

Scalable Content-based Modeling for Big Data Tasks

Dimitrios Tsoumakos

Associate Professor Dept. of Informatics, Ionian University Computing Systems Lab, NTUA

Data Processing and Analysis MSC – Research Directions in Informatics, Spring 2020

Big data era

Data is everywhere

- Social networks
- IoT devices/trackers
- Smartphones
- Data Lakes
- Business

Big data era (2)

Figure 7. Top Big Data Challenges

Determining hours to part

N = 687 (excludes "don't know" responses)

What's really Big?

- Data is big
 - Crunching them is getting faster and faster
 - More resources, bigger speeds, better algorithms
- Heterogeneity dramatically increases complexity in executing a task!
 - #runtimes, #datastores
 - #resource configurations for deployment
 - #input datasets

What is really Big (2)

1. International Data Corporation (IDC) https://www.idc.com/getfile.dyn?containerid=US418830166attachmentId=472658716id=null&bid=

2. M2M Global Forecast & Analysis 2011-22

By 2022, seven out of every 10 bytes of data created will stay where they are created.

Data curve from IDC/EMC Digital Universe reports 2008-2017, Compute curve HPE analysis 40 years of Microprocessor Trend Data Image: Karl Rupp

Big data Challenge

Big Data systems are harder to:

• Design

• Implement

Analyze

Metadata (Name, replicas, ...): /home/foo/data, 3, ... Namenode Metadata ops Client Block ops Datanodes Read Datanodes Replication Blocks Write Rack 1 Rack 2 Client Image from [HDFS]

HDFS Architecture

Modeling

Why care about modeling (in big data settings)?

- 1. How does my app behave deployed under <u>x</u> amount of resources?
 - a. Best deployment combo/Maximize cost-efficiency balance
 - b. Elastic scaling capabilities/properties
 - c. Improve architecture/identify bottlenecks
 - d. Multi-engine execution environments
- 2. How does my app perform when consuming dataset(s) $\underline{\gamma}$?
 - a. Finding good training set for ML tasks
 - b. Quickly spot dataset(s) of high interest/maximize accuracy of insights
 - c. Targeted exploration without manual search

Content-Based Data Modeling for Analytics Operators

Discovering the "right" data

- A different type of challenge
 - Input data plays a huge role in achieving workflow goal(s)
 - Not size, but content relevance counts
- Examples:
 - Content-based marketing, web advertising, recommender systems
 - Healthcare (insurance, diagnosis, cost reduction)
 - Risk/credit analysis, fraud detection
 - Machine Translation

Interesting info for (any) data analyst

- What's the expected output for a random (unseen) dataset?
- Rank all available datasets
- Which are the datasets that (for a given task):
 - Maximize accuracy, minimize time/cost...
 - Perform closest to a specific dataset
- But without testing each one of them
 - There are too many!
- And what if I change my workflow/task?
- New datasets arrive too (streaming mode)

Dataset-driven analytics profiling

- Predict operator performance over different input
- Operator-agnostic
 - Process largely independent of the analytics operators
- Scales for very big #datasets
 - Efficient + parallelizable process
 - Incremental updates (for unseen datasets)
- Extensible to other domains (graph data+operators now)
- Open source system implementation

Preliminaries

Problem statement

Given:

- 1. Operator F
- 2. Set of datasets $D = \{D_1, D_2, ..., D_n\}$

"Estimate the utility of each dataset D_i , $1 \le i \le n$, for the operator F."

or dually

"Find an approximation of the operator's output F when applied to all datasets D_i , $1 \le i \le n$."

Preliminaries

Challenges

- # of input datasets
 - *n* operator executions \rightarrow too expensive in cost + time
 - Particularly for operators with high (computational) complexity
- # of different operators
 - Same datasets, different task applied
 - Repeat from scratch for each new operator

- Observation
 - Similar datasets → similar operator outputs
- Operator type:
 - $\mathsf{F}:\mathsf{D}{\rightarrow}\mathbb{R}$

- Data properties:
 - Statistical distribution
 - Dataset size
 - Tuple ordering
- Operator categories:
 - Aggregate functions (AVG, <u>SUM</u>, <u>COUNT</u>)
 - Density based (DBSCAN, Local Outlier Factor)
 - Linear Regression
 - Spectrum (Eigenvalue estimation)
 - Time-Series Forecast (*Holt-Winters*, *ARIMA*)

Methodology Workflow

Similarity Estimation - Distribution

- Objective: quantify tuple-overlap among two datasets
- Normalized Bhattacharyya coefficient *Distribution(A,*

 $Distribution(A, B) = \frac{\sum_{i=1}^{l} \sqrt{A_i B_i}}{\sqrt{|A||B|}}$

- Partition the tuple space (*k-means partitioning*)
- Count tuples cardinality for each partition for each dataset
- Estimate Bhattacharyya coefficient for each pair of datasets

Similarity Estimation - Example

charts.com

Similarity Estimation

Ordering

$$Order(A,B) = \frac{concord(a,b) - discord(a,b)}{n(n-1)} + \frac{1}{2}$$

Size

$$Size(A, B) = \frac{\min(|A|, |B|)}{\max(|A|, |B|)}$$

And combinations:

• Linear combination of different Similarity Matrices

Dataset Space Projection

- The similarity Matrix is useful, but:
 - Grows quadratically with # of datasets
 - Does not provide information at scale
 - Visualization with heatmap
- Idea: transform Similarity Matrix to a low-dimensional space
 - Each point represents a dataset
 - Similar datasets flock together in this space

Dataset Space Projection

- Optimization problem:
 - Given the pairwise distances between different points, find a set of k-dimensional coordinates that preserves these distances
- Solution:
 - Eigenvalue optimization Multidimensional Scaling (MDS)
 - Estimates space dimensionality (based on eigenvalues)
 - Estimates the set of coordinates
 - Non linear solution Sammon Mapping
 - Starting off with a set of coordinates, slightly relocate points (datasets) to better fit the SM distances

Dataset Space Projection - Example

Similarity Matrix as a heatmap

Modeling

• Execute $F(D_i)$ for a few datasets (e.g., 5% of them)

- Train a Machine Learning classifier to approximate operator values
 thidden layer Neural Network
 - 1-hidden layer Neural Network

Key point:

Dataset space construction is *operator-agnostic*.

- We do not rely on operator output to create the space
- Examined data parameters are much less than the applicable operators

Let's take a look

https://youtu.be/BI9M-K8uwXw

- Open Source Prototype in Go
- Experiments in private Openstack Cluster
 - Intel Xeon E5645 @2 .40GHz, 96G RM
- Evaluation
 - Modeling accuracy
 - Speedup
- Accuracy metrics:
 - NRMSE
 - MdAPE
- Space distortion
 - Goodness-of-Fit
 - Sammon Stress

	Operators	Affected by				
Class	Name					
Aggregate	AVG	Distribution				
Functions	SUM	Distribution +				
1 unctions	COUNT	Size				
Donaity	DBSCAN [23]	Distribution				
Density	Local Outlier Factor [18]	Distribution				
ML	Linear Regression	Distribution				
Spectrum	Eigenvalue Estimation	Distribution				
Time-Series	Holt-Winters [19]	Distribution +				
Forecast	ARIMA [17]	Order				

ID	Description	Datasets	Tuples	Operators			
CLU	Google Cluster	4707	46 2199	AVG, SUM,			
	Monitoring [2]	4/9/	40 - 2100	COUNT (CNT),			
цро	Household Power	1442	1262 1440	DBSCAN (DBS),			
пго	Consumption [35]	1442	1203 - 1440	Local Outlier F. (LOF),			
WEA	Weather Station	550	200 - 8766	Eigenvalue (EIG),			
	Recordings [3]	552	300 - 8700	Regression (REG)			
NIAC	NASDAQ	021	252	Halt Winters (HOI)			
INAS	Tech. Stocks [5]	251	252	HOLL			
WIK	Wikipedia	4503	551				
	Page Visits [7]	4303	551				

Dataset spaces

Dataset spaces

Operator	NRMSE			MdAPE					Speedu	р (×)		Amortized Speedup (×)				
Operator	4%	8%	16%	32%	4%	8%	16%	32%	4%	8%	16%	32%	4%	8%	16%	32%
CLU-AVG	0.086	0.079	0.073	0.066	0.125	0.114	0.100	0.082	3.21	2.84	2.32	1.69		9.88	5.52	2.93
CLU-SUM	0.085	0.077	0.070	0.063	0.182	0.158	0.136	0.114	3.21	2.84	2.32	1.69				
CLU-CNT	0.115	0.108	0.104	0.097	0.433	0.401	0.377	0.339	3.21	2.84	2.32	1.69	16.24			
CLU-DBS	0.098	0.093	0.088	0.083	0.201	0.191	0.173	0.152	5.69	4.63	3.83	2.19	10.34			
CLU-LOF	0.082	0.074	0.070	0.066	0.146	0.136	0.125	0.110	12.13	8.17	4.94	2.76				
CLU-EIG	0.069	0.063	0.058	0.053	0.089	0.079	0.071	0.060	4.27	3.65	2.83	1.95				
HPO-AVG	0.104	0.096	0.088	0.084	0.013	0.012	0.011	0.010	3.93	3.4	2.67	1.87				
HPO-SUM	0.070	0.065	0.056	0.051	0.149	0.135	0.122	0.113	3.93	3.4	2.67	1.87				
HPO-CNT	0.098	0.079	0.069	0.061	0.115	0.104	0.092	0.084	3.93	3.4	2.67	1.87				
HPO-DBS	0.124	0.119	0.114	0.111	0.146	0.141	0.133	0.128	8.30	6.23	4.16	2.50	20.27	11.20	5.91	3.04
HPO-LOF	0.064	0.061	0.055	0.052	0.068	0.063	0.061	0.057	16.64	9.99	5.55	2.94				
HPO-EIG	0.071	0.069	0.067	0.065	0.065	0.063	0.059	0.055	7.33	5.67	3.90	2.72				
HPO-REG	0.073	0.071	0.071	0.069	0.162	0.150	0.134	0.124	11.33	7.80	4.80	2.72				
WEA-AVG	0.089	0.074	0.068	0.059	0.035	0.025	0.020	0.018	2.68	2.42	2.03	1.53				
WEA-SUM	0.075	0.068	0.063	0.057	0.114	0.078	0.059	0.047	2.68	2.42	2.03	1.53			5.77	3.00
WEA-CNT	0.119	0.106	0.091	0.080	0.324	0.284	0.244	0.214	2.68	2.42	2.03	1.53	18 72	10.71		
WEA-DBS	0.182	0.180	0.176	0.171	0.323	0.328	0.303	0.288	6.06	4.88	3.51	2.25	10.72	10.71		
WEA-LOF	0.126	0.123	0.115	0.110	0.118	0.113	0.107	0.093	16.71	10.02	5.56	2.94				
WEA-EIG	0.035	0.032	0.031	0.029	0.024	0.021	0.019	0.018	5.59	4.57	3.35	2.18				
NAS-HOL	0.093	0.090	0.086	0.084	0.700	0.445	0.333	0.283	0.65	0.63	0.60	0.55	2 45	3.03	2.44	1.75
NAS-ARI	0.095	0.090	0.085	0.084	0.773	0.548	0.341	0.262	2.94	2.63	2.17	1.61	5.45			
WIK-HOL	0.018	0.018	0.018	0.018	0.812	0.686	0.582	0.353	0.17	0.16	0.16	0.16	1.42	124	1 21	1.01
WIK-ARI	0.019	0.019	0.019	0.019	0.595	0.488	0.324	0.237	1.27	1.20	1.10	0.93	1.42	1.34	1.21	1.01

Graph modeling

Apply the same idea to different types of data

- Let's try graphs
 - Similarity Metrics:
 - Degree distribution (in different levels) + Size
 - D-similarity
 - Random Walk Kernel
 - Operators from different classes
 - Distance: {betweenness,edge betweenness,closeness} centrality
 - Spectrum: spectral radius, eigenvector centrality
 - Connectivity: PageRank

Graph modeling - degree distribution similarity

Graph modeling

Graph modeling

Dataset	Motrio	MdAPE (%)			nRMSE				Speedup	×	Amortized Speedup \times			
	Metric	p= 5%	p= 10%	p=20%	p= 5%	p= 10%	p=20%	p= 5%	p= 10%	p=20%	p= 5% p= 1	p= 10%	p=20%	
	sr	1.3	1.1	0.9	0.05	0.03	0.02	6.4	3.8	3.3	18.0	9.5	4.9	
AS	ec	0.1	0.1	0.0	0.01	0.00	0.00	5.7	4.5	3.1				
	bc	1.4	1.2	1.1	0.04	0.03	0.03	15.7	8.8	4.7				
	ebc	3.1	2.7	2.4	0.04	0.04	0.04	17.3	9.3	4.8				
	сс	0.4	0.4	0.3	0.01	0.01	0.01	14.0	8.2	4.5				
	pr	0.9	0.8	0.7	0.05	0.04	0.03	5.7	4.4	3.1				
	sr	16.3	15.3	14.7	0.10	0.10	0.10	13.3	8.0	4.4	14.8	8.5	4.6	
	ec	8.0	7.7	7.7	0.14	0.14	0.13	13.1	7.9	4.4				
TW	bc	17.8	17.5	16.8	0.16	0.15	0.14	13.0	7.8	4.4				
1 **	ebc	29.5	29.8	28.6	0.12	0.12	0.12	13.5	8.0	4.4				
	сс	3.3	3.0	2.9	0.10	0.10	0.09	13.0	7.9	4.4				
	pr	9.2	7.7	7.2	0.07	0.06	0.05	13.2	7.9	4.4				
	sr	3.3	1.8	0.9	0.04	0.03	0.03	5.6	4.4	3.0		9.0	4.7	
BA	ec	0.4	0.3	0.3	0.01	0.01	0.01	3.7	3.1	2.4	16.3			
	bc	10.3	10.1	9.6	0.10	0.05	0.02	12.6	7.7	4.4				
	ebc	10.9	9.3	8.5	0.10	0.09	0.01	13.6	8.1	4.5				
	сс	2.4	2.2	2.1	0.04	0.04	0.03	9.9	6.6	4.0				
	pr	6.7	6.1	5.9	0.06	0.05	0.05	3.6	3.0	2.3				

Conclusions

Modeling operator output

- Many operators, but only *a few* data properties
- Dataset spaces do *make sense*
- Accelerate data analysis workflows

System is publicly available

• https://github.com/giagiannis/data-profiler