An invention in 2000s:
Column Stores for OLAP

[IME “EpeuvntiLkéq¢ KateubUvoeLg otnv
[IAnpopop LKY"”

Etre€epyaocia kal AvaAuon AsdopEvwy
SPRING SEMESTER 2020

Row Store and Column Store
(logical level)

row-store column-store

Date |Store |Product |Customer| Price m M ﬂ

—_— TR

* In arow store, data are stored in the disk tuple-by-
tuple.

* |In a column store, data are stored in the disk column
by column

 Columnar DBMS are special purpose databases and
are not designed to replace general purpose RDBMS.

2

Row Store vs Column Store

Column Store:

Used in: Syb;seIQ_, Vertica__

Row Store:

Used in: Oracle, SQL Server, DB2, Netezza,...

Row Store and Column Store

For example the query

SELECT account.account_number,

sum (usage.toll_airtime),

sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = toll.toll_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toll.type_ind in (‘AE’. ‘AA’)
AND usage.toll_price >0
AND source.type != ‘CIBER’
AND toll.rating_method = ‘IS’
AND usage.invoice_date = 20051013
GROUP BY account.account_number

Row-store: one row = 212 columns!
Column-store: 7 attributes

Row Store and Column Store

(+) Easy to add/modify a record (+) Only need to read in relevant data

(-) Might read in unnecessary data (-) Tuple writes require multiple accesses

e So column stores are suitable for
read—mostly, read—-intensive, large
data repositories

Columnar Database Systems

Stores content by columns rather than row.

The 2-D data represented at conceptual level
will be mapped to 1-D data structure at
physical level.

Row-by —Row approach keeps all the
information about one entity together.

Column — by —Column approach keeps all
attribute information together.

Column oriented databases handle fixed
length data

RDBMS vs. Columnar Oriented
DBMS (Physical Level)

Row oriented

Block i RINR1Z |R13 (R14) pecord 2 | Record 3 | Record 4 Record 5 Reccord 6] p
BlDCk .F-'."I H.E cnrd ? .. PDII‘ItEr tﬂ nExt
rrrrr d
Column 1
Block i R11 (R21 (R31 |Ran| Rnl Column 2 p

Block i+1 Column 3 Column 4

Query Execution (Row oriented)

Select * from Employee database;

}

Block i R11R12|R13 |R14| Record2 | Record 3 | Record 4 Record 5 Reccord 6] p
Block i+1 Record7 @ | -~ ssrmscsrmmmmsssimssiss s s nnsnnnnnnns Pointer to next
record

Query Execution

Select * from Employee database;

U

Block j RINR1Z(R12 |R141 Record2 | Record3 | Record4| Record5 |Reccord6] p
Block i+1 Record7 2 | wessssscssscssssssscsssssssscsssssssscs s Pointer to next
record

Query Execution

Select * from Employee database;

Block i

Block i+1

Block i

Block i+1

J

RIIR1Z (R12 \R14) Record2 | Record 3 | Record 4 Record 5 Reccord 6] p
! P
Hecnrd N A Pointer to next
record
R11R12 |R13 |R14) pRecord 2 | Record 3 | Record 4 Record 5 Reccord 6] p
Hecnrd A [S R Pointer to next

record

Why Column Oriented Database?

Most data warehousing applications make
more number of reads and lesser number of

writes.

They mostly retrieve and analyze fewer
columns compared to the several number of
columns that actually exist.

Row oriented d
seeking throug

atabases have the overhead of
n all columns.

Row oriented ¢

ata warehouses still persistent.

Query Execution (Columnar Databases)

 Select count(E.id) from Employee Database

U

Block i R11 (R21 | R31 [R41 Rnl Column 2 p

Block i+1 Column 3 Column 4

Query Execution (Columnar Databases)

 Select count(E.i1d) from Employee Database;

salary
Block i ‘F‘“ RI1 |R31 R4l ... Hl‘ Column 2 p
Block i+1 ‘ Column 3 Columm 4 ‘
Emp_ss dateOfBI
n rth

Tradeoffs

Row oriented databases work well for
granularity at the entity level.

Column oriented databases work well for
granularity at the attribute level.

Row oriented — Optimal write time and
abundant reading overhead for retrieval of
subset queries.

Column oriented — Optimal read time for
subset retrieval queries, bad write
performance.

Applications

Majorly applicable for Data warehouses and Business
Intelligence— Required more analytical processing rather
transaction processing (Read More and Write Less).

Online Analytical Processing (At the attribute level)
Decision making

Analyzing unorganized BIG DATA with improved granularity
Data Marts development

Data Mining

Latest — Assistance to law enforcement agency, SecureAlert

Data model (Vertica/C-Store)

« Same as relational data model
— Tables, rows, columns
— Primary keys and foreign keys

— Projections
 From single table

« Multiple joined tables
Possible C-store model

« Example

Normal relational model EMP1 (name, age)

EMP2 (dept, age,
EMP(name, age, dept, DEPT.floor)

salary) EMP3 (name, salary)
DEPT(dname, floor) DEPT1(dname, floor)

Actual On-Disk
Representation

Original data

oid pid | cust | date | price
1 12 | Sam [1/1/06 | $100
2 17 | Mike |3/4/06| $87
3 18 Joe |(1/2/06| $12
4 4 Andy |8/4/06 | $125
sales

Physically Stored as Columns

oid pid cust date price
1 12 Sam || 1/1/06 || $100
2 17 Mike || 3/4/06 || $87
3 18 Joe 1/2/06 || $12
4 4 Andy || 8/4/06 || $125

Split into Several Projections

| oid | pid | date |[price]

| oid | pid | cust |

Partitioned into Segments on Several Machines

oid pid date price oid pid date || price

1 12 11106 $100 3 18 1/2/06 $12

2 17 3/4/06 $87 4 4 8/4/06 $125
oid pid cust oid pid cust
1 12 Sam 3 18 Joe
2 17 Mike 4 4 Andy
Machine 1 Machine 2

C-Store/Vertica Architecture

(from vertica Technical Overview White Paper)

SQL
Queries
Front End
(ODBC/JDBCl/etc., Parser)
Read Updates
Queries
' 'y
nnononoonnnnononnan |]
rlHFIHHHI'ITI"ITHTI‘ITI'ITITTﬂTﬂTﬂTﬂTﬂTﬂTﬂTﬂTﬂTﬂj] Delete Vector |
| RS Segments || | Ws Segment |
Read Store Write Store

T

Tuple
Mover

Compression

* Trades I/O for CPU

—Increased column-store opportunities:
—Higher data value locality in column stores

—Techniques such as run length encoding far
more useful

19

Benefits in query processing

« Selection — has more indices to use
« Projection - some “projections”
already defined

« Join — some projections are
materialized joins

« Aggregations — works on required
columns only

Summary: the performance gain

Column representation — avoids reads of unused
attributes

Storing overlapping projections — multiple orderings of
a column, more choices for query optimization

Compression of data — more orderings of a column in
the same amount of space

Query operators operate on compressed representation

List of Column Databases

Vertica/C-Store

SybaselQ

MonetDB

LucidDB

HANA

Google’s Dremel

Parcell-> Redshit (Another Cloud-DB Service)

