
An invention in 2000s:
Column Stores for OLAP

D. TSOUMAKOS, Ionian University 1

ΠΜΣ “Ερευνητικές Κατευθύνσεις στην
Πληροφορική”

Επεξεργασία και Ανάλυση Δεδομένων
SPRING SEMESTER 2020

Row Store and Column Store

(logical level)

• In a row store, data are stored in the disk tuple-by-

tuple.

• In a column store, data are stored in the disk column
by column

• Columnar DBMS are special purpose databases and
are not designed to replace general purpose RDBMS.

2

Row Store vs Column Store

IBM 60.25 10,000 1/15/2006

MSFT 60.53 12,500 1/15/2006

 Row Store:

Used in: Oracle, SQL Server, DB2, Netezza,…

IBM 60.25 10,000 1/15/2006

MSFT 60.53 12,500 1/15/2006

 Column Store:

Used in: Sybase IQ, Vertica

Row Store and Column Store
For example the query

SELECT account.account_number,
 sum (usage.toll_airtime),
 sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = toll.toll_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toll.type_ind in (‘AE’. ‘AA’)
AND usage.toll_price > 0
AND source.type != ‘CIBER’
AND toll.rating_method = ‘IS’
AND usage.invoice_date = 20051013
GROUP BY account.account_number

Row-store: one row = 212 columns!
Column-store: 7 attributes

4

Row Store and Column Store

• So column stores are suitable for
read-mostly, read-intensive, large
data repositories

Row Store

Column Store

(+) Easy to add/modify a record

(+) Only need to read in relevant data

(-) Might read in unnecessary data

(-) Tuple writes require multiple accesses

5

Columnar Database Systems

• Stores content by columns rather than row.

• The 2-D data represented at conceptual level
will be mapped to 1-D data structure at
physical level.

• Row-by –Row approach keeps all the
information about one entity together.

• Column – by –Column approach keeps all
attribute information together.

• Column oriented databases handle fixed
length data

RDBMS vs. Columnar Oriented

DBMS (Physical Level)

Column oriented

Row oriented

Query Execution (Row oriented)

Select * from Employee_database;

Query Execution

Select * from Employee_database;

Query Execution

Select * from Employee_database;

Why Column Oriented Database?

• Most data warehousing applications make
more number of reads and lesser number of
writes.

• They mostly retrieve and analyze fewer
columns compared to the several number of
columns that actually exist.

• Row oriented databases have the overhead of
seeking through all columns.

• Row oriented data warehouses still persistent.

Query Execution (Columnar Databases)

• Select count(E.id) from Employee_Database

E;

Query Execution (Columnar Databases)

• Select count(E.id) from Employee_Database;

 id

salary

Emp_ss

n

dateOfBi

rth

Tradeoffs
• Row oriented databases work well for

granularity at the entity level.

• Column oriented databases work well for
granularity at the attribute level.

• Row oriented – Optimal write time and
abundant reading overhead for retrieval of
subset queries.

• Column oriented – Optimal read time for
subset retrieval queries, bad write
performance.

Applications

• Majorly applicable for Data warehouses and Business
Intelligence– Required more analytical processing rather
transaction processing (Read More and Write Less).

• Online Analytical Processing (At the attribute level)

• Decision making

• Analyzing unorganized BIG DATA with improved granularity

• Data Marts development

• Data Mining

• Latest – Assistance to law enforcement agency, SecureAlert

Data model (Vertica/C-Store)

• Same as relational data model

– Tables, rows, columns

– Primary keys and foreign keys

– Projections

• From single table

• Multiple joined tables

• Example
EMP1 (name, age)

EMP2 (dept, age,

DEPT.floor)

EMP3 (name, salary)

DEPT1(dname, floor)

EMP(name, age, dept,

salary)

DEPT(dname, floor)

Normal relational model

Possible C-store model

C-Store/Vertica Architecture
(from vertica Technical Overview White Paper)

18

Compression

• Trades I/O for CPU

– Increased column-store opportunities:

–Higher data value locality in column stores

– Techniques such as run length encoding far
more useful

19

Benefits in query processing

• Selection – has more indices to use

• Projection – some “projections”
already defined

• Join – some projections are
materialized joins

• Aggregations – works on required
columns only

Summary: the performance gain

• Column representation – avoids reads of unused
attributes

• Storing overlapping projections – multiple orderings of
a column, more choices for query optimization

• Compression of data – more orderings of a column in
the same amount of space

• Query operators operate on compressed representation

List of Column Databases

• Vertica/C-Store

• SybaseIQ

• MonetDB

• LucidDB

• HANA

• Google’s Dremel

• Parcell-> Redshit (Another Cloud-DB Service)

