
Large Scale Graph Processing

Από παρουσίαση Sebastian Schelter, Invited talk at GameDuell Berlin, 29th May 2012

Από παρουσίαση μαθήματος CS 347: Parallel and Distributed Data Management, Stanford, H.G.

Molina

D. Tsoumakos
Ανάλυση και Επεξεργασία Δεδομένων

ΠΜΣ Ερευνητικές Κατευθύνσεις στην

Πληροφορική
Department of Informatics

Ionian University

1)

2)

3)

 Overview

Graphs

Graph processing with Hadoop/MapReduce

Google Pregel

 Graphs

graph: abstract representation of a set of objects
(vertices), where some pairs of these objects are
connected by links (edges), which can be directed or
undirected

Graphs can be used to model arbitrary things like
road networks, social networks, flows of goods, etc.

Majority of graph algorithms
are iterative and traverse
the graph in some way A

C

B

D

What is a graph
• Formally: A finite graph G(V, E) is a pair (V, E),

where V is a finite set and E is a binary relation
on V.
– Recall: A relation R between two sets X and Y is a

subset of X  Y.
– For each selection of two distinct V’s, that pair of

V’s is either in set E or not in set E.
• The elements of the set V are called vertices

(or nodes) and those of set E are called edges.
• Undirected graph: The edges are unordered

pairs of V (i.e. the binary relation is
symmetric).
– Ex: undirected G(V,E); V = {a,b,c}, E = {{a,b}, {b,c}}

• Directed graph (digraph):The edges are
ordered pairs of V (i.e. the binary relation is
not necessarily symmetric).
– Ex: digraph G(V,E); V = {a,b,c}, E = {(a,b), (b,c)}

a

b

c

a

b

c

Why graphs?

• Many problems can be stated in terms of a graph
• The properties of graphs are well-studied

– Many algorithms exists to solve problems posed as graphs
– Many problems are already known to be intractable

• By reducing an instance of a problem to a standard
graph problem, we may be able to use well-known
graph algorithms to provide an optimal solution

• Graphs are excellent structures for storing, searching,
and retrieving large amounts of data
– Graph theoretic techniques play an important role in

increasing the storage/search efficiency of computational
techniques.

Basic definitions

• incidence: an edge (directed or undirected) is incident to a
vertex that is one of its end points.

• degree of a vertex: number of edges incident to it
– Nodes of a digraph can also be said to have an indegree and an

outdegree
• adjacency: two vertices connected by an edge are adjacent

Undirected graph Directed graph

isolated vertex

loop

multiple
edges

G=(V,E)

adjacent

loop

Types of graphs
• simple graph: an undirected graph with no loops or multiple edges between

the same two vertices

• multi-graph: any graph that is not simple

• connected graph: all vertex pairs are joined by a path

• disconnected graph: at least one vertex pairs is not joined by a path

• complete graph: all vertex pairs are adjacent
– Kn: the completely connected graph with n vertices

Simple graph a

b

c

d

e

K5

a
b

c

d

e

Disconnected graph
with two components

Types of graphs (2)
• acyclic graph (forest): a graph with no cycles
• tree: a connected, acyclic graph
• rooted tree: a tree with a “root” or “distinguished” vertex

– leaves: the terminal nodes of a rooted tree
• directed acyclic graph (DAG): a digraph with no cycles
• weighted graph: any graph with weights associated with the edges

(edge-weighted) and/or the vertices (vertex-weighted)

b a

c d

e f

10

5
8

-3 2

6

x y

path: no vertex can be repeated
 example path: a-b-c-d-e
trail: no edge can be repeated
 example trail: a-b-c-d-e-b-d
walk: no restriction
 example walk: a-b-d-a-b-c

closed: if starting vertex is also ending vertex
length: number of edges in the path, trail, or walk

circuit: a closed trail (ex: a-b-c-d-b-e-d-a)
cycle: closed path (ex: a-b-c-d-a)

a

b

c

d

e

“Travel” in graphs

Digraph definitions
• for digraphs only…
• Every edge has a head (starting point)

and a tail (ending point)
• Walks, trails, and paths can only use

edges in the appropriate direction
• In a DAG, every path connects an

predecessor/ancestor (the vertex at
the head of the path) to its
successor/descendents (nodes at the
tail of any path).

• parent: direct ancestor (one hop)
• child: direct descendent (one hop)
• A descendent vertex is reachable

from any of its ancestors vertices

Directed graph
a b

c

d
x

y

z

w

u
v

• G’(V’,E’) is a subgraph of G(V,E) if V’  V and E’  E.
• induced subgraph: a subgraph that contains all possible edges in E

that have end points of the vertices of the selected V’

Subgraphs

a

b

c

d

e b

c

d

e

a

c

d

G(V,E) G’({a,c,d},{{c,d}})
Induced subgraph of
G with V’ = {b,c,d,e}

• The complement of a graph G (V,E) is a graph with
the same vertex set, but with vertices adjacent
only if they were not adjacent in G(V,E)

Complement of a graph

a

b

c

d

e

G G

a

b

c

d

e

• Consider a weighted connected directed graph with a
distinguished vertex
source: a distinguished vertex with zero in-degree

• What is the path of total minimum weight from the source to
any other vertex?

• Greedy strategy works for simple problems (no cycles, no
negative weights)

• Longest path is a similar problem (complement weights)

Famous problems: Shortest path

c b

a d
4

2

6

10 8

Famous problems: Hamilton & TSP
• Hamiltonian path: a path through a graph which

contains every vertex exactly once
• Finding a Hamiltonian path is another NP-complete

problem…

• Traveling Salesmen Problem (TSP): find a Hamiltonian
path of minimum cost

a b c

d e f

g h

i

a

b

c

d

e
3

4

1
3

5 4

3
2

2

Topological Sort

• We just computed a topological sort of the dag
– This is a numbering of the vertices such that all edges go

from lower- to higher-numbered vertices

• Useful in job scheduling with precedence constraints

15

1

0

2
3

4

5

Example of Topological Sort

• Starcraft II build order: Roach Rush

Hatchery Spawning Pool Roach Warren Roaches

Gas

Possible Topological Sorts
1. Hatch, SPool, RWarren, Gas, Roaches
2. Hatch, SPool, Gas, RWarren, Roaches
3. Hatch, Gas, SPool, RWarren, Roaches

Timing is everything though ;)

Graph Coloring
• A coloring of an undirected graph is an assignment of a color

to each node such that no two adjacent vertices get the same
color

• chromatic number: the smallest number of labels for a
coloring of a graph

• How many colors are needed to color this graph?

17

Graph Coloring

• A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

• How many colors are needed to color this graph?

18

An Application of Coloring

• Vertices are jobs

• Edge (u,v) is present if jobs u and v each
require access to the same shared resource,
and thus cannot execute simultaneously

• Colors are time slots to schedule the jobs

• Minimum number of colors needed to color
the graph = minimum number of time slots
required

19

Planarity

• A graph is planar if it can be embedded in the
plane with no edges crossing

• Is this graph planar?

20

Planarity

• A graph is planar if it can be embedded in the
plane with no edges crossing

• Is this graph planar?
– Yes

21

Planarity

• A graph is planar if it can be embedded in the
plane with no edges crossing

• Is this graph planar?
– Yes

22

Detecting Planarity

• Kuratowski's Theorem

• A graph is planar if and only if it does not contain
a copy of K5 or K3,3 (possibly with other nodes
along the edges shown)

23

K3,3 K5

Four-Color Theorem:
Every planar graph
is 4-colorable.

(Appel & Haken, 1976)

24

Another 4-colored planar graph

25

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Bipartite Graphs

• A directed or undirected graph is bipartite if
the vertices can be partitioned into two sets
such that all edges go between the two sets

• The following are equivalent

– G is bipartite

– G is 2-colorable

– G has no cycles of odd length

26

Traveling Salesperson

• Find a path of minimum distance that visits
every city

27

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202

1380

1214

1322

1356

1002

512

216

441

189
160

1556 1323

419

210

224 132

660
505

1078

The Web

• the World Wide Web itself can be seen as a huge
graph, the so called web graph
– pages are vertices connected by edges that represent

hyperlinks

– the web graph has several billion vertices and several
billion edges

• the success of major internet companies such as
Google is based on the ability to conduct
computations on this huge graph

Google‘s PageRank

• success factor of Google‘s search engine:
– much better ranking of search results

• ranking is based on PageRank,
a graph algorithm computing
the ‚importance‘ of webpages
 – simple idea: look at the structure

of the underlying network
– important pages have a lot of links

from other important pages

• major technical success factor of Google:
ability to conduct web scale graph processing

Social Networks

• on facebook, twitter, LinkedIn, etc, the users and
their interactions form a social graph
– users are vertices connected by edges that represent

some kind of interaction such as
friendship, following, business contact

• fascinating research questions:
– what is the structure of

these graphs?
– how do they evolve over time?

• analysis requires knowledge
in both computer science and social sciences

six degrees of separation

• small world problem
– through how many social contacts do

people know each other on average?

• small world experiment by Stanley Milgram
– task: deliver a letter to a recipient whom you

don‘t know personally
– you may forward the letter only to persons that

you know on a first-name basis
– how many contacts does it take on average until the letter reaches the target?

• results
– it took 5.5 to 6 contacts on average
– confirmation of the popular assumption of ‚six degrees of separation‘

between humans
– experiment criticised due to small number of participants, possibly biased

selection

3.5 degrees of separation

• the small word problem as a graph problem in social
network analysis
– what is the average distance between two users in a social

graph?

• In Feb 2016, a world scale experiment using the Facebook
 social graph

– 1.6 billion users
 – result: average distance in Facebook is 3.57

Graphs in bioinformatics

• Sequences

– DNA, proteins, etc.

Chemical compounds

Metabolic pathways

R Y L I

Graphs in bioinformatics

Phylogenetic trees

Genetic interactions: synthetic lethals and suppressors

Genetic Interactions:

• Widespread method used
by geneticists to discover
pathways in yeast, fly, and
worm

• Implications for drug
targeting and drug
development for human
disease

• Thousands are now
reported in literature and
systematic studies

• As with other types, the
number of known genetic
interactions is exponentially
increasing…

Adapted from Tong et al., Science 2001

Yeast protein-protein interaction network

What are its network

properties?

Applications of Graphs

• Communication networks; social networks
• Routing and shortest path problems
• Commodity distribution (network flow)
• Traffic control
• Resource allocation
• Numerical linear algebra (sparse matrices)
• Geometric modeling (meshes, topology, …)
• Image processing (e.g., graph cuts)
• Computer animation (e.g., motion graphs)
• Systems biology
• …

37

Computer representation
• adjacency matrix: a |V|  |V| array where each

cell i,j contains the weight of the edge between vi
and vj (or 0 for no edge)

• adjacency list: a |V| array where each cell i
contains a list of all vertices adjacent to vi

• incidence matrix: a |V| by |E| array where each
cell i,j contains a weight (or a defined constant
HEAD for unweighted graphs) if the vertex i is the
head of edge j or a constant TAIL if vertex I is the
tail of edge j

c b

a d
4

2

6

10 8

a b c d

a 8 4

b

c 6

d 10 2

a c (8), d (4)

b

c b (6)

d c (2), b (10)

1 2 3 4 5

a 8 4

b t t

c 6 t t

d 2 10 t

adjacency
matrix

adjacency
list

incidence
matrix

1)

2)

3)

 Overview

Graphs

Graph processing with Hadoop/MapReduce

Google Pregel

 Why not use MapReduce/Hadoop?

• MapReduce/Hadoop is a popular way to perform data-

 intensive computing, why not use it for graph
 processing?

• Example: PageRank
– defined recursively

– each vertex distributes its

 authority to its neighbors in
 equal proportions

 
j(j ,i)

j

j

 p

d
p i 

 Textbook approach to
 PageRank in MapReduce

• PageRank p is the principal eigenvector of the Markov matrix

 M defined by the transition probabilities between web pages

• it can be obtained by iteratively multiplying an initial

 PageRank vector by M (power method)

pi
pi+1

row 1 of M

row 2 of M

row n of M

∙

∙

∙

i p i 1  Mp

 Drawbacks

• Not intuitive: only crazy scientists
 think in matrices and eigenvectors
• Unnecessarily slow: Each iteration is a single
 MapReduce job with lots of overhead

–

–

–

separately scheduled
the graph structure is read from disk

the intermediary result is written to HDFS

• Hard to implement: a join has to be implemented
 by hand, lots of work, best strategy is data
 dependent

1)

2)

3)

 Overview

Graphs

Graph processing with Hadoop/MapReduce

Google Pregel

Google Pregel

• distributed system especially developed for
large scale graph processing

• intuitive API that let‘s you ‚think like a vertex‘

• Bulk Synchronous Parallel (BSP) as execution
model

• fault tolerance by checkpointing

Bulk Synchronous Parallel (BSP)

 processors

local computation

communication

 barrier
 synchronization

superstep

 Vertex-centric BSP

• each vertex has an id, a value, a list of its adjacent neighbor ids and the

 corresponding edge values

• each vertex is invoked in each superstep, can recompute its value and

 send messages to other vertices, which are delivered over superstep
 barriers

• advanced features : termination votes, combiners, aggregators, topology

 mutations

 vertex1

 vertex2

 vertex3

superstep i

 vertex1

 vertex2

 vertex3

superstep i + 1

 vertex1

 vertex2

 vertex3

superstep i + 2

Bulk Synchronous Parallel Model

47

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

B
ar

ri
er

B
ar

ri
er

Data

Data

Data

Data

Data

Data

Data

B
ar

ri
er

 Master-slave architecture

• vertices are partitioned and

 assigned to workers
 – default: hash-partitioning

 – custom partitioning possible

• master assigns and coordinates,
while workers execute vertices
and communicate with each
other

 Worker 1

 Master

Worker 2 Worker 3

Algorithm Termination

 Algorithm termination is based on every vertex voting to halt

 In superstep 0, every vertex is active

 All active vertices participate in the computation of any given superstep

 A vertex deactivates itself by voting
to halt and enters an inactive state

 A vertex can return to active state
if it receives an external message

 Program terminates when all vertices
are simultaneously inactive and there are no messages in transit

49

Active Inactive

Vote to Halt

Message Received

Vertex State Machine

Finding the Max Value in a Graph

3 6 2 1

3 6 2 1 6 2 6 6

6 6 2 6 6 6

6 6 6 6 6

Blue Arrows
are messages

Blue vertices
have voted to
halt

6

50

Message Passing, Combiners, and
Aggregators

 Messages can be passed from any vertex to any other vertex
in the Graph
 Any number of messages may be passed

 Message order is not guaranteed

 Messages will not be duplicated

 Combiners can be used to reduce the

 number of messages passed between supersteps

 Aggregators are available for reduction operations such as
sum, min, max etc.

51

Topology Mutations, Input and Output
 The graph structure can be modified during any superstep

 Vertices and edges can be added or deleted

 Conflicts are handled using partial ordering of operations

 User-defined handlers are also available to manage conflicts

 Flexible input and output formats
 Text File

 Relational Database

 Bigtable Entries

 Interpretation of input is a “pre-processing” step separate
from graph computation
 Custom formats can be created by sub-classing the Reader and Writer

classes

52

Graph Partitioning

 The input graph is divided into partitions consisting of
vertices and outgoing edges
 Default partitioning function is hash(ID) mod N, where N is the # of

partitions

 It can be customized

1 4

10
7

2

8
5

6

9

3

11

12

53

Execution of a Pregel Program

 Steps of Program Execution:

1. Copies of the program are distributed across all workers
1.1 One copy is designated as a master

2. Master partitions the graph and assigns workers their respective
partition(s) along with portions of the input

3. Master coordinates the execution of supersteps and delivers messages
among vertices

4. Master calculates the number of inactive vertices after each superstep
and signals workers to terminate if all vertices are inactive and no
messages are in transit

5. Each worker may be instructed to save its portion of the graph

54

Fault Tolerance in Pregel

 Fault tolerance is achieved through checkpointing
 At the start of every superstep the master may instruct the workers to

save the state of their partitions in a stable storage

 Master uses ping messages to detect worker failures

 If a worker fails, the master reassigns corresponding vertices
and input to another available worker and restarts the
superstep
 The available worker reloads the partition state of the failed worker

from the most recent available checkpoint

55

Architecture

56

master

worker A

input
data 1

input
data 2

worker B

worker C

graph has nodes a,b,c,d...

sample record:
[a, value]

Architecture

57

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

partition graph and
assign to workers

Architecture

58

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

read input data worker A
forwards input
values to
appropriate
workers

Architecture

59

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

run superstep 1

Architecture

60

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

at end
superstep 1,
send messages

halt?

Architecture

61

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

run superstep 2

Architecture

62

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

checkpoint

Architecture

63

master

worker A

vertexes
a, b, c

worker B

vertexes
d, e

worker C

vertexes
f, g, h

checkpoint

write to stable store:
MyState, OutEdges,
InputMessages
(or OutputMessages)

Architecture

64

master

worker A

vertexes
a, b, c

worker B

vertexes
d, e

if worker dies,
find replacement &
restart from
latest checkpoint

Architecture

65

master

worker A

vertexes
a, b, c

input
data 1

input
data 2

worker B

vertexes
d, e

worker C

vertexes
f, g, h

 PageRank in Pregel

class PageRankVertex {

 void compute(Iterator messages) {

 if (getSuperstep()> 0) {

 // recompute own PageRank from the neighborsmessages

pageRank= sum(messages);

setVertexValue(pageRank);

}

if (getSuperstep()< k) {

 // send updated PageRank to each neighbor

 sendMessageToAllNeighbors(pageRank/ getNumOutEdges());

} else {

 voteToHalt(); // terminate

}

}}

 
j(j ,i)

j

j

 p

d

p i 

A B C

.33 .33 .33

.17

.17

PageRank toy example

 .33 .17

Superstep 0

.17

.17 .50 .34

.09

.09

.34 .25

Superstep 1

.25

.25 .43 .34

.13

.13

.34 .22

Superstep 2

.22

Input graph

Cool, where can I download it?

• Pregel is proprietary, but:

– Apache Giraph is an open source
implementation of Pregel

– runs on standard Hadoop infrastructure

– computation is executed in memory

– can be a job in a pipeline (MapReduce, Hive)

– uses Apache ZooKeeper for synchronization

69

NEO4J (Graph database)

• A graph is a collection nodes (things) and edges (relationships) that connect
 pairs of nodes.

• Attach properties (key-value pairs) on nodes and relationships

•Relationships connect two nodes and both nodes and relationships can hold
an
 arbitrary amount of key-value pairs.

• A graph database can be thought of as a key-value store, with full support for
 relationships.

• http://neo4j.org/

70

NEO4J

71

NEO4J

72

NEO4J

73

NEO4J

74

NEO4J

75

NEO4J
Properties

76

NEO4J Features
• Dual license: open source and commercial
•Well suited for many web use cases such as tagging, metadata annotations,
 social networks, wikis and other network-shaped or hierarchical data sets
• Intuitive graph-oriented model for data representation. Instead of static and
 rigid tables, rows and columns, you work with a flexible graph network
 consisting of nodes, relationships and properties.
• Neo4j offers performance improvements on the order of 1000x
 or more compared to relational DBs.
• A disk-based, native storage manager completely optimized for storing
 graph structures for maximum performance and scalability
• Massive scalability. Neo4j can handle graphs of several billion
 nodes/relationships/properties on a single machine and can be sharded to
 scale out across multiple machines
•Fully transactional like a real database
•Neo4j traverses depths of 1000 levels and beyond at millisecond speed.
 (many orders of magnitude faster than relational systems)

77

Transactions

UPDATE account1 SET balance=balance-500;

UPDATE account1 SET balance=balance+500;

1. Debit 100 TL to Groceries Expense Account
2. Credit 100 to Checking Account

• A transaction is simply a number of individual queries that are grouped
 together.
•Transactions provide an "all-or-nothing" proposition, stating that each
 work-unit performed in a database must either complete in its entirety
 or have no effect whatsoever.

78

Transactions
• four conditions (ACID) to which transactions need to adhere
1. Atomicity: The queries that make up the transaction must either all be

carried out, or none at all should be carried out
2. Consistency: Refers to the rules of the data. During the transaction, rules

may be broken, but this state of affairs should never be visible from outside
of the transaction.

3. Isolation : Simply put, data being used for one transaction cannot be used by
another transaction until the first transaction is complete.

 Connection 1: SELECT balance FROM account1;
 Connection 2: SELECT balance FROM account1;

 Connection 1: UPDATE account1 SET balance = 900+100;

 Connection 2: UPDATE account1 SET balance = 900-100;

4. Durability: Once a transaction has completed, its effects should remain, and
not be reversible.

