Ewoaywyn atov Ilgoyoappatiopo H/Y

Awdaoxovteg: 1. ITolevaxng, K. Zxwdomoviog, A. Movutidov

-
Tpnpa ITAneogouurg, Iovio Iavematnuio di

7. Avadpopn

= Avadoopmn

H avadpopn elvor teyvinn ©atd Ty OTola ot GUVEQTYOY HAAEL TOV EXVTO TNG YL VoL ADGEL
UUOOTEQES EXOOYES TOL 1OLOL TEORAUATOG.

| EvapEn f{x) |

® Kabe avadpopinn ouvaptnon yeetaletol: |

v

| Base case ? |

o Recursive Case (Avadpopxy; Kinon) | -

H mepintwon omouv 10 npoBAnuo phetwvetat xot NAT | | oxt

v v

1] OCLVAQTYOY) UAAEL TOV EXVTO THG..

Emorpodt] TipAg | YHOAOYLOMOEC V1o x

(TEpUOTLONGE) | KoL KAfon f(x - 1)

o Base Case (ZvvOnxn Teppatiopon) | |
H 7o ankn nepintwon tov mpolAnpatog 0nou v

1] CUVALQTYOY OV XAAEL TOV EXVTO TYG.

7. Avadpopn

= Avadoopm

H avadpopn eivor teyvinn ©ata TV OTola ot GLVEQOTYOY] KAAEL TOV EXVTO TG VLot VoL ADGEL
UIXQOTEQES EXOOYES TOL LOLOL TEOPBATUATOG.

® Xonotponoteitor Otay evoe TRORANLX ITOQEEL VO KOTIAOEL O IXQOTEQXN, OUOLX

LTOTEOBAT LA TAL.

®» Xoealetar navia ovvONIN TEQUATIOMOD.
O ATOTQEETMEL TNV ATELQY] AVASQOUN.
o Eivat 1 anhovotepn nepintwor touv mpofinuatog (base case).
o Xwplg avtnyv Oa éyovpe RecursionError.

o IMagaderypa: Av vtoroyilw to TagayovTnod 7/, N mo aniy mepintwon eivo: 0! = 1

B [Soviun yro: devta, dopes, pobnuatina potiPo.

7. Avadpopn

= Avadoopm

H avadgopn eivor teyvinn ©atd Ty OTola ot GLVEQTYOY HAAEL TOV EXVTO TNG YLt VoL ADGEL
UIXQOTEQEG EXDOYES TOL LOLOL TEOPBATULATOC.

» Avadpoun vs Enavaindn

o H avadpoun etvat ouyva mo xopdn uot TLo XOVTE GTOV TPOTO TOL TEQLYOXPOVLE

Aoy TO TEOBAN A,
o H enavddndn (loops) eivar cuvnbwe mo anodotun oe Uvnun uot ToryLTINTA.
o H Python ¢yet 6pto Babouvg avadpoung (nepirov 1000 eninedw).

o H avadpopn pnopst va avinataotabel pe while/for loops otig neptoooTepeg
TEQIMTWOELG.

7. Avadpopn

= Avadoopm

H avadgopn eivor teyvinn ©atd Ty OTola ot GLVEQTYOY HAAEL TOV EXVTO TNG YLt VoL ADGEL
UIXQOTEQEG EXDOYES TOL LOLOL TEOPBATULATOC.

[1ote yonorponotodpe avadooun;

B ‘Otav 10 TEOBAUX VAL QLOIUX AVUOQOWIIKO.

[Tocpadetypoto:

= Aevtpu (traversal)

" Avalntor oe QaneAoug
= [Ibpyot touv Avor

" Awxipeor nat xotantnon (merge sort, quicksort)

7. Avadpopn

» Avadoopm

H avadgopn eivor teyvinn ©atd Ty OTola ot GLVEQTYOY HAAEL TOV EXVTO TNG YLt VoL ADGEL
UIXQOTEQEG EXDOYES TOL LOLOL TEOPBATULATOC.

[1ote yonorponotodpe avadooun;

B ‘Otav 10 TEOBAUX VAL QUOIUX XVUOQOIIKO.

Kivovvor & XopBovieg

[lpocoyn:
= 'Elewyn ouovbnung teppatiopon
" JIoAAEG VA OQOMIUES HATOELG —> EYAAT] YOOV UVIIUNG

2upBoun:
" No genwvag yoapoviag mtowta to “base case”
" 'Eretta v avadpopny oyeon

7. Avadpopn

= Avadoopm

H avadgopn eivor teyvinn ©atd Ty OTola ot GLVEQTYOY HAAEL TOV EXVTO TNG YLt VoL ADGEL
UIXQOTEQEG EXDOYES TOL LOLOL TEOPBATULATOC.

[1ote yonorponotodpe avadooun;

B ‘Otav 10 TEOBAUX VAL QUOIUX XVUOQOIIKO.

Kivovvor & XopBovieg

mmmm——— ——————
- ———
- -
- -
- -
- -
- -~
- ~
- ~
- ~
- ~
g ~
- ~
- ~
e ~
-
-

HQOGOXh3 o H avadpopn eivar toyvpo epyaieto. “

= Eleuwn ovvbnung ‘CSQ{J.O(‘CL’(//
" JloAAEg avaOQOMINEG %chlz"

o Xpealetat owoty) ouvbNuy TEPRATIOUOD.

\
\
\

ZU_UL_BOUM}_: o 'Eyet neploptopoig oty pvnun.

\

" Na €envag yoapovtag TewTa.,

= 'Erneita v avadpopun oyéon 9 Rogalie) @ woMES WegitunEs usss -

~ P3
Se -
-
~
~ -
-
~ -
~ -
~ -
~ -
S -
-~ -
-~ e
- .=
~"~~. -
Scea -
——— -——
e, a- _—————

7. Avadpopn

®» Jlogaderypo Epappoyng: ITagayovtixo

def factorial (n) :
IR ——
return 1

return n * factorial(n - 1)

factorial(4)
= 4 * factorial(3)
= 3 ¥ factorial(2)
= 2 ¥ factorial(1)
= 1 * factorial(e})

7. Avadpopn

®» Jlogaderypo Epappoyng: ITagayovtixo

def factorial (n) :
i1f n == O0:
return 1

return n * factorial(n - 1)

factorial(s)
= 4 * factorial(3)
= 3 * factorial(2)
= 2 * factorial{l)
= 1 ¥ factorial{a)

| factorial(n}

NAI | |oxI

v v

| smotpodr 1 | | unoAoy1loe n * factorial(n-1)

tactorial(4)

]

4 * factorial(3)

]

3 * factorial(2)

]

2 * factorial(l)

]

1 * factorial(@)

]

1 « base case

otoifo x\oewv 1] oty oo " Babaivet" 1 avadpop).

!
7 . Ava 8 Q O M‘Y] Diorn 1 — Kiwor factorial(4)
TOP — | factorial(4) |
Doy 2 — factorial(4) xxdei factorial(3)
TOP — | factorial(3) |
| factorial(4) |

®» Jlogaderypo Epappoyng: ITagayovtixo

Doy 3 — factorial(3) — factorial(2)
def factorial (n) : TOP — | factorial(2) |
| factorial(3) |
| factorial(4) |

Do 4 — factorial(2) — factorial(1)

if n == O0:

return 1 TOP — | factorial(1) |

| factorial(2) |

return n * factorial(n - 1) | factorial(3) |
| factorial(4) |

®Ddor 5 — factorial(l) — factorial(0)
factorial(4) TOP — | factorial(0) |
= 4 * factorial(3) | factorial(l) |
- 3 * factorial(2) | factorial(2) |
) | factorial(3) |
= 2 * factorial(1) | factotial(4) |
= 1 ¥ factorial{a)

=1 Base case — factorial(0) emotpégpet 1 o amopaxgdvetor amo] otoio
TOP — | factorial(1) |

| factorial(2) |

| factorial(3) |

| factorial(4) |

not ovveyileton péyot va xabaploet 1 otoifBa.

7. Avadpopn

®» Jlogaderypo Epappoyng: ITagayovtixo

(START)

Y

[factorial(n)]

<
<

L]

y

‘ n * factorial(n-1) I

END

otoifa ¥hfoewy ™ otrypn mtov " Babaivet" 1 avadpoun.

Déon 1 — Kinon factorial(4)
TOP — | factorial(4) |
Daor 2 — factorial(4) xudei factorial(3)
TOP — | factorial(3) |

| factorial(4) |
Déov 3 — factorial(3) — factorial(2)
TOP — | factorial(2) |

| factorial(3) |

| factorial(4) |
Daorn 4 — factorial(2) — factorial(1)
TOP — | factorial(1) |

| factorial(2) |

| factorial(3) |

| factorial(4) |
Déor 5 — factorial(l) — factorial(0)
TOP — | factorial(0) |

| factorial(1) |

| factorial(2) |

| factorial(3) |

| factorial(4) |
Base case — factorial(0) emoteégst 1 o amopaxgbdveton amd | otoiPo
TOP — | factorial(1) |

| factorial(2) |

| factorial(3) |

| factorial(4) |

not ovveyiletar péyot va nabupioet 7 otoiBa.

7. Avadpopn

®» Jlogaderypo Epappoyng: Fibonacci
Avodotien Avadoopiny] Aoy
def fib(n):

if n <= 1:

return n
return fib(n-1) + fib(n-2)

O aptBpog uAnoewy avavetot TOAD:
" 1 Fibonacci avadpopun eivatr apyn!

[1
| fib(n) |
L |

| n<=12 |

NAT | |oxz

v v

[1 | 1
| smioTpod n | | smiotpodr: fib(n-1)+fib(n-2)
L I L |

Index Fibonacci B lofa!

Count Count
1 1 ! 1
2 1 2 3
' 3 2 3 5
7 Ava 8 Q O M‘Y] 4 3 5 9 The Fibonacci Sequence
° 5 5 8 15
6 8 13 25 600
7 13 21 41 -
' ' . . 8 21 34 67 .
®» Jlapaderypo Egpaopoyns: Fibonacci v w s w faw
10 55 89 177 2
, , , 1 89 144 %7 8 -
Avodotien Avadpopny; Aopy 12 144 2 45 5200
13 233 377 753 =
. 14 377 610 1219 oy
def fib (n) 5 15 610 987 1,973 0
. 16 987 1,597 3193
1 f n <: 1 o 17 1,597 2,584 5,167 ° ? ’ Sec?uence :umbe:o . H
18 2,584 4181 8,361
return n 19 4181 6,765 13,529
20 6,765 10,946 21,891

return fib(n-1) + fib(n-2)

, , , , Function calls to calculate Fibonacci sequence recursively
O aOpog nAnoewy awédvetar TOAL:

" 1 Fibonacci avadpopun eivatr apyn!

25000 -

20000 otal Count

Recursive calls to calculate the fifth Fibonacci number

10000 1

' & ' 50001 Fibonacci
O+ === o 4 = o aay : . :
00 25 50 7.5 100 125 150 17.5 20.0

Sequence Number

Base Count

o
°

7. Avadpopn

®» Jlogaderypo Epappoyng: Fibonacci

* Fibonacci pe Avvapino ITgoyoappatiopo (Bottom-Up)

e I8eo: Dudryvouvpe evay mivana dp omov: dpli] = fib(i)
nat o broAoyilovpe and 1o 0 TEOG To ThVW, ATOYPELYOVTAS THV AVAOQOUY).

def fib dp(n):
dp = [0] * (n + 1)

if n > 0:
dp[l] =1 lzi\:)o(xgq Ylilo}\oglcp(;ﬁ Y:;q n ; 6 6
for i in range(2, n + 1): ap: 0 1 1 2N
dp[1] = dpl[i-1] + dp[i-2] dp[0] = O
dpl[l] =1

return dp[n]

for i from 2 to n:
dp[i] = dp[i-1] + dp[i-2]

7. Avadpopn

Divakag¢ YnoAoyLopoU yiLa n = 6
i: 0 1 2 3 4 5 6

®» Jlogaderypo Epappoyng: Fibonacci

* Fibonacci pe Avvapino ITgoyoappatiopo (Bottom-Up)

e I8eo: Dudryvouvpe evay mivana dp omov: dpli] = fib(i)
nat o broAoyilovpe and 1o 0 TEOG To ThVW, ATOYPELYOVTAS THV AVAOQOUY).

def fib dp(n):

dp = [0] * (0 + 1) e
if n > 0: o
dp[1] = 1

for i from 2 to n:

dpli] = dpl[i-1] + dp[i-2
for i in range(2, n + 1): pli] pli-1] pli-2]

dp[l] — dp[l—l] + dp[l—Z] dp[0] - 0
dp[l] - 1
dpl[2] - dp[l] + dp[0] =1
return dp[n] dp[3] — dp[2] + dp[l] = 2
dpl[4] - dp[3] + dpl2] = 3
dp[5] —» dp[4] + dp[3] = 5
dp[6] — dp[5] + dp[4] = 8

7. Avadpopn

®» Jlogaderypo Epappoyng: Preorder Atdoyton Agvigov

def preorder (node) :

iy
if not node: / \
B C
return
! | Wy
print (node.value) D E F

preorder (node.left)

A B ->D-S->E - C-> F
preorder (node.right)

1. ApxXIKn KAfon

TOP — | hanoi(3, A, B, C) |

2. KaAgi hanoi(2, A, C, B)

TOP — | hanoi(2, A, C, B) |
| hanoi(3, A, B, C) |

3. Kakei hanoi(1, A, B, C)

TOP — | hanoi(l, A, B, C) |
| hanoi(2, A, C, B) |
| hanoi(3, A, B, C) |

7. Avadpopn

Base case — yiveral To move:
Move A - C
Pop:
TOP — | hanoi(2, A, C, B) |
| hanoi (3, A, B, C) |
4. EmoTpégpovpe o€ hanoi(2...) - move A — B
(move A — B)
5. KaAgi hanoi(1, C, A, B)
end) . Push:
TOP — | hanoi(l, C, A, B) |
| hanoi (2, A, C, B) |
| hanoi(3, A, B, C) |

®» Jlxgaderypo Epappoyng: ITogyor Tov Avor (Hanoi Towers)

def hanoi (n, start, mid,
if n == 1:
print (f"Move {start}
return
hanoi (n-1, start,
print (f"Move {start}
hanoi(n-1, mid, start,

Base case — move:

(move C — B)

Pop:

TOP — | hanoi(2, A, C, B) |
| hanoi (3, A, B, C) |

hanoi(2,...) TeAeicdvel — pop:

TOP — | hanoi(3, A, B, C) |

-> {end}")

end, mid)
-> {end}")
end)

6. EmoTtpépoupe ot hanoi(3...) > move A —» C
(move A - C)
7. Kakei hanoi(2, B, A, C)
Push:
TOP - | hanoi(2, B, A, C) |
| hanoi(3, A, B, C) |
8. KaAi hanoi(1, B, C, A)
hanoi(3, A, B, C) [AUie

TOP - | hanoi(l, B, C, A) |
Push hanoi (3) / | \ | hanoi(2, B, A, C) |

Pop hanoi (2)

Push hanoi (1)

Pop hanoi (3)

Empty stack

2 3
A B ¢ A g ¢

5 6 7
[B ¢ A B B A

(move B - C)

Push hanoi (2) 3Dk 1 hanoi(2, A, C, B) Move A » C hanoi(z, B, A, C) -0 o 2 O 1
Push hanoi (1) ; | A\ g | \ Base case — move:
Pop i i i i (move B - A)
Move A_B hanoi(1,4,B,C) Move A+B hanoi(1,C,A,B) hanoi(1,B,C,A) Move B»C hanoi(1,A,B,C) Pop stack:
- TOP —» | hanoi(2, B, A, C)
Push hanoi (1) . " . . I Toereh (3, 2 B @)
Pop 3 B c B € S
9.Move B - C

10. KaAei hanoi(1, A, B, C)

TOP - | hanoi (3,

Move A-C Push:
TOP — | hanoi(l, A, B, C)
- | hanoi(2, B, A, C)
Push hanoi (2) | hanoi(3, A, B, C)

Pop) : © ?ose —>Amov§;
move —
Move B-C Pop:
Push hanoi (1) TOP — | hanoi(2, B, A, C)
POP | hanoi(3, A, B, C)
Pop hanoi (2) Pop:

A, B, C)

11. Tehiké Pop — Stack empty
TOP — [empty stack]

7. Avadpopn

®» Jlogaderypo Epappoyng: ...Lists

AGgotopa Alotag

def sum list(lst):
if not 1lst:
return 0
return 1st[0] + sum list(lst([1l:])

sum_list([3,1,4])
= 3 + sum_list([1,4])
= 1 + sum_list([4])
= 4 + sum_list([])
= B

sum_list(list)

Y

| H Aota sivolr abesvia;

MNAT

| oxt

¥

|
| smuotpodn 8
|

I
| emwotpodry list[8] + sum{rest)
|

7. Avadpopn

®» Jlogaderypo Epappoyng: ...Lists

AGgotopa Alotag Mzeyioto Alotag
def sum list (lst): def max rec(lst):
if not 1lst: if len(lst) ==
return 0 return 1st[0]
return 1st[0] + sum list(lst([1l:]) m = max rec(lst[1l:])
return 1lst[0] if 1st[0] > m
else m

max_rec{[3,8,2])

sum list([3,1,4]) - compare 3 with ([8,2])
sum_1ist([5, 2, 1]) - 3 4 sum_list([1,4]) l
/ \ - 1 + sum_list([4]) compare 8 with ([21)
sum_list([2, 1]) = 4 + sum_list([]) ‘
! \ -8 base case » 2
2 + sum 1ist([1])Y e
| max =

1 + sum 1list([])

@ +« base case

7. Avadpopn

Aoxroelg. ..

® Aoxnon 1: I'oade avadpopinyn cuvaptnor mov vroroyilel To abpotopa twv aptbpwy ano 1 ewg n.
Ynodegn: sum (n) = n + sum(n-1)

7. Avadpopn

Aoxroelg. ..

® Aoxnon 1: I'oade avadpopinyn cuvaptnor mov vroroyilel To abpotopa twv aptbpwy ano 1 ewg n.
Ynodegn: sum (n) = n + sum(n-1)

def sum to n(n):
if n == 0:
return O
return n + sum to n(n-1)

7. Avadpopn

Aoxroelg. ..

® Aounon 2: 'oade avadpopinn cuvapTron ToL PETEAEL TOCK GTOLYElX EYEL ot AlOTA.

7. Avadpopn

Aoxroelg. ..

® Aounon 2: 'oade avadpopinn cuvapTron ToL PETEAEL TOCK GTOLYElX EYEL ot AlOTA.

def count(lst):
if not 1lst:
return O
return 1 + count(lst[l:])

count{[7, 4, 9])

1 + count([4, 2])

1 + count([9])

1 + count({[])

8 <« base case

7. Avadpopn

Aoxroelg. ..

® Aournon 3: 'oade avadpouinn cuvapTon TOL AVTIOTEEPEL ilat AMOTX.

7. Avadpopn

Aoxroelg. ..

® Aournon 3: 'oade avadpouinn cuvapTon TOL AVTIOTEEPEL ilat AMOTX.

def reverse(lst):
1if not 1lst:
return []
return reverse(lst[l:]) + [1st[0]]

reverse([1,2,3])

' ' reverse([2,3]) + [1]

reverse(list)
[I |

| reverse([3]) + [2]

v

I L |
| list empty ? reverse([]) + [3]
| | |

NAT |oxT []
v v

I 1 I 1
| emotpodd [] | | emotpod reverse(rest)+[first elem] |
L I [1

7. Avadpopn

Aoxroelg. ..

® ‘Aoxnnon 4: Yhomoinoe avadpount Suvadwy avalnior (binary search).

| binary_search(a,x,L,R) |

v

| L»R?

NAI | |oxx
v L

I 1 [1
| emotpodr False| | mid = (L#R)//2
L 1 L |

smotpodr True | | x < a[mid] ?
L | L |

|
NAT |oxz
v

v

I 1 I 1
search(a,x,L,mid-1) | | search(a,x,mids1,R) |
L 1 L 1

search(arr,

7. Avadpopn

AG%ﬁGS[g. . | binary search(a,x,L,R)} |
L |

® ‘Aoxnnon 4: Yhomoinoe avadpount Suvadwy avalnior (binary search). |

v
[1

| L>»R?
def binary search(arr, target, left, right): : :
if left > right: | |
return False mﬂ JMI

mid = (left + right) // 2 | |
if arr[mid] == target: emotpodi False|

[
| mid = (L+R}//2

return True | |
elif target < arr[mid]:
12, 8, 5) return binary search(arr, target, left, mid-1)

| else: | a[mid] == x ?
mid=2 (6 g .]
| o return binary search(arr, target, mid+1l, right) | |
12 > 6 NAT |oxT
| v v
search{arr, 12, 3, 5) I 1 T
emotpodr True | | x < a[mid] ?
| search(arr, 6, left=8, right=5) | I
mid=4 (10) | |
| NAI lox
12 > 10 mid=2 . Y
| | | 1 T 1
search(arr, 12, 5, 5} arr[2] = 6 ? » YES search(a,x,L,mid-1) | | search{a,x,mid+1,R} |
I

L
|
mid=5 (12) > FOUND

7. Avadpopn

Aoxroelg. ..

® Aoxnom 5: I'oade cvuvaptnon nmov ekeyyet avadoomma av pa Ae€n etval TaAlvopopo.

7. Avadpopn

Aoxroelg. ..

® Aoxnom 5: I'oade cvuvaptnon nmov ekeyyet avadoomma av pa Ae€n etval TaAlvopopo.

is pal("level™)
/ \
def is pal(s): 1= Treg
if len(s) <= 1:
is pal(“"eve")
return True

/ \
if s[0] !'= s[-1]: e ==g ? True
return False |
return is pal(s[l:-1]) is_pal(“v")

True « base case (pfikog 1)

7. Avadpopn

Aoxroelg. ..

® Aoxnom 5: I'oade cvuvaptnon nmov ekeyyet avadoomma av pa Ae€n etval TaAlvopopo.

| is_pal(s) |
| I
def 1s pal(s): |
if len(s) <= 1: v
return True ! !
- 1 =12
if s[0] '= s[-1]: ! en(s) <=1 !
return False | |
return is pal(s[l:-1]) NAI |lox1
v v
| 1 | 1
| emiotpodn True | | s[@8] != s[-1] ?
| | | I
| |
|NAT |ox1
¥ T

EM1oT podr] F3159|

[
| emwoTpodr is pal({mid)
[

7. Avadpopn

Egaopoyn ...
® [Tinbog povonatiwy oe mieypa (Grid Paths)

o Alveton eva mAéypa n X m.
o Eewmwvag ano) bBeon (0, 0) wou OEkerg va praoeig oto (n—1, m—1).

o Kavovag nivnong: — Mnogeic va nag MONO Acéia 1 Karto.

Z1TOLUEVO:

TFoae pior avadpopiny cuVEETYOY TOL ETULOTEEPELTO GLVOAO TV TOAVWY LOVOTATIWY ATTO T1V XYY OTO TEAOC.

[Topddetypo:

I mAeypo 2X 2, to0 povonatia etvat:
Right — Down
Down — Right

Apw: 2 povomnatia.

7. Avadpopn

Eoaopoyn ...

® [Tinbog povonatiwy oe mieypa (Grid Paths)

o Alveton eva mAéypa n X m.

o Eewmwvag ano) bBeon (0, 0) wou OEkerg va praoeig oto (n—1, m—1).

o Kavovag nivnong: — Mnogeic va nag MONO Acéia 1 Karto.

Z1TOLUEVO:

TFoae pior avadpopiny cuVEETYOY TOL ETULOTEEPELTO GLVOAO TV TOAVWY LOVOTATIWY ATTO T1V XYY OTO TEAOC.

' Av etpon oe xeMl (1, €), OVLO ETAOYEC:
Hogaderypa: 1. Tlaw sbtw — (r+1, ¢)\
2. Tldw 6e&a — (1, c+1)

'Etou: paths(rt, ¢) = paths(t+1, ¢) + paths(t, c+1)

Base case 1:

Down — Right Av @1dow 010 Ttelevtaio nell — emoteopn 1 (BeNua povonatt)
Base case 2:

Av Byow é€w and 1o mAéypo — emtotpoyn 0

I mAeypo 2X 2, to0 povonatia etvat:

Right — Down

Apw: 2 povomnatia.

7. AVO(8QOH,}"] " K&be (2,2) eniotpépeLr 1 (otdxoq)

" Oca §epelUyouv amd 1o mAéypa (3,) §, (,3) - O
= Exoupe I[OANEEX enmavodnyeLg
yL' autd eivaL dU9orkodo Xwpic¢ DP/memoization

Eoaopoyn ...

. (8,2)
® [Tinbog povonatiwy oe mieypa (Grid Paths) / \
(1,8) (e,1)
def count paths(r, c, n, m): / A / A
AV @Tdoaue OTOV TEOOPLONS => 1 POVOIdT L (2,8) (1,1) (1,2 (9,2)
if r==n-1and ¢c == m - 1: / \ / \ / \ 4 \
retiiem (3,@) (2,1) (2,1) (1,2} (2,1) (1,2) (1,2) (8,3)
| P P fF v v 4 FoA |
Av ByAxape £KTOC TAEVIATOC => 0 LOVOIKT L @ (3,1)(2,2)(2,2)(1,3)(2,2)(1,3)(2,2)(1,3)(2,3) @
if r > > n or ¢ >= m: | : | | | | :
oA @ 1 1 9 1 @ 1
i count_paths(r, c, n, m) J|
: | " # AAALOG: povom&Ttia def L& + povomdTLo KATW
v return count paths(r + 1, ¢, n, m) + count paths(r, c¢c + 1, n, m)

T 1
r==n-1 AND c==m-1 ? |

I |
NAT |oxT

A d v

return 1 i i ry¥=n OR cr=m ? K)\ﬁ on yLo H}\éY}JO(3x3:
Ll print (count paths (0, 0, 3, 3)) # An&vinon: 6

[I
NAT |oxz

v ¥

] 1 [1
return @ | | return paths(r+1,c)+paths(r,c+1)[
L | L]

Kion 1
count_paths(0,0)
[} Kaket 6vo:
7 AV a 8 O TOP — | count_paths(1,0) |
[Q M‘Yl | count_paths(0,0) |
Kinon 2
count_paths(1,0)
—> nohel:
M TOP — | count_paths(2,0)
Eopaxopoyy ... s |
| count_paths(0,0) |
' ' ' : Kion 3
® [Tinbog povonatiwy oe mieypa (Grid Paths) count_paths(20)
—> noel:
TOP — | count_paths(3,0) |
| count_paths(2,0) |

def count paths(r, ¢, n, m): | count_paths(1,0)
.z P z -ount_paths(0,0)
Av otd&oape otov mpooploud => 1 povondTtl Bace case IS
if r==n-1and c =m - 1: Sl
> — | count_paths(2,0) |
return 1 | count_paths(1,0) |

| count_paths(0,0) |
Topa radel count_paths(2,1):

TOP — | count_paths(2,1) |

Av PBynxope exk1dC mAéyuotog => 0 povomdTt Lo | count_paths(20) |
if r > n or ¢ >= m: | count_paths(1,0) |

| count_paths(0,0) |

return O Avtd ouveyileton péyot v cuvavtioet (2,2) — base

case 1.

I 1
| count_paths(r, ¢, n, m) |

L 1

| # AAANLOC: povomndTLla de& L& + povomdtia KAT®
v return count paths(r + 1, ¢, n, m) + count paths(r, c¢c + 1, n, m)

T 1
r==n-1 AND c==m-1 ? |
L |

[I

NAT |oxT
return 1 | | r>=n OR c3=m ? K)\ﬁ on yLo H}\éY}JO(3x3:
' Ll ! print (count paths (0, 0, 3, 3)) # An&vinon: 6
[I -
NAT |oxz

] 1 [1
return @ | | return paths(r+1,c)+paths(r,c+1)[
L | L]

7. Avadpopn

Egaopoyn ...
® [Tinbog povonatiwy oe mieypa (Grid Paths)

Top-Down Dynamic Programming (Memoization)

def count paths memo(r, ¢, n, m, memo):

if (r, c¢) in memo:
return memo[(r, c)]

if r ==n - 1 and ¢ == m - 1:
return 1

if r > n or ¢ >= m:
return O

memo [(r, c)] = (
count paths memo(r + 1, ¢, n, m, memo) +
count paths memo(r, c¢c + 1, n, m, memo)

)

return memo[(r, c)]

memo = {}
print (count paths memo (0, 0, 3, 3, memo))

7. Avadpopn

Egaopoyn ...
® [Tinbog povonatiwy oe mieypa (Grid Paths)

Xonotponotodpe v St avadpouny) Aoy, adle amobnxedovpe
nd&fe vTOLOYLIOUEVO ATOTEAEOUX GTO MEMO.

. . L. v Anogedyoupe eTavaAnTTNoLG LTOLOYLGROVG
TOP-DOWI’I Dynamlc Programmlng (Memoization) v 'To recursion tree yivetow yoauuxd
def count paths memo(r, ¢, n, m, memo) : ‘/TSQOVWUOC EMLTAY VYO
. o count_paths memo({8,8)
if (r, c¢) in memo: + (1,8)
return memo([(r, c)] (0,0) + (2,9)
/ \ = (3,8) = @
if r ==n -1 and ¢ == m - 1: ,Elﬁi ﬁ@'l}\ 5 (2,1)
return 1
N (2,8) (1,1) (1,1) (8,2) +(3,1) + @
- - _ £ I I | + (2,2) - 1
if r > n or ¢ >= m: (2,8) (2,1) memo memo (1,2) + (1,1)
return 0 FERY /o)
(3,1) (2,2) (2,2) (1,3) > (2,1) (memo hit)
memo [(r, c)] = (| | | » (1,2)
count paths memo(r + 1, ¢, n, m, memo) + - memo O =+ (2,2) (memo hit)
count paths memo(r, ¢ + 1, n, m, memo) ' . ' +{1,3) = @
) - . * To (1,1) vmoloyiletor pic YoOE& (2.1)
' ’ 1 i Ll
return memol (r, c)] * To (2,2) vmoloyiletor pic YOO . s e
* Tlolot nopBot 0dnyodv ce memo hits :
(e,2)
memo = {} .
print (count paths memo (0, 0, 3, 3, memo)) * (1,2) (memo hit)
B - + (8,3) » @

7. Avadpopn

Eoaopoyn ...
® [Tinbog povonatiwy oe mieypa (Grid Paths)
Bottom-Up Dynamic Programming (Tabulation)
def count paths bottomup (n, m):
dp = [[0]*m for _ in range(n)]
dpl[n-1] [m-1] =1

for r in range(n-1, -1, -1):
for ¢ in range(m-1, -1, -1):

if r == n-1 and ¢ == m-1:

continue
right = dp[r][c+l] if c+1l < m else 0
down = dpl[r+l][c] 1if r+l < n else O
dplr]l[c] = right + down

return dp[0] [0]

7. Avadpopn

U ~ ' ' ' ' '
I'epilovpe évav mivara dp[n][m] and to téhog:
Egaopoyn ... piovpe évav mhvaoxr dp
* To tehevtato nehi = 1
[Ty ! d g * Toa volowma = 6 SefbLac + nate VIUNG TULY
» M’]GOQ LOVOTIATIOY OE TC)\SY{.LO((Gﬂd Paths) T vrolotna = dbpotopa Se€lag + %dTw YeLTOVUNG TLUYS

* T'epilovpe tov Tivara and ndtw Seéid TEOG TAVW XOLGTEQS

Bottom-Up Dynamic Programming (Tabulation)
Teulloupe amd k&TwW HPOC TA TAV®:

def count paths bottomup (n, m):
BAipa 1 — Apx Lk

dp = [[0]*m for _ in range(n)] 000
000
dp[n-1] [m-1] =1 O’O 1
BAipa 2 — ZupnAfpworn TeAevtaioag oeLpdc & teAsvtaloag oTtHAnRG
001
for r in range(n-1, -1, -1): 00 1
for ¢ in range(m-1, -1, -1): 011
BAipa 3 — IOAfpng nivoxrag
goal (2,2) = 1 if r == n-1 and ¢ == m-1: 6 3 1
continue 321
(2,1) = right = dp[r][c+l] if c+1l < m else 0 111
a down = dp[r+1][c] if r+l1l < n else O
EZ,@} - p .
dp(r][c] = right + down Hapatnpnon
return dp([0] [0] * To dp[0][0] = 6
{(1,2) =1 * Avtiotolxel oto mMANOGOC HPOVOIAT LOV
(1,1) = (L +1) = 2 * E{val (dLo pe 10 amotTéAeoua TNG oVAdPOUNG OAAX
(1,8) = (2 + 1) = 3 IOAU TLO YpPHyopo
(8,2) =1
(6,1) = (L +2) =3
(8,8) = (3 + 3) =8

	Προεπιλεγμένη ενότητα
	Διαφάνεια 1
	Διαφάνεια 2: 7. Αναδρομή
	Διαφάνεια 3: 7. Αναδρομή
	Διαφάνεια 4: 7. Αναδρομή
	Διαφάνεια 5: 7. Αναδρομή
	Διαφάνεια 6: 7. Αναδρομή
	Διαφάνεια 7: 7. Αναδρομή
	Διαφάνεια 8: 7. Αναδρομή
	Διαφάνεια 9: 7. Αναδρομή
	Διαφάνεια 10: 7. Αναδρομή
	Διαφάνεια 11: 7. Αναδρομή
	Διαφάνεια 12: 7. Αναδρομή
	Διαφάνεια 13: 7. Αναδρομή
	Διαφάνεια 14: 7. Αναδρομή
	Διαφάνεια 15: 7. Αναδρομή
	Διαφάνεια 16: 7. Αναδρομή
	Διαφάνεια 17: 7. Αναδρομή
	Διαφάνεια 18: 7. Αναδρομή
	Διαφάνεια 19: 7. Αναδρομή
	Διαφάνεια 20: 7. Αναδρομή
	Διαφάνεια 21: 7. Αναδρομή
	Διαφάνεια 22: 7. Αναδρομή
	Διαφάνεια 23: 7. Αναδρομή
	Διαφάνεια 24: 7. Αναδρομή
	Διαφάνεια 25: 7. Αναδρομή
	Διαφάνεια 26: 7. Αναδρομή
	Διαφάνεια 27: 7. Αναδρομή
	Διαφάνεια 28: 7. Αναδρομή
	Διαφάνεια 29: 7. Αναδρομή
	Διαφάνεια 30: 7. Αναδρομή
	Διαφάνεια 31: 7. Αναδρομή
	Διαφάνεια 32: 7. Αναδρομή
	Διαφάνεια 33: 7. Αναδρομή
	Διαφάνεια 34: 7. Αναδρομή
	Διαφάνεια 35: 7. Αναδρομή
	Διαφάνεια 36: 7. Αναδρομή
	Διαφάνεια 37: 7. Αναδρομή
	Διαφάνεια 38: 7. Αναδρομή

