of-edge effect and so it must be
chosen somewhat arbitrarily. The usefulness of core area as a metric is directly related to the
arbitrariness in the specified edge depths, and this should be clearly understood when using these
metrics.

Ultimately, the utility of core area metrics compared to their patch area counterparts depends on
the resolution, minimum patch dimensions, and edge influence distance(s) employed. For
example, given a landscape with a resolution of 1 m2 and minimum patch dimensions of 100 x
100 m, if an edge influence distance of 1 m is specified, then core area and patch area will be
nearly identical and core area will be relatively insensitive to differences in patch size and shape.
In this case, core area offers little over its patch area counterpart.
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5. Contrast Metrics

Background.--Contrast refers to the magnitude of difference between adjacent patch types with
respect to one or more ecological attributes at a given scale that are relevant to the organism or
process under consideration. The contrast between a patch and its neighborhood can influence a
number of important ecological processes (Forman and Godron 1986). The ‘edge effects’
described elsewhere (see Area/Density/Edge Metrics), for example, are influenced by the degree
of contrast between patches. Microclimatic changes (e.g., wind, light intensity and quality, etc.)
are likely to extend farther into a patch along an edge with high structural contrast than along an
edge with low structural contrast (Ranney et al. 1981). Similarly, the adverse affects of brown-
headed cowbird nest parasitism on some forest-dwelling neotropical migratory bird species are
likely to be greatest along high-contrast forest edges (e.g., between mature forest patches and
grassland), because cowbirds prefer to forage in early-seral habitats and parasitize nests in late-
seral habitats (Brittingham and Temple 1983). In addition, patch isolation may be a function of
the contrast between a patch and its ecological neighborhood. In particular, the degree of
contrast between a habitat patch and the surrounding landscape may influence dispersal patterns
and survival, and thus indirectly affect the degree of patch isolation. Similarly, an organism's
ability to use the resources in adjacent patches, as in the process of landscape supplementation
(Dunning et al. 1992), may depend on the nature of the boundary between the patches. The
boundary between patches can function as a barrier to movement, a differentially-permeable
membrane that facilitates some ecological flows but impedes others, or as a semipermeable
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membrane that partially impairs flows (Wiens et al. 1985, Hansen and di Castri 1992). The
contrast along an edge
may influence its function
in this regard. For
example, high-contrast
edges may prohibit or
inhibit some organisms
from seeking
supplementary resources
in surrounding patches.
Conversely, some species
(e.g., great horned owl,
Bubo virginianus) seem to
prefer the juxtaposition of
patch types with high
contrast, as in the process
of landscape
complementation
(Dunning et al. 1992).

Clearly, edge contrast can assume a variety of meanings for different ecological processes. 
Therefore, contrast can be defined in a variety of ways, but it always reflects the magnitude of
difference between patches with respect to one or more ecological attributes at a given scale that
are important to the phenomenon under investigation (Kotliar and Wiens 1990, Wiens et al.
1985). Similar to Romme (1982), FRAGSTATS employs weights to represent the magnitude of
edge contrast between adjacent patch types; weights must range between 0 (no contrast) and 1
(maximum contrast). Under most circumstances, it is probably not valid to assume that all edges
function similarly. Often
there will not be a strong
empirical basis for
establishing a weighting
scheme, but a reasoned
guess based on a
theoretical understanding
of the phenomenon is
probably better than
assuming all edges are
alike. For example, from
an avian habitat use
standpoint, we might
weight edges somewhat
subjectively according to
the degree of structural
and floristic contrast
between adjacent patches,
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because a number of studies
have shown these features to
be important to many bird
species (Thomas et al. 1978
and 1979, Logan et al. 1985).

FRAGSTATS
Metrics.–FRAGSTATS
computes several indices
based on edge contrast at the
patch, class, and landscape
levels. At the patch level, the
edge contrast index (ECON)
measures the degree of
contrast between a patch and
its immediate neighborhood.
Each segment of the patch perimeter is weighted by the degree of contrast with the adjacent
patch. Total patch perimeter is reduced proportionate to the degree of contrast in the perimeter
and reported as a percentage of the total perimeter. Thus, a patch with a 10% edge contrast index
has very little contrast with its neighborhood; it has the equivalent of 10% of its perimeter in
maximum-contrast edge. Conversely, a patch with a 90% edge contrast index has high contrast
with its neighborhood. Note that this index is a relative measure. Given any amount of edge, it
measures the degree of contrast in that edge. In other words, high values of ECON mean that the
edge present, regardless of whether it is 10 m or 1,000 m, is of high contrast, and vice versa. At
the class and landscape levels, FRAGSTATS computes a total edge contrast index (TECI). Like
its patch-level counterpart, this index quantifies edge contrast as a percentage of maximum
possible. However, this index ignores patch distinctions; it quantifies edge contrast for the
landscape as a whole. FRAGSTATS also computes distribution statistics for the edge contrast
index at the class and landscape levels. The mean edge contrast index (ECON_MN), for
example, quantifies the average edge contrast for patches of a particular patch type (class level)
or for all patches in the landscape.

These edge contrast indices are relative measures. Given any amount or density of edge, they
measure the degree of contrast in that edge. High values of these indices mean that the edge
present, regardless of whether it is 10 m or 1,000 m, is of high contrast, and vice versa. For this
reason, these indices are probably best interpreted in conjunction with total edge or edge density.
Because of this, FRAGSTATS also computes an index that incorporates both edge density and
edge contrast in a single index. Contrast-weighted edge density (CWED) standardizes edge to a
per unit area basis that facilitates comparison among landscapes of varying size. Unlike edge
density, however, this index reduces the length of each edge segment proportionate to the degree
of contrast. Thus, 100 m/ha of maximum-contrast edge (i.e., weight = 1) is unaffected; but 100
m/ha of edge with a contrast weight of 0.2 is reduced by 80% to 20 m/ha of contrast-weighted
edge. This index measures the equivalent maximum-contrast edge density. For example, an edge
density of 100 means that there are 100 meters of edge per hectare in the landscape. A contrast-
weighted edge density of 80 for the same landscape means that there are an equivalent of 80
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meters of maximum-contrast edge per hectare in the landscape. A landscape with 100 m/ha of
edge and an average contrast weight of 0.8 would have twice the contrast-weighted edge density
(80 m/ha) as a landscape with only 50 m/ha of edge but with the same average contrast weight
(40 m/ha). Thus, both edge density and edge contrast are reflected in this index. For many
ecological phenomena, edge types function differently. Consequently, comparing total edge
density among landscapes may be misleading because of differences in edge types. This
contrast-weighted edge density index attempts to quantify edge from the perspective of its
functional significance. Thus, landscapes with the same contrast-weighted edge density are
presumed to have the same total magnitude of edge effects from a functional perspective.

All edge contrast indices consider landscape boundary and background segments even if they
have an edge contrast weight of zero. In the absence of a landscape border, the landscape
boundary is assigned as background edge and treated according to the background contrast
weight specified in the contrast weight file. In the presence of a landscape border, all landscape
boundary edges are made explicit by the information present in the border and are assigned the
appropriate contrast weight given in the contrast weight file. Regardless of whether a border is
present or not, all background edges, both internal (positively valued) and external (negatively
valued), are assigned the background contrast weight specified in the contrast weight file.
Assigning a meaningful contrast weight to the boundary and background presents a special
challenge because, in practice, background (and the boundary, in the absence of a border) often
represents area for which nothing is known. Thus, it can be difficult to assign a single contrast
weight that applies equally well to all background/boundary edges. A landscape border is often
included to avoid this problem, because all boundary edges are made explicit; however, even a
border doesn’t eliminate the problem of assigning a weight to background if it exists. The
potential severity of the boundary/background problem depends on the size and heterogeneity of
the landscape and the extent of background edge. Larger and more heterogeneous landscapes
without little or no background will have proportionately less total edge located along the
boundary and/or background.

Limitations.–Edge contrast indices are limited by the considerations discussed elsewhere for
metrics based on total edge length (see Area/Density/Edge Metrics). These indices are only
calculated if an edge contrast weight file is specified. The usefulness of these indices is directly
related to the meaningfulness of the weighting scheme used to quantify edge contrast. Careful
consideration should be given to devising weights that reflect any empirical and theoretical
knowledge and understanding of the phenomenon under consideration. If the weighting scheme
does not accurately represent the phenomenon under investigation, then the results will be
spurious.
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6. Contagion & Interspersion Metrics

Background.–Contagion refers to the tendency of patch types to be spatially aggregated; that is,
to occur in large, aggregated or “contagious” distributions. Contagion ignores patches per se and
refers to the extent to which cells (pixels) of the same class are aggregated together into clumped
distributions. Interspersion, on the other hand, refers to the intermixing of patches of different
types and is based solely on patch (as opposed to cell) adjacencies. Contagion and interspersion
are both aspects of landscape texture; they both reflect the adjacency of patch types, but do so in
a different manner. Contagion reflects both the dispersion (i.e., the spatial distribution) and
intermixing of patch types, whereas interspersion reflects only the latter. Thus, as a measure of
landscape texture, contagion subsumes interspersion.

Contagion is also closely allied to the concept of subdivision. In its narrowest sense, contagion
ignores patches per se and measures the extent to which cells of similar class are aggregated. In
other words, contagion reflects the overall clumpiness of the landscape without explicit reference
to the patches. Subdivision, on the other hand,  refers explicitly to the degree to which patch
types are broken up (i.e., subdivided) into separate patches (i.e., fragments), not the shape,
relative location, or spatial arrangement of those patches. These differences are subtle, but
important–at least computationally, if not conceptually. Contagion (at the landscape level) deals
with both the dispersion and interspersion of patch types, while subdivision deals only with the
dispersion of patch types, not interspersion. This distinction is relatively straightforward. The
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confusion between contagion
and subdivision lies in how
they handle dispersion.
Contagion deals specifically
with the ‘aggregation’ of patch
types; it is affected only by the
clumpiness of cells of the same
class. Computationally,
contagion is computed from the
proportion of cell adjacencies
that involve the same class
(i.e., like-adjacencies); it
doesn’t matter what patch a cell
belongs to or how many
patches there are, only how
many of the cell sides are like-
adjacencies. Large, compact patches have a high proportion of like-adjacencies and therefore
produce high contagion. Conversely, large, but highly convoluted (e.g., linear) patches have a
low proportion of like-adjacencies and therefore produce low contagion–despite the similarity in
patch sizes.  Accordingly, the number and size of disjunct patches–that is, the subdivision of the
landscape–affects contagion only indirectly by affecting the proportion of like adjacencies. Thus,
contagion reflects the ‘compactness’ of patches, not the number and size of patches per
se–although in real landscapes compactness and size are often highly correlated. Subdivision, on
the other hand, deals with the aggregation of patch types, like contagion, but deals explicitly
with the number and size of patches as well. Indeed, the subdivision metrics computed by
FRAGSTATS (described below) are based on the cumulative patch size distribution, not cell
adjacencies. Large, contiguous patches, even if they are highly elongated or convoluted, are
undivided and therefore produce low subdivision. Despite the theoretical and conceptual
differences between contagion and subdivision, in practice these two aspects of landscape
texture are often highly confounded.

Contagion and interspersion broadly refer to the overall texture of the entire landscape mosaic,
as described above. However, contagion and interspersion can be applied at the class level as
well, although their meaning changes somewhat. At the class level, interspersion has basically
the same interpretation; it refers to the intermixing of the focal patch type with the other patch
types. The distinction here is the focus on a single patch type and its adjacencies to other patch
types, as opposed to the intermixing of all patches. Similarly, contagion at the class level refers
to the tendency of a single focal patch type to be spatially aggregated; that is, to occur in large,
aggregated or “contagious” distributions. Here, the distinction between class and landscape
levels is important. Recall that at the landscape level, contagion refers to both the dispersion and
interspersion of patch types. At the class level, however, contagion refers to the spatial
aggregation of the focal patch type without reference to its interspersion. Consequently,
measures of class-level contagion are quite different computationally from measures of
contagion computed at the landscape level. At the class level, contagion is more closely akin to
the concept of subdivision because it deals exclusively with the aggregation or disaggregation
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(i.e., fragmentation) of the focal class–although the subtle distinction between contagion and
subdivision regarding dispersion described above still applies.

The texture of a landscape is a fundamental aspect of landscape pattern and is important in many
ecological processes. The subdivision of a patch type of course plays a crucial role in the process
of habitat fragmentation. Specifically, habitat fragmentation involves the disaggregation and
subdivision of contiguous habitat into disaggregated and/or disjunct patches. As habitat
fragmentation proceeds, habitat contagion decreases, habitat subdivision increases, and
eventually ecological function is impaired (Saunders et al.1991). Specifically, the subdivision
and isolation of populations caused by this fragmentation can lead to reduced dispersal success
and patch colonization rates which may result in a decline in the persistence of individual
populations and an enhanced probability of regional extinction for entire populations across the
landscape (e.g., Lande 1987; With and King 1999a,b; With 1999). In addition, the subdivision
and interspersion of patch types may affect the propagation of disturbances across a landscape
(Franklin and Forman 1987). Specifically, a patch type that is highly disaggregated and/or
subdivided may be more resistant to the propagation of some disturbances (e.g., disease, fire,
etc.), and thus more likely to persist in a landscape than a patch type that is highly aggregated
and/or contiguous. Conversely, highly disaggregated and/or subdivided patch types may suffer
higher rates of disturbance for some disturbance types (e.g. windthrow) than more aggregated
and /or contiguous distributions. Similarly, interspersion is presumed to affect the quality of
habitat for many species that require different patch types to meet different life history requisites,
as in the process of landscape complementation (Dunning et al. 1992). Indeed, the notion of
habitat interspersion has had a preeminent role in wildlife management during the past century.
Wildlife management efforts are often focused on maximizing habitat interspersion because it is
believed that the juxtaposition of different habitats will increase species diversity (Leopold
1933). 

FRAGSTATS
Metrics.–There are
several different
approaches for measuring
contagion and
interspersion. One popular
index that subsumes both
dispersion and
interspersion is the
contagion index
(CONTAG) based on the
probability of finding a
cell of type i next to a cell
of type j. This index was
proposed first by O'Neill
et al. (1988) and
subsequently it has been
widely used (Turner and
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Ruscher 1988, Turner
1989, Turner et al. 1989,
Turner 1990a and b,
Graham et al. 1991,
Gustafson and Parker
1992). Li and Reynolds
(1993) showed that the
original formula was
incorrect; they introduced
2 forms of an alternative
contagion index that
corrects this error and has
improved performance.
FRAGSTATS computes
one of the contagion
indices proposed by Li and
Reynolds (1993). This
contagion index is based on raster “cell" adjacencies, not "patch" adjacencies, and consists of the
sum, over patch types, of the product of 2 probabilities:  (1) the probability that a randomly
chosen cell belongs to patch type i (estimated by the proportional abundance of patch type i), and
(2) the conditional probability that given a cell is of patch type i, one of its neighboring cells
belongs to patch type j (estimated by the proportional abundance of patch type i adjacencies
involving patch type j). The product of these probabilities equals the probability that 2 randomly
chosen adjacent cells belong to patch type i and j. This contagion index is appealing because of
the straightforward and intuitive interpretation of this probability.

The contagion index has been widely used in landscape ecology because it seems to be an
effective summary of overall clumpiness on categorical maps (Turner 1989). In addition, in
many landscapes, it is
highly correlated with
indices of patch type
diversity and dominance
(Ritters et al. 1995) and
thus may be an effective
surrogate for those
important components of
pattern (O’Neill et al.
1996). Contagion
measures both patch type
interspersion (i.e., the
intermixing of units of
different patch types) as
well as patch dispersion
(i.e., the spatial
distribution of a patch
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type) at the landscape level. All other things being equal, a landscape in which the patch types
are well interspersed will have lower contagion than a landscape in which patch types are poorly
interspersed. Contagion measures the extent to which patch types are aggregated or clumped;
higher values of contagion may result from landscapes with a few large, contiguous patches,
whereas lower values generally characterize landscapes with many small and dispersed patches.
Thus, holding interspersion constant, a landscape in which the patch types are aggregated into
larger, contiguous patches will have greater contagion than a landscape in which the patch types
are fragmented into many small patches. Contagion measures dispersion in addition to patch type
interspersion because cells, not patches, are evaluated for adjacency. Landscapes consisting of
large, contiguous patches have a majority of internal cells with like adjacencies. In this case,
contagion is high because the proportion of total cell adjacencies comprised of like adjacencies is
very large and the distribution of adjacencies among edge types is very uneven.

Unfortunately, as alluded to above, there are alternative procedures for computing contagion,
and this has contributed to some confusion over the interpretation of published contagion values
(see Ritters et al. 1996 for a discussion). Briefly, to calculate contagion, the adjacency of patch
types is first summarized in an adjacency or co-occurrence matrix, which shows the frequency
with which different pairs of patch types (including like adjacencies between the same patch
type) appear side-by-side on the map (note, FRAGSTATS includes only the 4 orthogonal
neighbors, not diagonal neighbors, regardless of the choice of neighbor rules for defining
patches). Although this would seem to be a simple task, it is the source of differences among
procedures for calculating contagion. The difference arises out of the option to count each
immediately-adjacent pixel pair once or twice. In the single-count method, each pixel adjacency
is counted once and the order of pixels is not preserved; whereas, in the double-count method,
each pixel adjacency is counted twice and the order of pixels is preserved. Ritters et al. (1996)
discuss the merits of both approaches. FRAGSTATS adopts the double-count method in which
pixel order is preserved, with two exceptions. If a landscape border is present, the adjacencies
along the landscape boundary (i.e., those between cells inside the landscape and those in the
border) are only counted once, and they are tallied for the cells inside the landscape. For
example, an adjacency on the landscape boundary between class 2 (inside the landscape) and
class -3 (in the landscape border) is recorded as a 2-3 adjacency in the adjacency matrix, not a 3-
2. Thus, if a landscape border is present, the adjacency matrix includes double-counts for all
internal cell adjacencies and single-counts for all adjacencies on the landscape boundary not
involving background. In effect, this gives double the weight to the internal adjacencies than
those on the boundary, although the effect will be trivial in most landscapes because the
boundary edges will represent a relative minor proportion of the total adjacencies. Similarly, all
adjacencies involving background (both internal, i.e., inside the landscape, and external, i.e., on
the landscape boundary) are counted only once, and they are tallied for the non-background
cells. Essentially, each non-background cell inside the landscape is visited and the four cell sides
are evaluated and tallied in the adjacency matrix. Since background cells and all cells in the
landscape border, if present, are not visited per se, the edges involving these cells only get tallied
once in association with the non-background cell inside the landscape.

McGarigal and Marks (1995) introduced a complementary interspersion and juxtaposition index
(IJI) that increases in value as patches tend to be more evenly interspersed in a "salt and pepper"
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mixture. Unlike the earlier
contagion indices that are
based on raster cell
adjacencies, this index is
based on patch
adjacencies; only the patch
perimeters are considered
in determining the total
length of each unique edge
type. Each patch is
evaluated for adjacency
with all other patch types;
like adjacencies are not
possible because a patch
can never be adjacent to a
patch of the same type.
Because this index is a
measure of patch adjacency and not cell adjacency, the interpretation is somewhat different than
the contagion index. The interspersion index measures the extent to which patch types are
interspersed (not necessarily dispersed); higher values result from landscapes in which the patch
types are well interspersed (i.e., equally adjacent to each other), whereas lower values
characterize landscapes in which the patch types are poorly interspersed (i.e., disproportionate
distribution of patch type adjacencies). The interspersion index is not directly affected by the
number, size, contiguity, or dispersion of patches per se, as is the contagion index. Consequently,
a landscape containing 4 large patches, each a different patch type, and a landscape of the same
extent containing 100 small patches of 4 patch types will have the same index value if the patch
types are equally interspersed (or adjacent to each other based on the proportion of total edge
length in each edge type); whereas, the value of contagion would be quite different. Like the
contagion index, the
interspersion index is a
relative index that
represents the observed
level of interspersion as a
percentage of the maximum
possible given the total
number of patch types.

It is important to note the
differences between the
contagion index and the
interspersion and
juxtaposition index.
Contagion is affected by
both interspersion and
dispersion. The
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interspersion and juxtaposition index, in contrast, is affected only by patch type interspersion and
not necessarily by the size, contiguity, or dispersion of patches. Thus, although often indirectly
affected by dispersion, the interspersion and juxtaposition index directly measures patch type
interspersion, whereas contagion measures a combination of both patch type interspersion and
dispersion. In addition, contagion and interspersion are typically inversely related to each other.
Higher contagion generally corresponds to lower interspersion and vice versa. Finally, in
contrast to the interspersion and juxtaposition index, the contagion index is strongly affected by
the grain size or resolution of the image. Given a particular patch mosaic, a smaller grain size
will result in greater contagion because of the proportional increase in like adjacencies from
internal cells. The interspersion and juxtaposition index is not affected in this manner because it
considers only patch edges.
This scale effect should be
carefully considered when
attempting to compare
results from different
studies.

Other contagion-like metrics
can be generated from the
matrix of pairwise
adjacencies between patch
types. FRAGSTATS
computes the percentage of
like adjacencies (PLADJ),
which is computed as the
sum of the diagonal
elements (i.e., like
adjacencies) of the
adjacency matrix divided by the total number of adjacencies. A landscape containing greater
aggregation of patch types (e.g., larger patches with compact shapes) will contain a higher
proportion of like adjacencies than a landscape containing disaggregated patch types (e.g.,
smaller patches and more complex shapes). In contrast to the contagion index, this metric
measures only patch type dispersion, not interspersion, and is unaffected by the method used to
summarize adjacencies. At the class level, this metric is computed as the percentage of like
adjacencies of the focal class. A highly contagious (aggregated) patch type will contain a higher
percentage of like adjacencies. Conversely, a highly fragmented (disaggregated) patch type will
contain proportionately fewer like adjacencies. As such, this index provides an effective measure
of class-specific contagion that isolates the dispersion (as opposed to interspersion) component
of configuration. However, this index requires careful interpretation because it varies in relation
to the proportion of the landscape comprised of the focal class (Pi). It has been shown that
PLADJ for class i will equal Pi for a completely random map (Gardner and O’Neill 1991). If the
focal class is more dispersed than is expected of a random distribution (i.e., overdispersed), then
PLADJ < Pi. If the focal class is more contagiously distributed, then PLADJ > Pi. Thus, although
PLADJ provides an absolute measure of aggregation of the focal class, it is difficult to interpret
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as a measure of contagion
without adjusting for Pi.

FRAGSTATS computes
two class-specific indices
based on PLADJ that
adjust for Pi in different
ways. The clumpiness
index (CLUMPY)
introduced here is
computed such that it
ranges from -1 when the
patch type is maximally
disaggregated to 1 when
the patch type is
maximally clumped. It
returns a value of zero for
a random distribution, regardless of Pi. Values less than zero indicate greater dispersion (or
disaggregation) than expected under a spatially random distribution, and values greater than zero
indicate greater contagion. Hence, this index provides a measure of class-specific contagion that
effectively isolates the configuration component from the area component and, as such, provides
an effective index of fragmentation of the focal class that is not confounded by changes in class
area. The aggregation index (AI) is computed as a percentage based on the ratio of the observed
number of like
adjacencies (ei,i), based on
the single-count method,
to the maximum possible
number of like
adjacencies (max_ei,i)
given Pi (He et al. 2000).
Note, the single-count
method of tallying
adjacencies is employed
to be consistent with the
published algorithm. The
maximum number of like
adjacencies is achieved
when the class is clumped
into a single compact
patch, which does not
have to be a square. The
trick here is in determining the maximum value of ei,i for any Pi,. He et al. (2000) provide the
formula for computing max_ei,i. The index ranges from 0 when there is no like adjacencies (i.e.,
when the class is maximally dissagregated) to 1 when ei,i  reaches the maximum (i.e., when the
class is maximally aggregated).



9.37

The landscape shape index
(LSI) described in the
section on
Area/Edge/Density Metrics
is closely allied to the
former aggregation metrics
and can be considered as an
alternative aggregation
metric. The former metrics
relate the percentage of like
adjacencies to that expected
for a maximally compact
distribution. LSI functions
similarly, but instead of
considering the ratio of
internal (like) adjacencies, it
is based on the ratio of
external (or perimeter) cell adjacencies.  Because a maximally compact patch of any size has a
known perimeter (i.e., the perimeter of a square or maximally square-like shape), the number of
internal like adjacencies is also known. Consequently, these metrics are computationally closely
related. The differences between these metrics lies in how the boundary of the landscape is taken
into account. In the landscape shape index, the landscape boundary is always considered as edge
(or perimeter) regardless of whether a border is provided. In the aggregation index (AI), the
landscape boundary is never
considered regardless of
whether a border is
provided. In the clumpiness
index (CLUMPY), the
landscape boundary is
treated according to the
information present, i.e., it
takes into account the border
if present. The net result of
these differences depends on
the ratio of boundary to
internal edge but can lead to
a different types of
confounding with P
(percentage of the landscape
comprised of the focal
class). 

There are alternative methods for calculating class-specific contagion using fractal geometry
(Gardner and O’Neill 1991). FRAGSTATS computes the mass fractal dimension (MFRAC) for
each class, which is based on the scaling relationship between box mass (i.e., the number of
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pixels of a focal class within a window) and the size of the box defining the window (r).
Specifically, a range of box sizes is used to delineate windows, from 3 pixels on a side (r=3) to a
maximum of approximately a of the landscape. For each box size, the mean number of pixels of
the focal class is determined by centering the box on every pixel of that class and counting the
number of pixels of that class in the box sample. Mass fractal dimension is equal to the slope
derived from regressing the log of the mean number of pixels for each box size on the log of the
box lengths (Voss 1988, Milne 1991). Mass fractal dimension decreases as the percentage of the
landscape comprised of the focal class decreases. After accounting for this relationship, higher
values of mass fractal dimension are associated with higher contagion.

Lacunarity is another method borrowed from fractal geometry by which class-specific contagion
can be characterized across a range of spatial scales (Plotnick et al. 1993 and 1996, Dale 2000).
Consider a binary ("on/off") raster map of dimension m. The technique involves using a moving
window and is concerned with the frequency with which one encounters the focal class in a
window of different sizes, similar to the mass fractal dimension. To do this, a gliding box is
constructed of dimension r, and a frequency distribution of tallies of S=1,2, ..., r2 "on" cells is
constructed. In this gliding, the box is moved over one cell at a time, so that the boxes overlap
during the sliding. Define n(S,r) as the number of boxes that tally S "on" cells for a box of size r.
There are N(r)=(m-r+1)2 boxes of size r, and the probability associated with n(S,r) is
Q(S,r)=n(S,r)/N(r). The first and second moments of Q are used to define lacunarity L (lambda)
for this box size as a variance to mean-square ratio. This is repeated for a range of box sizes r. A
log-log plot of lacunarity against window size expresses the contagion of the map, or its
tendency to aggregate into discrete patches, across a range of spatial scales. Note that as r
increases, the tally n(S,r) converges on the mean and its variance converges on 0. Thus, for very
large boxes L=1 and ln(L)=0. At the smallest box size (r=1), L(1) = 1/p, where p is the
proportion of the map occupied ("on"). Thus, for the finest resolution of a map, L depends solely
on p. At intermediate scales, lacunarity expresses the contagion of the map, or its tendency to
clump into discrete patches. So the lacunarity plot summarizes the contagion of the map across
all scales. 

As noted in the background discussion, contagion and subdivision are closely related concepts.
Both refer to the aggregation of patch types, but subdivision deals explicitly with the degree to
which patch types are broken up (i.e., subdivided) into separate patches (i.e., fragments).
Subdivision can be evaluated using a wide variety of metrics already described; for example, the
number, density, and average size of patches and the degree of contagion all indirectly relate to
subdivision. However, these metrics have been criticized for their insensitivity and inconsistent
behavior across a wide range of subdivision patterns. Jaeger (2000) discussed the limitations of
these metrics for evaluating habitat fragmentation and concluded that most of these metrics do
not behave in a consistent and logical manner across all phases of the fragmentation process. He
introduced a suite of metrics derived from the cumulative distribution of patch sizes that provide
alternative and more explicit measures of subdivision. When applied at the class level, these
metrics can be used to measure the degree of fragmentation of the focal patch type. Applied at
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the landscape level, these
metrics measure the
graininess of the
landscape; i.e., the
tendency of the landscape
to exhibit a fine- versus
coarse-grain texture. A
fine-grain landscape is
characterized by many
small patches (highly
subdivided); whereas, a
coarse-grain landscape is
characterized by fewer
large patches.

FRAGSTATS computes
three of the subdivision
metrics proposed by
Jaeger (2000). All of these metrics are based on the notion that two animals, placed randomly in
different areas somewhere in a region, will have a certain likelihood of being in the same
undissected area (i.e., the same patch), which is a function of the degree of subdivision of the
landscape. The landscape division index (DIVISION) is based on the degree of coherence (C),
which is defined as the probability that two animals placed in different areas somewhere in the
region of investigation might find each other. Degree of coherence is based on the cumulative
patch area distribution and is represented graphically as the area above the cumulative area
distribution curve. Degree of coherence represents the probability that two animals, which have
been able to move throughout the whole region before the landscape was subdivided, will be
found in the same patch
after the subdivision is
in place. The degree of
landscape division is
simply the complement
of coherence and is
defined as the
probability that two
randomly chosen places
in the landscape are not
situated in the same
undissected patch.
Graphically, the degree
of landscape division is
equal to the area below
the cumulative area
distribution curve.
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The splitting index (SPLIT)
is defined as the number of
patches one gets when
dividing the total landscape
into patches of equal size in
such a way that this new
configuration leads to the
same degree of landscape
division as obtained for the
observed cumulative area
distribution. The splitting
index can be interpreted to
be the “effective mesh
number” of a patch mosaic
with a constant patch size
dividing the landscape into
S patches, where S is the
splitting index. The effective mesh size (MESH) simply denotes the size of the patches when the
landscape is divided into S areas (each of the same size) with the same degree of landscape
division as obtained for the observed cumulative area distribution. Thus, all three subdivision
metrics are easily computed from the cumulative patch area distribution. These measures have
the particular advantage over other conventional measures of subdivision (e.g., mean patch size,
patch density) in that they are insensitive to the omission or addition of very small patches. In
practice, this makes the results more reproducible as investigators do not always use the same
lower limit of patch size. Jaeger (2000) argues that the most important and advantageous feature
of these new measures is
that effective mesh size is
‘area-proportionately
additive’; that is, it
characterizes the subdivision
of a landscape independently
of its size. In fact, these
three measures are closely
related to the area-weighted
mean patch size
(AREA_AM) discussed
previously, and under
certain circumstances are
perfectly redundant. The
distinctions are discussed
below for each metric.

Limitations.–All measures based on the adjacency matrix (i.e., the number of adjacencies
between each pair of patch types) that include like-adjacencies (i.e., percentage of like
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adjacencies, clumpiness index, aggregation index, and contagion) are strongly affected by the
grain size or resolution of the image. Given a particular patch mosaic, a smaller grain size will
result in a proportional increase in like adjacencies. Given this scale dependency, these metrics
are best used if the scale is held constant. Note, interspersion is not affected by resolution
directly because only patch edges are considered. In addition, there are alternative ways to
consider cell adjacencies. Adjacencies may include only the 4 cells sharing a side with the focal
cell, or they may include the diagonal neighbors as well. FRAGSTATS uses the 4-neighbor
approach for the purpose of calculating these metrics. Further, there are at least two basic
approaches for counting cell adjacencies, referred to as the single count and double count
methods. As noted above, FRAGSTATS adopts the double count method in which pixel order is
preserved. In this method, all non-background cells inside the landscape (i.e., positively-valued
cells ) are visited and the four sides of each cell are tallied in the adjacency matrix. As a result,
all cell sides involving non-background classes inside the landscape are tallied twice (hence the
term double count), but all cell sides involving background or landscape border (i.e., negatively-
valued cells) are only counted once, as those cells are not themselves visited. Finally, mass
fractal dimension and lacunarity involve the use of moving windows of many sizes; these can be
computationally demanding and for large landscapes may take a very long time to compute.

Metrics based on fractal geometry such as mass fractal dimension are subject to several
limitations (as discussed by Hargis et al. 1998). First, the simplifications of landscape pattern
produced during the mapping process yield images that are not truly fractal, and the application
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of fractal measures in the strictest sense is therefore questionable. Fractal geometry assumes that
the quantity being measured and the ruler length of measurement have a linear relationship when
both are logarithmically transformed (Voss 1988). If this condition is not met, the object (in this
case, the landscape) may not be fractal. Any smoothing or renormalization of landscape patterns
during the mapping process may cause this relationship to deviate from linearity, and the use of
fractal dimension may be questionable. Second, landscape extent and grain affect the ability to
derive an accurate scaling relationship between box size and mass. A large ratio of extent to
grain is needed to produce a reasonable range of box sizes for generating an accurate slope.
Finally, the relationship between grain and average patch size can affect the accuracy and
meaningfulness of the derived fractal dimension. If map resolution allows only two or three box
sizes before the sample box exceeds the size of the average patch, the slope derived from these
points is questionable. In this case, when larger box sizes are added to the regression line, any
interesting differences are lost in the averaging process.

The subdivision metrics based on the cumulative patch size distribution are essentially free of
any known limitations. Perhaps the greatest limitation is that they have not yet been used
extensively by landscape ecologists, so their behavior under various conditions has not been
fully explored.
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7. Isolation/Proximity Metrics

Background.--Isolation deals explicitly with the spatial and temporal context of habitat patches,
rather than the spatial character of the patches themselves. Isolation of habitat patches is a
critical factor in the dynamics of spatially structured populations. For example, there has been a
proliferation of mathematical models on population dynamics and species interactions in
spatially subdivided populations (Kareiva 1990), and results suggest that the dynamics of local
plant and animal populations in a patch are influenced by their proximity to other subpopulations
of the same or competing species. Patch isolation plays a critical role in island biogeographic
theory (MacArthur and Wilson 1967) and metapopulation theory (Levins 1970, Gilpin and
Hanski 1991). The role of patch isolation (e.g., as measured by interpatch distance) in
metapopulations has had a preeminent role in conservation efforts for endangered species (e.g.,
Lamberson et al. 1992, McKelvey et al. 1992).

Isolation is particularly important in the context of habitat fragmentation. Several authors have
claimed, for example, that patch isolation explains why fragmented habitats often contain fewer
bird species than contiguous habitats (Moore and Hooper 1975, Forman et al. 1976, Helliwell
1976, Whitcomb et al. 1981, Hayden et al. 1985, Dickman 1987). Specifically, as habitat is lost
and fragmented, residual habitat patches become more isolated from each other in space and
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time. One of the more immediate consequence of this is the disruption of movement patterns and
the resulting isolation of individuals and local populations. This has important metapopulation
consequences. As habitat is fragmented, it is broken up into remnants that are isolated to varying
degrees. Because remnant habitat patches are relatively small and therefore support fewer
individuals, there will be fewer local (within patch) opportunities for intra-specific interactions.
This may not present a problem for individuals (and the persistence of the population) if
movement among patches is largely unimpeded by intervening habitats in the matrix and
connectivity across the landscape can be maintained. However, if movement among habitat
patches is significantly impeded or prevented, then individuals (and local populations) in
remnant habitat patches may become functionally isolated. The degree of isolation for any
fragmented habitat distribution will vary among species depending on how they perceive and
interact with landscape patterns (Dale et al. 1994, With and Crist 1995, Pearson et al. 1996, With
et al. 1997, With 1999); less vagile species with very restrictive habitat requirements and limited
gap-crossing ability will likely be most sensitive to isolation effects. 

Habitat patches can become functionally isolated in several ways. First, the patch edge may act
as a filter or barrier that impedes or prevents movement, thereby disrupting emigration and
dispersal from the patch (Wiens et al. 1985). Some evidence for this exists for small mammals
(e.g., Wegner and Merriam 1979, Chasko and Gates 1982, Bendell and Gates 1987, Yahner
1986), but the data are scarce for other vertebrates. Whether edges themselves can limit
movement presumably depends on what species are trying to cross the edge and on the structure
of the edge habitat (Kremsater and Bunnell 1999). Second, the distance from remnant habitat
patches to other neighboring habitat patches may influence the likelihood of successful
movement of individuals among habitat patches. Again, the distance at which movement rates
significantly decline will vary among species depending on how they scale the environment. In
general, larger organisms can travel longer distances. Therefore, a 100 m-wide agricultural field
may be a complete barrier to dispersal for small organisms such as invertebrates (e.g., Mader
1984), yet be quite permeable for larger and more vagile organisms such as birds. Lastly, the
composition and structure of the intervening landscape mosaic may determine the permeability
of the landscape to movements. Note that under an island biogeographic perspective, habitat
patches exist in a uniform sea that is hostile to both survival and dispersal. In this case, the
matrix is presumed to contain no meaningful structure and isolation is influenced largely by the
distance among favorable habitat patches. However, under a landscape mosaic perspective,
habitat patches are bounded by other patches that may be more or less similar (as opposed to
highly contrasting and hostile) and connectivity is assessed by the extent to which movement is
facilitated or impeded through different habitat types across the landscape. Each habitat may
differ in its “viscosity” or resistance to movement, facilitating movement through certain
elements of the landscape and impeding it in others. Again, the degree to which a given
landscape structure facilitates or impedes movement will vary among organisms. Regardless of
how habitat patches become isolated, whether it be due to properties of the edges themselves, the
distance between patches, or properties of the intervening matrix, the end result is the
same–fewer individual movements among habitat patches. 

Unfortunately, because of the many factors that influence the functional isolation of a patch, it is
a difficult thing to capture in a single measure. In the context of fragmentation, isolation can be
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measured as the time since the habitat was physically subdivided, but this is fraught with
practical difficulties. For example, rarely do we have accurate historical data from which to
determine when each patch was isolated. Moreover, given that fragmentation is an ongoing
process, it can be difficult to objectively determine at what point the habitat becomes subdivided,
since this is largely a function of scale. Isolation can be measured in the spatial dimension in
several ways, depending on how one views the concept of isolation. The simplest measures are
based on Euclidean distance between nearest neighbors (McGarigal and Marks 1995) or the
cumulative area of neighboring habitat patches (weighted by nearest neighbor distance) within
some ecological neighborhood (Gustafson and Parker 1992). These measures adopt an island
biogeographic perspective, as they treat the landscape as a binary mosaic consisting of habitat
patches and uniform matrix. Thus, the context of a patch is defined by the proximity and area of
neighboring habitat patches; the role of the matrix is ignored. However, these measures can be
modified to take into account other habitat types in the so-called matrix and their affects on the
insularity of the focal habitat. For example, simple Euclidean distance can be modified to
account for functional differences among organisms. The functional distance between patches
clearly depends on how each organism scales and interacts with landscape patterns (With 1999);
in other words, the same gap between patches may not be perceived as a relevant disconnection
for some organisms, but may be an impassable barrier for others. Similarly, the matrix can be
treated as a mosaic of patch types that contribute differentially to the isolation of the focal
habitat. For example, isolation can be measured by the degree of contrast (i.e., the magnitude of
differences in one or more attributes between adjacent patch types) between the focal habitat and
neighboring patches.

FRAGSTATS Metrics.--FRAGSTATS computes several isolation metrics based on nearest-
neighbor distance at the patch, class, and landscape levels. Nearest-neighbor distance is defined
as the distance from a patch to a neighboring patch of the same or different class, based on the
nearest cell center-to-cell center. That is, the distance between the two closest cells from the
respective patches, based on the distance between their cell centers. Note, this is a change from
version 2.0 which based nearest neighbor distance on cell edge-to-edge distance. These metrics
are all fundamentally patch-level metrics (i.e., measured for each patch) that can be summarized
at the class or landscape levels.

FRAGSTATS computes two metrics that adopt an island biogeographic perspective on patch
isolation: (1) Euclidean nearest neighbor distance and (2) proximity index. Euclidean nearest
neighbor distance (ENN) is perhaps the simplest measure of patch context and has been used
extensively to quantify patch isolation. Here, nearest neighbor distance is defined using simple
Euclidean geometry as the shortest straight-line distance between the focal patch and its nearest
neighbor of the same class. Even though nearest neighbor distance is often used to evaluate patch
isolation, it is important to recognize that the single nearest patch may not fully represent the
ecological neighborhood of the focal patch. For example, a neighboring patch 100 m away that is
1 ha is size may not be as important to the effective isolation of the focal patch as a neighboring
patch 200 m away, but 1000 ha in size. To overcome this limitation, the proximity index (PROX)
was developed by Gustafson and Parker (1992)[see also Gustafson and Parker 1994, Gustafson
et al. 1994, Whitcomb et al. 1981]. This index considers the size and proximity of all patches
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whose edges are within a
specified search radius of
the focal patch. The index
is computed as the sum,
over all patches of the
corresponding patch type
whose edges are within
the search radius of the
focal patch, of each patch
size divided by the square
of its distance from the
focal patch. Note that
FRAGSTATS uses the
distance between the focal
patch and each of the
other patches within the
search radius, similar to
the isolation index of Whitcomb et al. (1981), rather than the nearest-neighbor distance of each
patch within the search radius (which could be to a patch other than the focal patch), as in
Gustafson and Parker (1992). The proximity index quantifies the spatial context of a (habitat)
patch in relation to its neighbors of the same class; specifically, the index distinguishes sparse
distributions of small habitat patches from configurations where the habitat forms a complex
cluster of larger patches. All other things being equal, a patch located in a neighborhood (defined
by the search radius) containing more of the corresponding patch type than another patch will
have a larger index value. Similarly, all other things being equal, a patch located in a
neighborhood in which the corresponding patch type is distributed in larger, more contiguous,
and/or closer patches than another patch will have a larger index value. Thus, the proximity
index measures both the degree of patch isolation and the degree of fragmentation of the
corresponding patch type within the specified neighborhood of the focal patch.

At the class and landscape levels, FRAGSTATS computes several distribution statistics
associated with the Euclidean nearest neighbor distance and proximity index. At the class level,
the mean proximity index measures the degree of isolation and fragmentation of the
corresponding patch type and the performance of the index under various scenarios is described
in detail by Gustafson and Parker (1994). FRAGSTATS also summarizes the proximity index at
the landscape level by aggregating across all patches in the landscape, although the performance
of this index as a measure of overall landscape pattern has not been evaluated quantitatively.
Similarly, at the class and landscape levels, FRAGSTATS computes the mean and variability in
Euclidean nearest neighbor distance. At the class level, mean nearest-neighbor distance can only
be computed if there are at least 2 patches of the corresponding type. At the landscape level,
mean nearest-neighbor distance considers only patches that have neighbors. Thus, there could be
10 patches in the landscape, but 8 of them might belong to separate patch types and therefore
have no neighbor within the landscape. In this case, mean nearest-neighbor distance would be
based on the distance between the 2 patches of the same type. These 2 patches could be close
together or far apart. In either case, the mean nearest-neighbor distance for this landscape may
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not characterize the entire landscape very well.  For this reason, these metrics should be
interpreted carefully when landscapes contain rare patch types.

In addition to these first-order statistics, the variability in nearest-neighbor distance measures a
key aspect of landscape heterogeneity. Specifically, the standard deviation (SD)in Euclidean
nearest neighbor distance (ENN_SD) is a measure of patch dispersion; a small SD relative to the
mean implies a fairly uniform or regular distribution of patches across landscapes, whereas a
large SD relative to the mean implies a more irregular or uneven distribution of patches. The
distribution of patches may reflect underlying natural processes or human-caused disturbance
patterns. In absolute terms, the magnitude of nearest-neighbor SD is a function of the mean
nearest-neighbor distance and variation in nearest-neighbor distance among patches. Thus, while
SD does convey information about nearest neighbor variability, it is a difficult parameter to
interpret without doing so in conjunction with the mean nearest-neighbor distance. For example,
2 landscapes may have the same nearest-neighbor SD, e.g., 100 m; yet 1 landscape may have a
mean nearest-neighbor distance of 100 m, while the other may have a mean nearest-neighbor
distance of 1,000 m. In this case, the interpretations of landscape pattern would be very different,
even though the absolute variation is the same. Specifically, the former landscape has a more
irregular but concentrated pattern of patches, while the latter has a more regular but dispersed
pattern of patches. For these reasons, coefficient of variation (CV) often is preferable to SD for
comparing variability among landscapes. Coefficient of variation measures relative variability
about the mean (i.e., variability as a percentage of the mean), not absolute variability, and is akin
to the familiar indices of dispersion in point patterns based on the variance to mean ratio in
nearest neighbor distance (e.g., Clark and Evans 1954). Thus, it is not necessary to know the
mean nearest-neighbor distance to interpret this metric. Even so, nearest-neighbor CV can be
misleading with regards to landscape structure without also knowing the number of patches or
patch density and other structural characteristics. For example, 2 landscapes may have the same
nearest-neighbor CV, e.g., 100%; yet 1 landscape may have 100 patches with a mean nearest-
neighbor distance of 100 m, while the other may have 10 patches with a mean nearest-neighbor
distance of 1,000 m. In this case, the interpretations of overall landscape pattern could be very
different, even though nearest-neighbor CV is the same; although the identical CV’s indicate that
both landscapes have the same regularity or uniformity in patch distribution. Finally, both SD
and CV assume a normal distribution about the mean. In a real landscape, nearest-neighbor
distribution may be highly irregular. In this case, it may be more informative to inspect the actual
distribution itself (e.g., plot a histogram of the nearest neighbor distances for the corresponding
patches), rather than relying on summary statistics such as SD and CV that make assumptions
about the distribution and therefore can be misleading.
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FRAGSTATS computes two isolation metrics that adopt a landscape mosaic perspective on
patch isolation: (1) functional nearest neighbor distance and (2) similarity index. Similarity index
(SIMI) is a modification of the proximity index, the difference being that similarity considers the
size and proximity of all patches, regardless of class, whose edges are within a specified search
radius of the focal patch. The similarity index quantifies the spatial context of a (habitat) patch in
relation to its neighbors of the same or similar class; specifically, the index distinguishes sparse
distributions of small and insular habitat patches from configurations where the habitat forms a
complex cluster of larger, hospitable (i.e., similar) patches. All other things being equal, a patch
located in a neighborhood (defined by the search radius) deemed more similar (i.e., containing
greater area in patches with high similarity) than another patch will have a larger index value.
Similarly, all other things being equal, a patch located in a neighborhood in which the similar
patches are distributed in larger, more contiguous, and/or closer patches than another patch will
have a larger index value. Essentially, the similarity index performs much the same way as the
proximity index, but instead of focusing on only a single patch type (i.e., island biogeographic
perspective), it considers all patch types in the mosaic (i.e., landscape mosaic perspective). Thus,
the similarity index is a more comprehensive measure of patch isolation than the proximity index
for organisms and processes that perceive and respond to patch types differentially.

Similarly, functional nearest-neighbor distance (FNN) accounts for one of the major
shortcomings of using
Euclidean distance to
assess ecological
relationships; namely,
that the shortest
geographic distance may
not be the shortest
ecological distance as
perceived by an organism
or process. The character
of the intervening
landscape can
significantly alter the rate
of flow of the organism
or process of interest.
Therefore, it may be
more meaningful to
assess distance using a
least cost path approach.
Here, in effect, the distance across a cell is weighted by the degree of resistance it offers to the
ecological flow of interest. Thus, the functional distance between two patches is increased
proportionate the degree of resistance in the intervening landscape.

Limitations.--There are significant limitations associated with the use of isolation metrics that
must be understood before they are used. The most important limitation of these particular
metrics is that nearest-neighbor distances are computed solely from patches contained within the
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landscape boundary. If the landscape extent is small relative to the scale of the organism or
ecological processes under consideration and the landscape is an "open" system relative to that
organism or process, then nearest-neighbor results can be misleading. For example, consider a
small subpopulation of a bird species occupying a patch near the boundary of a somewhat
arbitrarily defined (from a bird's perspective) landscape. The nearest neighbor within the
landscape boundary might be quite far away, yet in reality the closest patch might be very close,
but just outside the designated landscape boundary. The magnitude of this problem is a function
of scale. Increasing the size of the landscape relative to the scale at which the organism under
investigation perceives and responds to the environment will decrease the severity of this
problem. 

Similarly, the proximity and similarity indices involve a search window around the focal patch.
Thus, these metrics may be biased low for patches located within the search radius distance from
the landscape boundary because a portion of the search area will be outside the area under
consideration. The magnitude is of this problem is also a function of scale. Increasing the size of
the landscape relative to the average patch size and/or decreasing the search radius will decrease
the severity of this problem at the class and landscape levels. However, at the patch level,
regardless of scale, individual patches located within the search radius of the boundary will have
biased indices. In addition, these indices evaluate the landscape context of patches at a specific
scale of analysis defined by the size of the search radius. Therefore, these indices are only
meaningful if the specified search radius has some ecological relevance to the phenomenon
under consideration. Otherwise, the results will be arbitrary and therefore meaningless.

Lastly, functional nearest-neighbor distance and the similarity index are functional metrics in
that they require additional parameterization, in this case, resistance coefficients that are unique
to the ecological phenomenon under consideration. Consequently, as with any functional metric,
their relevance depends entirely on the meaningfulness of the resistance coefficients applied. If
these are arbitrary assignments or based on weak observational data, results will be arbitrary and
therefore meaningless.
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8. Connectivity Metrics

Background.–Connectivity refers to the degree to which a landscape facilitates or impedes
ecological flows (e.g., the movement of organisms among habitat patches and therefore the rate
of movement among local populations in a metapopulation). An abrupt change in the
connectivity of the landscape, for example, as might be caused by habitat loss and fragmentation,
may interfere with dispersal success, such that formerly widespread populations may suddenly
become fragmented into small, isolated populations. This may in turn lead to an abrupt decline in
patch occupancy (metapopulation dynamics) and ultimately extinction of the population across
the landscape (extinction thresholds).

Although connectivity is considered a “vital element of landscape structure” (Taylor et al.,
1993), it has eluded precise definition and has been difficult to quantify and implement in
practice. In part, this is due to differences between the “structural connectedness” of patch types
(or habitat) and the “functional connectedness” of the landscape as perceived by an organism or
ecological process. Structural connectedness refers to the physical continuity of a patch type (or
a habitat) across the landscape. Contiguous habitat is physically connected, but once subdivided,
for example, as a result of habitat fragmentation, it becomes physically disconnected. Structural
connectedness can be evaluated by a combination of measures of habitat extent, subdivision, and
contagion. The notion of structural connectedness adopts an island biogeographic perspective
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because the focus is on the physical continuity of a single patch type. What constitutes
"functional connectedness" between patches, on the other hand, clearly depends on the organism
or process of interest; patches that are connected for bird dispersal might not be connected for
salamanders, seed dispersal, fire spread, or hydrologic flow. As With (1999) notes, “what
ultimately influences the connectivity of the landscape from the organism’s perspective is the
scale and pattern of movement (scale at which the organism perceives the landscape) relative to
the scale and pattern of patchiness (structure of the landscape); ...i.e., a species’ gap-crossing or
dispersal ability relative to the gap-size distribution on the landscape”(Dale et al. 1994, With and
Crist 1995, Pearson et al. 1996, With et al. 1997). Functional connectedness, therefore, relates to
the interaction of ecological flows (including organisms) with landscape pattern. Functional
connections might be based on: (1) strict adjacency (touching) or some threshold distance (a
maximum dispersal distance); (2) some decreasing function of distance that reflects the
probability of connection at a given distance; or (3) a resistance-weighted distance function, e.g.,
where the distance between two patches is computed as the least cost distance on a resistance
surface, where each intervening location between habitat patches is assigned a resistance value
based on its permeability to movement by the focal organism. Then various indices of overall
connectedness can be derived based on the pairwise connections between patches.

FRAGSTATS
Metrics.–Although
connectivity can be
evaluated using a wide
variety of FRAGSTATS
metrics that indirectly
say something about
either the structural or
functional connectedness
of the landscape,
FRAGSTATS computes
a few metrics whose sole
purpose is to measure
connectivity. Patch
cohesion (COHESION)
was proposed by
Schumaker (1996) to
quantify the connectivity of habitat as perceived by organisms dispersing in binary landscapes.
Patch cohesion is computed from the information contained in patch area and perimeter. Briefly,
it is proportional to the area-weighted mean perimeter-area ratio divided by the area-weighted
mean patch shape index (i.e., standardized perimeter-area ratio). It is well known that, on
random binary maps, patches gradually coalesce as the proportion of habitat cells increases,
forming a large, highly connected patch (termed a percolating cluster) that spans that lattice at a
critical proportion (pc) that varies with the neighbor rule used to delineate patches (Staufer 1985,
Gardner et al. 1987). Patch cohesion has the interesting property of increasing monotonically
until an asymptote is reached near the critical proportion. Another index, connectance
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(CONNECT), can be defined
on the number of functional
joinings, where each pair of
patches is either connected or
not based on some criterion.
FRAGSTATS computes
connectance using a threshold
distance specified by the user
and reports it as a percentage
of the maximum possible
connectance given the number
of patches. The threshold
distance can be based on either
Euclidean distance or
functional distance, as
described elsewhere (see
Isolation/Proximity Metrics). Connectedness can also be defined in terms of correlation length
for a raster map comprised of patches defined as clusters of connected cells. Correlation length is
based on the average extensiveness of connected cells, and is computed as the area-weighted
mean radius of gyration across all patches in the class or landscape. Correlation length is not
included with the connectivity
metrics in the FRAGSTATS
graphical user interface
because it is already included
as a distribution metric for
patch radius of gyration
(GYRATE_AM) under the
Area/Density/Edge metrics. A
map's correlation length is
interpreted as the average
distance one might traverse
the map, on average, from a
random starting point and
moving in a random direction,
i.e., it is the expected
traversability of the map (Keitt
et al. 1997). 

Finally, FRAGSTATS also computes a traversability index (TRAVERSE) based on the idea of
ecological resistance. A hypothetical organism in a highly traversable neighborhood cell can
reach a large area with minimal crossing of “hostile” cells. This metric uses a resistance-
weighted spread algorithm to determine the area that can be reached from each cell in a focal
patch. The focal cell gets an organism-specific “bank account,” which represents, say, an energy
budget available to the organism for dispersal from the focal cell. The size of the account is
selected to reflect the organism’s dispersal or movement ability, and translates into ecological
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neighborhood size around a focal cell. Each patch type (including the focal patch type) is
assigned a cost, based on a user-specified resistance matrix. Specifically, relative to a each focal
patch type, each patch type is assigned a resistance coefficient in the form of weights ranging
from 1 (minimum resistance, usually associated with focal patch type) to any higher number that
reflects the relative increase in resistance associated with each patch type. The index is computed
at the individual cell level as follows. The metric is computed by simulating movement away
from the focal cell in all directions, where there is a cost to move through every cell. Even a cell
of the same patch type will have a cost, usually set to 1, so that under the best circumstances
(i.e., minimum resistance), there will exist a maximum dispersal area based on the specified
account or energy budget. Note that assigning a (small) cost for traveling through the focal
community (typically a cost of 1) results in a linearly decaying function. Moving through more
resistant cells costs more and drains the account faster. Thus, depending on the resistance of the
actual landscape in the vicinity of the focal cell, there will be a certain area that a dispersing
organism can access. This area represents the least-cost hull around the focal cell, or the
maximum distance that can be moved from the cell in all directions until the “bank account” is
depleted. This dispersal area, given as a percentage of the maximum dispersal area under
conditions of minimum resistance, provides a measure of the traversability of the landscape in
the vicinity of the focal cell. Averaging this index across cells at the patch, class, or landscape
level provides an index of traversability.

Limitations.–These metrics are limited in a variety of ways. First, patch cohesion is based on
perimeter and area calculations and is therefore subject to the same limitations discussed
elsewhere (see Area/Density/Edge Metrics) for edge calculations. Moreover, despite its
appealing performance under certain conditions (e.g., Schumaker 1996), this index is plagued by
the lack of a straightforward and intuitive interpretation. As a result, it remains largely untested
in other ecological applications. Like all distance-based metrics, connectance suffers from the
same limitations as nearest-neighbor distance (see Isolation/Proximity Metrics). Specifically,
only patches within the landscape are considered when determining if a patch is connected or
not, despite the fact that a patches’ nearest neighbor may be just outside the landscape boundary.
Finally, like all functional metrics, the traversability index requires substantial knowledge of the
organism or process under consideration in order to specify meaningful resistance coefficients. If
the weighting scheme does not accurately represent the phenomenon under investigation, then
the results will be spurious.



9.54

9. Diversity Metrics

Background.–Diversity measures have been used extensively in a variety of ecological
applications. They originally gained popularity as measures of plant and animal species
diversity.  There has been a proliferation of diversity indices and we will make no attempt to
review them here. FRAGSTATS computes 3 diversity indices. These diversity measures are
influenced by 2 components--richness and evenness. Richness refers to the number of patch
types present; evenness refers to the distribution of area among different types. Richness and
evenness are generally referred to as the compositional and structural components of diversity,
respectively. Some indices (e.g., Shannon's diversity index) are more sensitive to richness than
evenness. Thus, rare patch types have a disproportionately large influence on the magnitude of
the index. Other indices (e.g., Simpson's diversity index) are relatively less sensitive to richness
and thus place more weight on the common patch types. These diversity indices have been
applied by landscape ecologists to measure one aspect of landscape structure--landscape
composition (e.g., Romme 1982, O'Neill et al. 1988, Turner 1990a).

FRAGSTATS Metrics.–FRAGSTATS computes several statistics that quantify diversity at the
landscape level. These metrics quantify landscape composition at the landscape level; they are
not affected by the spatial configuration of patches. The most popular diversity index is
Shannon's diversity index (SHDI) based on information theory (Shannon and Weaver 1949). The
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value of this index represents the amount of "information" per individual (or patch, in this case).
Information is a somewhat abstract mathematical concept that we will not attempt to define. The
absolute magnitude of Shannon's diversity index is not particularly meaningful; therefore, it is
used as a relative index for comparing different landscapes or the same landscape at different
times.  Simpson's diversity index (SIDI) is another popular diversity measure that is not based on
information theory (Simpson 1949). Simpson's index is less sensitive to the presence of rare
types and has an interpretation that is much more intuitive than Shannon's index. Specifically,
the value of Simpson's index represents the probability that any two cells selected at random
would be different patch types. Thus, the higher the value the greater the likelihood that any 2
randomly drawn cells would be different patch types.  Because Simpson's index is a probability,
it can be interpreted in both absolute and relative terms. FRAGSTATS also computes a modified
Simpson's diversity index (MSIDI) based on Pielou's (1975) modification of Simpson's diversity
index; this index was used by Romme (1982). The modification eliminates the intuitive
interpretation of Simpson's index as a probability, but transforms the index into one that belongs
to a general class of diversity indices to which Shannon's diversity index belongs (Pielou 1975).
Thus, the modified Simpson's and Shannon's diversity indices are similar in many respects and
have the same applicability.

Patch richness (PR) measures the number of patch types present; it is not affected by the relative
abundance of each patch type or the spatial arrangement of patches. Therefore, two landscapes
may have very different structure yet have the same richness. For example, one landscape may
be comprised of 96% patch type A and 1% each of patch types B-E, whereas another landscape
may be comprised of 20% each of patch types A-E. Although patch richness would be the same,
the functioning of these landscapes and the structure of the animal and plant communities would
likely be greatly different. Because richness does not account for the relative abundance of each
patch type, rare patch types and common patch types contribute equally to richness.
Nevertheless, patch richness is a key element of landscape structure because the variety of
landscape elements present in a landscape can have an important influence on a variety of
ecological processes. Because many organisms are associated with a single patch type, patch
richness often correlates well with species richness.

Richness is partially a function of scale. Larger areas are generally richer because there is
generally greater heterogeneity over larger areas than over comparable smaller areas. This
contributes to the species-area relationship predicted by island biogeographic theory (MacArthur
and Wilson 1967). Therefore, comparing richness among landscapes that vary in size can be
problematic. Patch richness density (PRD) standardizes richness to a per area basis that
facilitates comparison among landscapes, although it does not correct for this interaction with
scale. FRAGSTATS also computes a relative richness index. Relative patch richness (RPR) is
similar to patch richness, but it represents richness as a percentage of the maximum potential
richness as specified by the user (Romme 1982). This form may have more interpretive value
than absolute richness or richness density in some applications. Note that relative patch richness
and patch richness are completely redundant and would not be used simultaneously in any
subsequent statistical analysis.

Evenness measures the other aspect of landscape diversity--the distribution of area among patch



9.56

types. There are numerous ways to quantify evenness and most diversity indices have a
corresponding evenness index derived from them. In addition, evenness can be expressed as its
compliment--dominance (i.e., evenness = 1 - dominance). Indeed, dominance has often been the
chosen form in landscape ecological investigations (e.g., O'Neill et al. 1988, Turner et al. 1989,
Turner 1990a), although we prefer evenness because larger values imply greater landscape
diversity. FRAGSTATS computes 3 evenness indices (Shannon's evenness index, SHEI;
Simpson's evenness index, SIEI; modified Simpson's evenness index, MSIEI), corresponding to
the 3 diversity indices. Each evenness index isolates the evenness component of diversity by
controlling for the contribution of richness to the diversity index. Evenness is expressed as the
observed level of diversity divided by the maximum possible diversity for a given patch
richness. Maximum diversity for any level of richness is achieved when there is an equal
distribution of area among patch types. Therefore, the observed diversity divided by the
maximum diversity (i.e., equal distribution) for a given number of patch types represents the
proportional reduction in the diversity index attributed to lack of perfect evenness. As the
evenness index approaches 1, the observed diversity approaches perfect evenness. Because
evenness is represented as a proportion of maximum evenness, Shannon's evenness index does
not suffer from the limitation of Shannon's diversity index with respect to interpretability.

Limitations.–The use of diversity measures in community ecology has been heavily criticized
because diversity conveys no information on the actual species composition of a community.
Species diversity is a community summary measure that does not take into account the
uniqueness or potential ecological, social, or economical importance of individual species. A
community may have high species diversity yet be comprised largely of common or undesirable
species. Conversely, a community may have low species diversity yet be comprised of especially
unique, rare, or highly desired species. Although these criticisms have not been discussed
explicitly with regards to the landscape ecological application of diversity measures, these
criticisms are equally valid when diversity measures are applied to patch types instead of
species. In addition, diversity indices like Shannon’s index and Simpson’s index combine
richness and evenness components into a single measure, even though it is usually more
informative to evaluate richness and evenness independently.
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10. Insights on the Use of Landscape Metrics

All landscape metrics suffer from limitations that restrict their use and/or interpretation in
different contexts. Unfortunately, a comprehensive theoretical understanding of metric behavior
under varying conditions does not exist. Moreover, given the varied landscape contexts in which
metrics are applied in real-world landscapes, a comprehensive empirical understanding of metric
behavior under the full range of conditions in which they may be applied is not possible.
Consequently, the choice and interpretation of metrics in any particular application is often quite
challenging. In addition to the many specific considerations and limitations of particular metrics
or groups of metrics discussed above, a few additional insights regarding the overall use of
metrics are warranted.

(1). Patch- versus landscape-
based perspective.–Metrics
applied to categorical patch
mosaics (under the
“landscape mosaic model” of
landscape structure)
fundamentally represent the
structure of the landscape as
defined by its patch structure.
Clearly, patches are the basic
building blocks of categorical
patch mosaics and, as such,
most metrics derive from the
spatial character and
distribution of the patches
themselves. However, most
patch-based metrics can be summarized at the class and landscape levels to reflect the character
and distribution of individual patches over a broad extent. Indeed, in most applications, the
objective involves characterizing the patch structure for a single focal class or for the entire
patch mosaic across the full extent of the landscape, rather than focusing on individual patches.
Despite the common objective of characterizing the class or landscape structure, metrics differ in
whether they offer a “patch-based” or “landscape-based” perspective of landscape structure. This
is perhaps best illustrated by the difference between class and/or landscape distribution metrics
based on the simple arithmetic mean or the area-weighted mean.

Metrics based on the mean patch characteristic, such as mean patch size (AREA_MN) or mean
patch shape index (SHAPE_MN), provide a measure of central tendency in the corresponding
patch characteristic across the entire landscape, but nevertheless describe the patch structure of
the landscape as that of the average patch characteristic. Thus, each patch regardless of its size is
considered equally (i.e., given equal weight) in describing the landscape structure. Consequently,
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metrics based on the mean
patch characteristic offer a
fundamentally patch-based
perspective of the landscape
structure. They do not
describe the conditions, for
example, that an animal
dropped at random on the
landscape would experience,
because that depends on the
probability of landing in a
particular patch, which is
dependent on patch size. 

Conversely, metrics based on
the area-weighted mean
patch characteristic, such as
the area-weighted mean patch size (AREA_AM) and area-weighted mean patch shape index
(SHAPE_AM), while still derived from patch characteristics, provide a landscape-based
perspective of landscape structure because they reflect the average conditions of a pixel chosen
at random or the conditions that an animal dropped at random on the landscape would
experience. This is in fact the basis for the subdivision metrics of Jaeger (2000) described
previously. There are some special cases involving the isolation metrics (proximity index,
similarity index, and nearest neighbor distance), however, where the area-weighted mean patch
characteristic can provide misleading results. The isolation metrics describe the spatial context of
individual patches, and they can be summarized at the class or landscape level to characterize the
entire landscape. Consider the proximity index (PROX). The proximity index operates at the
patch level. For each patch, the size and distance to all neighboring patches of the same type
(within some specified
search distance) are
enumerated to provide an
index of patch isolation. A
patch with lots of other large
patches in close proximity
will have a large index value
(i.e., low isolation). Both the
mean and area-weighted
mean proximity index can be
calculated at the class and
landscape levels. A potential
problem in interpretation lies
in cases involving widely
varying patch sizes. Consider
the special case involving 10
patches of the focal class, in
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which 9 of the 10 patches are
equal in size and quite small
(say 1 ha each). The ninth patch,
however, is quite large (say
1,000 ha). Let’s assume that all
the small patches are close to
the large patch (within the
search distance). The proximity
index for each of the 9 small
patches will be quite large,
because the single large patch
will be enumerated in the index.
The proximity index for the
single large patch will be quite
small, because the only
neighboring patches are quite
small (1 ha each). Consequently, the mean proximity index will be much larger than the area-
weighted mean proximity index, connoting very different levels of patch isolation. Which is
correct? It is difficult to say. From a purely patch-based perspective, the mean would appear to
capture the structure best, since the average “patch” is not very isolated. However, the average
“organism” would be found in the single large patch, since it represents >99% of the focal
habitat area, so it seems logical that the area-weighted mean would provide a better measure. In
this case, the area-weighted mean proximity index will be quite small, connoting high isolation,
when in fact the single large patch represent the matrix of the landscape. In this case, it is not
clear whether either the mean or area-weighted mean proximity index provides a useful measure
of isolation. The important point here is that for some metrics, namely the isolation metrics,
under some conditions, namely extreme patch size distributions, the mean and area-weighted
mean can provide different and
potentially misleading results.  

Given these important
differences between the mean
and area-weighted mean, careful
consideration should be given to
the choice of metrics in any
particular application. Despite
the preponderance of use of the
mean in practice, in most
applications, it is likely that the
area-weighted mean provides a
more meaningful perspective on
landscape structure, although for
the isolation metrics one needs
to take great care to ensure that
the interpretation is meaningful given the landscape structure.
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(2). Conceptual similarity does not
equal behavioral similarity.–As
noted in the introduction, landscape
structure metrics have traditionally
been organized conceptually
according to the aspect of landscape
composition or configuration they
supposedly measure (as in the
previous sections). It is common for
practitioners to choose metrics from
each of the conceptual classes in
order to describe different aspects of
a landscape (Ripple et al. 1991).
Neel et al (2004) demonstrate that it
is also important to consider
behavioral groupings because a
number of conceptually different
metrics have similar behavior and
thus are redundant. Similarly,
metrics from the same conceptual
group often exhibit widely varying
behaviors indicating differences in
how they respond to attributes of
landscape pattern. Unfortunately,
given the range of conditions in real-
world landscapes, it is not possible
to assign metrics to behavioral
groups that are guaranteed to be
stable across the full range of real-world landscapes. The important point here is that conceptual
similarity does not always equal behavioral similarity. Thus, in choosing a parsimonious suite of
metrics for a particular application, don’t simply used conceptual groups as the basis for metric
choice. 
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(3). Behavior at the extremes.–Finally, a number metrics exhibit erratic and/or unstable behavior
at extreme conditions and demonstrate that landscape structure is difficult to characterize at the
class level when the focal class is either dominant or extremely rare and at the landscape level
when a single class is dominant (Neel et al. 2004). Fortunately, quantifying configuration may
not be that relevant or interesting in such landscapes anyway. This instability is not necessarily a
problem with the metrics per se, but rather accentuates the need to understand what the metrics
are describing and to apply them intelligently. For example, when the focal class dominates the
landscape and forms a matrix, it is not meaningful to measure landscape structure with
patch-based metrics. Similarly, when the focal class is extremely rare, patch-based metrics do a
poor job of distinguishing among levels of configuration.
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