
Parallel and Distributed Databases

D. TSOUMAKOS, Ionian University 1

ΠΜΣ “Ερευνητικές Κατευθύνσεις στην
Πληροφορική”

Επεξεργασία και Ανάλυση Δεδομένων
SPRING SEMESTER 2020

Why Parallel Access To Data?

1 Terabyte

10 MB/s

 At 10 MB/s

1.2 days to scan

1 Terabyte

1,000 x parallel
1.5 minute to scan.

Parallelism:
 divide a big problem
 into many smaller ones
 to be solved in parallel.

Parallel DBMS: Introduction
 Parallelism is natural to DBMS processing

 Pipeline parallelism: many machines each doing one
step in a multi-step process.

 Partition parallelism: many machines doing the same
thing to different pieces of data.

 Both are natural in DBMS!

Pipeline

Partition

Any
Sequential
 Program

Any
Sequential
 Program

Sequential

Sequential

Sequential

Sequential

Any
Sequential
 Program

Any
Sequential
 Program

outputs split N ways, inputs merge M ways

DBMS: The || Success Story
 DBMSs are the most successful application of

parallelism.

 Teradata, Tandem, Thinking Machines

 Every major DBMS vendor has some || server

 Reasons for success:

 Bulk-processing (= partition ||-ism).

 Natural pipelining.

 Inexpensive hardware can do the trick

 Users/app-programmers don’t need to think in ||

Some || Terminology

 Speed-Up

 More resources means
proportionally less time for
given amount of data.

 Scale-Up

 If resources increased in
proportion to increase in
data size, time is constant.

degree of ||-ism

X
ac

t/
se

c.

(t
h

ro
u

g
h

p
u

t)
 Ideal

degree of ||-ism

se
c.

/
X

ac
t

(r
es

p
o

n
se

 t
im

e)

Ideal

Architecture Issue: Shared What?

Shared Memory
(SMP)

Shared Disk Shared Nothing
 (network)

CLIENTS CLIENTS CLIENTS

Memory

Processors

Easy to program
Expensive to build
Difficult to scaleup

Hard to program
Cheap to build
Easy to scaleup

Sequent, SGI, Sun VMScluster, Sysplex Tandem, Teradata, SP2

Different Types of DBMS ||-ism

 Intra-operator parallelism

 get all machines working to compute a given operation
(scan, sort, join)

 Inter-operator parallelism

 each operator may run concurrently on a different site
(exploits pipelining)

 Inter-query parallelism

 different queries run on different sites

 We’ll focus on intra-operator ||-ism

Automatic Data Partitioning

Partitioning a table:
Range Hash Round Robin

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

Good for equijoins,
range queries
group-by

Good for equijoins Good to spread load

Parallel Scans
 Scan in parallel, and merge.

 Selection may not require all sites for range or hash
partitioning.

 Indexes can be built at each partition.

Parallel Sorting
 Idea:

 Scan in parallel, and range-partition as you go.

 As tuples come in, begin “local” sorting on each

 Resulting data is sorted, and range-partitioned.

 Problem: skew!

 Solution: “sample” the data at start to determine
partition points.

Parallel Joins
 Nested loop:

 Each outer tuple must be compared with each inner
tuple that might join.

 Easy for range partitioning on join cols, hard otherwise!

 Sort-Merge (or plain Merge-Join):

 Sorting gives range-partitioning.

 Merging partitioned tables is local.

Parallel Hash Join

 In first phase, partitions get distributed to different
sites:

 A good hash function automatically distributes work
evenly!

 Do second phase at each site.

 Almost always the winner for equi-join.

Original Relations

(R then S)

OUTPUT

2

B main memory buffers Disk Disk

INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

P
h

as
e

1

Dataflow Network for || Join (hash
join)

 Good use of split/merge makes it easier to build
parallel versions of sequential join code.

Complex Parallel Query Plans
 Complex Queries: Inter-Operator parallelism

 Pipelining between operators:

 note that sort and phase 1 of hash-join block the pipeline!!

 Bushy Trees

A B R S

Sites 1-4 Sites 5-8

Sites 1-8

NM-way Parallelism

A...E F...J K...N O...S T...Z

Merge

Join

Sort

Join

Sort

Join

Sort

Join

Sort

Join

Sort

Merge
Merge

N inputs, M outputs, no bottlenecks.

Partitioned Data
Partitioned and Pipelined Data Flows

Observations
 It is relatively easy to build a fast parallel query

executor

 It is hard to write a robust and world-class parallel
query optimizer.

 There are many tricks.

 One quickly hits the complexity barrier.

 Still open research!

Parallel Query Optimization
 Common approach: 2 phases

 Pick best sequential plan (System R algorithm)

 Pick degree of parallelism based on current system
parameters.

 “Bind” operators to processors

 Use query tree.

What’s Wrong With That?

 Best serial plan != Best || plan! Why?

 Trivial counter-example:

 Table partitioned with local secondary index at two
nodes

 Range query: all of node 1 and 1% of node 2.

 Node 1 should do a scan of its partition.

 Node 2 should use secondary index.

N..Z

Table
Scan

A..M

Index
Scan

Examples of Parallel Databases

|| DBMS Summary
 Hardest part of the equation: optimization.

 2-phase optimization simplest, but can be ineffective.

 More complex schemes still at the research stage.

 We haven’t said anything about Xacts, logging.

 Easy in shared-memory architecture.

 Takes some care in shared-nothing.

 References :
 Database Management System , 2nd Edition,Raghu Ramakrishnan and

Johannes Gehrke
 http://www.research.microsoft.com/research/BARC/Gray/PDB95.ppt

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database Concepts

 A transaction can be executed by multiple
networked computers in a unified manner.

 A distributed database (DDB) can be defined as

 A distributed database (DDB) is a collection of
multiple logically related database distributed over
a computer network, and a distributed database
management system as a software system that
manages a distributed database while making the
distribution transparent to the user.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages

 Management of distributed data with different
levels of transparency:

 This refers to the physical placement of data (files,
relations, etc.) which is not known to the user
(distribution transparency).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages (transparency, contd.)

 The EMPLOYEE, PROJECT, and WORKS_ON

tables may be fragmented horizontally and stored

with possible replication as shown below.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages (transparency, contd.)

 Distribution and Network transparency:

 Users do not have to worry about operational details

of the network.

 There is Location transparency, which refers to freedom of

issuing command from any location without affecting its

working.

 Then there is Naming transparency, which allows access

to any names object (files, relations, etc.) from any

location.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages (transparency, contd.)

 Replication transparency:

 It allows to store copies of a data at multiple sites as

shown in the above diagram.

 This is done to minimize access time to the required

data.

 Fragmentation transparency:

 Allows to fragment a relation horizontally (create a

subset of tuples of a relation) or vertically (create a

subset of columns of a relation).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Other Advantages

 Increased reliability and availability:

 Reliability refers to system live time, that is, system

is running efficiently most of the time. Availability is

the probability that the system is continuously

available (usable or accessible) during a time

interval.

 A distributed database system has multiple nodes

(computers) and if one fails then others are

available to do the job.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Other Advantages (contd.)

 Improved performance:

 A distributed DBMS fragments the database to keep

data closer to where it is needed most.

 This reduces data management (access and

modification) time significantly.

 Easier expansion (scalability):

 Allows new nodes (computers) to be added anytime

without chaining the entire configuration.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and

Allocation

 Data Fragmentation

 Split a relation into logically related and correct

parts. A relation can be fragmented in two ways:

 Horizontal Fragmentation

 Vertical Fragmentation

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Design of Distributed DBMSs

ssn name address

123 smith wall str.

...

234 johnson sunset blvd

horiz.

fragm.

vertical fragm.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and

Allocation

 Horizontal fragmentation

 It is a horizontal subset of a relation which contain those of

tuples which satisfy selection conditions.

 Consider the Employee relation with selection condition

(DNO = 5). All tuples that satisfy this condition will create a

subset which will be a horizontal fragment of Employee

relation.

 A selection condition may be composed of several

conditions connected by AND or OR.

 Derived horizontal fragmentation: It is the partitioning of a

primary relation to other secondary relations which are

related with Foreign keys.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and

Allocation

 Vertical fragmentation

 It is a subset of a relation which is created by a subset of

columns. Thus a vertical fragment of a relation will contain

values of selected columns. There is no selection condition

used in vertical fragmentation.

 Consider the Employee relation. A vertical fragment of can

be created by keeping the values of Name, Bdate, Sex, and

Address.

 Because there is no condition for creating a vertical

fragment, each fragment must include the primary key

attribute of the parent relation Employee. This way, all

vertical fragments of a relation are connected.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and

Allocation

 Representation

 Mixed (Hybrid) fragmentation

 A combination of Vertical fragmentation and
Horizontal fragmentation.

 This is achieved by SELECT-PROJECT operations
which is represented by Li(sCi (R)).

 If C = True (Select all tuples) and L ≠ ATTRS(R), we
get a vertical fragment, and if C ≠ True and L ≠
ATTRS(R), we get a mixed fragment.

 If C = True and L = ATTRS(R), then R can be
considered a fragment.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and

Allocation

 Fragmentation schema

 A definition of a set of fragments (horizontal or vertical or

horizontal and vertical) that includes all attributes and tuples

in the database that satisfies the condition that the whole

database can be reconstructed from the fragments by

applying some sequence of UNION (or OUTER JOIN and

UNION operations).

 Allocation schema

 It describes the distribution of fragments to sites of

distributed databases. It can be fully or partially replicated

or can be partitioned.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and

Allocation

 Data Replication

 Database is replicated to all sites.

 In full replication, the entire database is replicated and in

partial replication some selected part is replicated to some

of the sites.

 Data replication is achieved through a replication schema.

 Data Distribution (Data Allocation)

 This is relevant only in the case of partial replication or

partition.

 The selected portion of the database is distributed to the

database sites.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Distributed Database Systems

 Homogeneous
 All sites of the database

system have identical
setup, i.e., same database
system software.

 The underlying operating
system may be different.
 For example, all sites run

Oracle or DB2, or Sybase
or some other database
system.

 The underlying operating
systems can be a mixture
of Linux, Window, Unix,
etc.

Site 5
Site 1

Site 2Site 3

Oracle Oracle

Oracle
Oracle

Site 4

Oracle

LinuxLinux

Window

Window
Unix

Communications

network

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Distributed Database Systems

 Heterogeneous

 Federated: Each site may run a different database system but the
data access is managed through a single conceptual schema.

 This implies that the degree of local autonomy is minimum. Each site
must adhere to a centralized access policy. There may be a global
schema.

 Multi-database: There is no global schema. For data access, a
schema is constructed dynamically as needed by the application
software.

Communications

network

Site 5
Site 1

Site 2Site 3

Network

DBMS

Relational

Site 4

Object

Oriented

LinuxLinux

Unix

Hierarchical

Object

Oriented

RelationalUnix

Window

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Distributed Database Systems

 Federated Database Management Systems
Issues

 Differences in data models:

 Relational, Objected oriented, hierarchical, network,
etc.

 Differences in constraints:

 Each site may have their own data accessing and
processing constraints.

 Differences in query language:

 Some site may use SQL, some may use SQL-89,
some may use SQL-92, and so on.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 Issues

 Cost of transferring data (files and results) over the network.

 This cost is usually high, so some optimization is necessary.

 Example relations: Employee at site 1 and Department at Site

2

 Employee at site 1. 10,000 rows. Row size = 100 bytes. Table

size = 106 bytes.

 Department at Site 2. 100 rows. Row size = 35 bytes. Table

size = 3,500 bytes.

 Q: For each employee, retrieve employee name and

department name Where the employee works.

 Q: Fname,Lname,Dname (Employee Dno = Dnumber Department)

Fname Minit Lname SSN Bdate Address Sex Salary Superssn Dno

Dname Dnumber Mgrssn Mgrstartdate

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 Result

 The result of this query will have 10,000 tuples,

assuming that every employee is related to a

department.

 Suppose each result tuple is 40 bytes long. The

query is submitted at site 3 and the result is sent to

this site.

 Problem: Employee and Department relations are

not present at site 3.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 Strategies:

1. Transfer Employee and Department to site 3.

 Total transfer bytes = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send

the result to site 3.

 Query result size = 40 * 10,000 = 400,000 bytes. Total

transfer size = 400,000 + 1,000,000 = 1,400,000 bytes.

3. Transfer Department relation to site 1, execute the join at

site 1, and send the result to site 3.

 Total bytes transferred = 400,000 + 3500 = 403,500 bytes.

 Optimization criteria: minimizing data transfer.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 Consider the query

 Q’: For each department, retrieve the department

name and the name of the department manager

 Relational Algebra expression:

 Fname,Lname,Dname (Employee Mgrssn = SSN

Department)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 The result of this query will have 100 tuples, assuming
that every department has a manager, the execution
strategies are:
1. Transfer Employee and Department to the result site and

perform the join at site 3.
 Total bytes transferred = 1,000,000 + 3500 = 1,003,500

bytes.

2. Transfer Employee to site 2, execute join at site 2 and
send the result to site 3. Query result size = 40 * 100 =
4000 bytes.
 Total transfer size = 4000 + 1,000,000 = 1,004,000 bytes.

3. Transfer Department relation to site 1, execute join at site
1 and send the result to site 3.
 Total transfer size = 4000 + 3500 = 7500 bytes.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 Now suppose the result site is 2. Possible
strategies :

1. Transfer Employee relation to site 2, execute the
query and present the result to the user at site 2.

 Total transfer size = 1,000,000 bytes for both
queries Q and Q’.

2. Transfer Department relation to site 1, execute
join at site 1 and send the result back to site 2.

 Total transfer size for Q = 400,000 + 3500 =
403,500 bytes and for Q’ = 4000 + 3500 = 7500
bytes.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Semi Joins

 A join where the result only contains columns

from one of the joined tables

 Very useful in distributed databases, so that we

don’t transmit a lot of data over the network

 Can dramatically speed up certain classes of

queries

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed

Databases

 Semijoin:
 Objective is to reduce the number of tuples in a relation

before transferring it to another site.

 Example execution of Q or Q’:
1. Project the join attributes of Department at site 2, and

transfer them to site 1. For Q, 4 * 100 = 400 bytes are
transferred and for Q’, 9 * 100 = 900 bytes are transferred.

2. Join the transferred file with the Employee relation at site
1, and transfer the required attributes from the resulting file
to site 2. For Q, 34 * 10,000 = 340,000 bytes are
transferred and for Q’, 39 * 100 = 3900 bytes are
transferred.

3. Execute the query by joining the transferred file with
Department and present the result to the user at site 2.

Distr. Q-opt – semijoins

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S2

S3

SUPPLIER Join SHIPMENT = ?

semijoins

• choice of plans?

• plan #1: ship SUP -> S2; join; ship -> S3

• plan #2: ship SHIP->S3; ship SUP->S3;

join

• ...

• others?

Semijoins
• Idea: reduce the tables before shipping

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S3

SUPPLIER Join SHIPMENT = ?

Semijoins

• How to do the reduction, cheaply?

• Eg., reduce ‘SHIPMENT’:

Semijoins
• Idea: reduce the tables before shipping

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S3

SUPPLIER Join SHIPMENT = ?

(s1,s2,s5,s11)

Semijoins

• Formally:

• SHIPMENT’ = SHIPMENT SUPPLIER

• express semijoin w/ rel. algebra



)(

'

SR

SRR

R 







Semijoins – eg:

• suppose each attr. is 4 bytes

• Q: transmission cost (#bytes) for semijoin

SHIPMENT’ = SHIPMENT semijoin SUPPLIER

Semijoins
• Idea: reduce the tables before shipping

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S3

SUPPLIER Join SHIPMENT = ?

(s1,s2,s5,s11)

4 bytes

Semijoins – eg:

• suppose each attr. is 4 bytes

• Q: transmission cost (#bytes) for semijoin

SHIPMENT’ = SHIPMENT semijoin SUPPLIER

• A: 4*4 bytes

Semijoins – eg:

• suppose each attr. is 4 bytes

• Q1: give a plan, with semijoin(s)

• Q2: estimate its cost (#bytes shipped)

Semijoins – eg:

• Q1:

– reduce SHIPMENT to SHIPMENT’

– SHIPMENT’ -> S3

– SUPPLIER -> S3

– do join @ S3

• Q2: cost?

Semijoins

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S3

(s1,s2,s5,s11)

4 bytes

4 bytes 4 bytes

4 bytes

Semijoins – eg:

• A2:

– 4*4 bytes - reduce SHIPMENT to SHIPMENT’

– 3*8 bytes - SHIPMENT’ -> S3

– 4*8 bytes - SUPPLIER -> S3

– 0 bytes - do join @ S3

72 bytes TOTAL

Other plans?

P2:

• reduce SHIPMENT to SHIPMENT’

• reduce SUPPLIER to SUPPLIER’

• SHIPMENT’ -> S3

• SUPPLIER’ -> S3

Other plans?

P3:

• reduce SUPPLIER to SUPPLIER’

• SUPPLIER’ -> S2

• do join @ S2

• ship results -> S3

A brilliant idea: ‘Bloom-joins’

• how to ship the projection, say, of

SUPPLIER.s#, even cheaper?

• A: Bloom-filter [Lohman+] =

– quick&dirty membership testing

Semijoins

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S3

(s1,s2,s5,s11)

4 bytes

4 bytes 4 bytes

4 bytes

Another brilliant idea: two-way

semijoins

• reduce both relations with one more
exchange: [Kang, ’86]

• ship back the list of keys that didn’t match

• CAN NOT LOSE! (why?)

• further improvement:

– or the list of ones that matched – whatever is
shorter!

Two-way Semijoins

s# ...

s1

s2

s5

s11

S1

SUPPLIER

s# p#

s1 p1

s2 p1

s3 p5

s2 p9

SHIPMENT

S3

(s1,s2,s5,s11)

(s5,s11)

S2

