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Why we still study OLAP/Data 
Warehouse in Big Data? 

• Understand the Big Data history  

– How does the requirement of (big) data analytics/business 
intelligence evolve over the time? 

– What are the architecture and implementation techniques 
being developed? Will they still be useful in Big Data? 

– Understand their limitation and what factors have changed 
from 90’s to now? 

• NoSQL is not only SQL  

• Hive/Impala aims to provide OLAP/BI for Big Data 
using Hadoop 
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Highlights  

• OLAP 

– Multi-relational Data model 

– Operators 

– SQL  

• Data warehouse (architecture, issues, 
optimizations) 

• Materialized view maintenance 
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Let’s get back to the root in 70’s: 
Relational Database 



Basic Structure 

• Formally, given sets D1, D2, …. Dn a relation r is a subset of  

        D1 x  D2  x … x Dn 

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai   Di 

• Example: 

              customer_name =  {Jones, Smith, Curry, Lindsay} 

 customer_street =  {Main, North, Park} 

 customer_city     =  {Harrison, Rye, Pittsfield} 

Then r = {   (Jones, Main, Harrison),  

                   (Smith, North, Rye), 

                   (Curry, North, Rye), 

                   (Lindsay, Park, Pittsfield) } 

 is a relation over  
  customer_name , customer_street,  customer_city 



Relation Schema 

• A1, A2, …, An are attributes 

 

• R = (A1, A2, …, An ) is a relation schema 

 Example: 

 Customer_schema = (customer_name, customer_street, 

customer_city) 

 

• r(R) is a relation on the relation schema R 

 Example: 

 customer (Customer_schema) 



Relation Instance 

• The current values (relation instance) of a relation are 
specified by a table 

• An element t of r is a tuple, represented by a row in a 
table 

Jones 

Smith 

Curry 

Lindsay 

customer_name 

Main 

North 

North 

Park 

customer_street 

Harrison 

Rye 

Rye 

Pittsfield 

customer_city 

customer 

attributes 

(or columns) 

tuples 

(or rows) 



Database 
• A database consists of multiple relations 

• Information about an enterprise is broken up into parts, 
with  each relation storing one part of the information 

  account :   stores information about accounts 
        depositor : stores information about which customer 
                          owns which account  
        customer : stores information about customers 

• Storing all information as a single relation such as  
   bank(account_number, balance, customer_name, ..) 
results in repetition of information (e.g., two customers 
own an account) and the need for null values  (e.g., 
represent a customer without an account) 



Banking Example 

branch (branch-name, branch-city, assets) 
 

customer (customer-name, customer-street, customer-
city) 

 
account (account-number, branch-name, balance) 
 
loan (loan-number, branch-name, amount) 
 
depositor (customer-name, account-number) 
 
borrower (customer-name, loan-number) 



Relational Algebra 

• Primitives 
– Projection () 
– Selection () 
– Cartesian product () 
– Set union () 
– Set difference () 
– Rename () 

• Other operations 
– Join (⋈) 
– Group by… aggregation 
– … 



What happens next? 

• SQL  

• System R (DB2), INGRES, ORACLE, SQL-Server, 
Teradata 

– B+-Tree (select)  

– Transaction Management 

– Join algorithm 
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In early 90’s:  
OLAP & Data Warehouse 



Database Workloads 

• OLTP (online transaction processing) 
– Typical applications: e-commerce, banking, airline reservations 
– User facing: real-time, low latency, highly-concurrent 
– Tasks: relatively small set of “standard” transactional queries 
– Data access pattern: random reads, updates, writes (involving 

relatively small amounts of data) 

• OLAP (online analytical processing) 
– Typical applications: business intelligence, data mining 
– Back-end processing: batch workloads, less concurrency 
– Tasks: complex analytical queries, often ad hoc 
– Data access pattern: table scans, large amounts of data involved 

per query 
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OLTP 

• Most database operations involve On-Line 
Transaction Processing  (OTLP). 

– Short, simple, frequent queries and/or 
modifications, each involving a small number 
of tuples. 

– Examples: Answering queries from a Web 
interface, sales at cash registers, selling airline 
tickets. 
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OLAP 

• Of increasing importance are On-Line 
Application Processing  (OLAP) queries. 

– Few, but complex queries --- may run for hours. 

– Queries do not depend on having an absolutely 
up-to-date database. 
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OLAP Examples 

1. Amazon analyzes purchases by its customers 
to come up with an individual screen with 
products of likely interest to the customer. 

2. Analysts at Wal-Mart look for items with 
increasing sales in some region. 
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OLTP vs. OLAP 

 OLTP OLAP 

users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 

detailed, flat relational 

isolated 

historical,  

summarized, multidimensional 

integrated, consolidated 

usage repetitive ad-hoc 

access read/write 

index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records accessed tens millions 

#users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
 

 



One Database or Two? 

• Downsides of co-existing OLTP and OLAP 
workloads 
– Poor memory management 

– Conflicting data access patterns 

– Variable latency 

• Solution: separate databases 
– User-facing OLTP database for high-volume 

transactions 

– Data warehouse for OLAP workloads 

– How do we connect the two? 



OLTP/OLAP Architecture 

OLTP OLAP 

ETL 
(Extract, Transform, and Load) 



OLTP/OLAP Integration 

• OLTP database for user-facing transactions 
– Retain records of all activity 
– Periodic ETL (e.g., nightly) 

• Extract-Transform-Load (ETL) 
– Extract records from source 
– Transform: clean data, check integrity, aggregate, etc. 
– Load into OLAP database 

• OLAP database for data warehousing 
– Business intelligence: reporting, ad hoc queries, data 

mining, etc. 
– Feedback to improve OLTP services 
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The Data Warehouse 

• The most common form of data integration. 

– Copy sources into a single DB (warehouse) and try 
to keep it up-to-date. 

– Usual method: periodic reconstruction of the 
warehouse, perhaps overnight. 

– Frequently essential for analytic queries. 



Warehouse Architecture 
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Client Client 

Warehouse 

Source Source Source 

Query & Analysis 

Integration 

Metadata 
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Star Schemas 

• A star schema  is a common organization for 
data at a warehouse.  It consists of: 

1. Fact table : a very large accumulation of facts 
such as sales. 

 Often “insert-only.” 

2. Dimension tables : smaller, generally static 
information about the entities involved in the 
facts. 
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Example: Star Schema 

• Suppose we want to record in a warehouse 
information about every beer sale: the bar, 
the brand of beer, the drinker who bought the 
beer, the day, the time, and the price charged. 

• The fact table is a relation: 

Sales(bar, beer, drinker, day, time, price) 
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Example, Continued 

• The dimension tables include information 
about the bar, beer, and drinker 
“dimensions”: 

  Bars(bar, addr, license) 

  Beers(beer, manf) 

  Drinkers(drinker, addr, phone) 
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Visualization – Star Schema 

Dimension Table (Beers) Dimension Table (etc.) 

Dimension Table (Drinkers) Dimension Table (Bars) 

Fact Table - Sales 

Dimension Attrs. Dependent Attrs. 
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Dimensions and Dependent 
Attributes 

• Two classes of fact-table attributes: 

1. Dimension attributes : the key of a dimension 
table. 

2. Dependent attributes : a value determined by 
the dimension attributes of the tuple. 



Warehouse Models & Operators 

• Data Models 

– relations 

– stars & snowflakes 

– cubes 

• Operators 

– slice & dice 

– roll-up, drill down 

– pivoting 

– other 
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Star 
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customer custId name address city

53 joe 10 main sfo

81 fred 12 main sfo

111 sally 80 willow la

product prodId name price

p1 bolt 10

p2 nut 5

store storeId city

c1 nyc

c2 sfo

c3 la

sale oderId date custId prodId storeId qty amt

o100 1/7/97 53 p1 c1 1 12

o102 2/7/97 53 p2 c1 2 11

105 3/8/97 111 p1 c3 5 50



Star Schema 
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sale

orderId

date

custId

prodId

storeId

qty

amt

customer

custId

name

address

city

product

prodId

name

price

store

storeId

city
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Example of Snowflake Schema 

time_key 

day 

day_of_the_week 

month 

quarter 

year 

time 

location_key 

street 

city_key 

location 

Sales     Fact Table 

           time_key 

              item_key 

           branch_key 

         location_key 

            units_sold 

         dollars_sold 

             avg_sales 

Measures 

item_key 

item_name 

brand 

type 

supplier_key 

item 

branch_key 

branch_name 

branch_type 

branch 

supplier_key 

supplier_type 

supplier 

city_key 

city 

province_or_street 

country 

city 
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Example of Fact 
Constellation 

time_key 

day 

day_of_the_week 

month 

quarter 

year 

time 

location_key 

street 

city 

province_or_street 

country 

location 

Sales    Fact Table 

time_key 

         item_key 

      branch_key 

    location_key 

        units_sold 

     dollars_sold 

         avg_sales 

Measures 

item_key 

item_name 

brand 

type 

supplier_type 

item 

branch_key 

branch_name 

branch_type 

branch 

Shipping Fact Table 

time_key 

         item_key 

     shipper_key 

  from_location 

      to_location 

     dollars_cost 

   units_shipped 

shipper_key 

shipper_name 

location_key 

shipper_type 

shipper 
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A Concept Hierarchy: Dimension (location) 

all 

Europe North_America 

Mexico Canada Spain Germany 

Vancouver 

M. Wind L. Chan 

... 

... ... 

... ... 

... 

all 

region 

office 

country 

Toronto Frankfurt city 



Dimension Hierarchies 
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store storeId cityId tId mgr

s5 sfo t1 joe

s7 sfo t2 fred

s9 la t1 nancy
city cityId pop regId

sfo 1M north

la 5M south

region regId name

north cold region

south warm region

sType tId size location

t1 small downtown

t2 large suburbs

store 

sType 

city region 

 snowflake schema 

 constellations 



Aggregates 
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sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Add up amounts for day 1 

• In SQL:  SELECT sum(amt) FROM SALE 

                    WHERE date = 1 

81 



Aggregates 
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sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Add up amounts by day 

• In SQL:  SELECT date, sum(amt) FROM SALE 

                    GROUP BY date 

ans date sum

1 81

2 48



Another Example 
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sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Add up amounts by day, product 

• In SQL:  SELECT date, sum(amt) FROM SALE 

                    GROUP BY date, prodId 

sale prodId date amt

p1 1 62

p2 1 19

p1 2 48

drill-down 

rollup 



ROLAP vs. MOLAP 

• ROLAP: 
Relational On-Line Analytical Processing 

• MOLAP: 
Multi-Dimensional On-Line Analytical 
Processing 
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Cube 
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sale prodId storeId amt

p1 c1 12

p2 c1 11

p1 c3 50

p2 c2 8

c1 c2 c3

p1 12 50

p2 11 8

Fact table view: 
Multi-dimensional cube: 

dimensions = 2 



3-D Cube 

40 

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

day 2 
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1 

dimensions = 3 

Multi-dimensional cube: Fact table view: 



Multidimensional Data 

• Sales volume as a function of product, 
month, and region 

P
ro

d
u
ct

 

Month 

Dimensions: Product, Location, Time 

Hierarchical summarization paths 

Industry   Region         Year 

 

Category   Country  Quarter 

 

Product      City     Month    Week 

 

                   Office         Day 



A Sample Data Cube 

Total annual sales 

of  TV in U.S.A. 
Date 

C
o
u

n
tr

y
 

sum 

sum   
TV 

VCR 
PC 

1Qtr 2Qtr 3Qtr 4Qtr 

U.S.A 

Canada 

Mexico 

sum 



Cuboids Corresponding to the 
Cube 

all 

product date country 

product,date product,country date, country 

product, date, country 

0-D(apex) cuboid 

1-D cuboids 

2-D cuboids 

3-D(base) cuboid 
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Typical OLAP Operations 
• Roll up (drill-up): summarize data 

– by climbing up hierarchy or by dimension reduction 

• Drill down (roll down): reverse of roll-up 

– from higher level summary to lower level summary or detailed data, 

or introducing new dimensions 

• Slice and dice:  

– project and select  

• Pivot (rotate):  

– aggregation on selected dimensions. 

• Other operations 

– drill across: involving (across) more than one fact table 

– drill through: through the bottom level of the cube to its back-end 

relational tables (using SQL) 



Cube Aggregation 
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day 2 
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1 

c1 c2 c3

p1 56 4 50

p2 11 8

c1 c2 c3

sum 67 12 50

sum

p1 110

p2 19

129 

. . . 

drill-down 

rollup 

Example: computing sums 



Cube Operators 
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day 2 
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1 

c1 c2 c3

p1 56 4 50

p2 11 8

c1 c2 c3

sum 67 12 50

sum

p1 110

p2 19

129 

. . . 

sale(c1,*,*) 

sale(*,*,*) 
sale(c2,p2,*) 



Extended Cube 
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c1 c2 c3 *

p1 56 4 50 110

p2 11 8 19

* 67 12 50 129day 2 c1 c2 c3 *

p1 44 4 48

p2

* 44 4 48
c1 c2 c3 *

p1 12 50 62

p2 11 8 19

* 23 8 50 81

day 1 

* 

sale(*,p2,*) 



Aggregation Using Hierarchies 
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day 2 
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1 

region A region B

p1 56 54

p2 11 8

customer 

region 

country 

(customer c1 in Region A; 

customers c2, c3 in Region B) 



Pivoting 
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sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

day 2 
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1 

Multi-dimensional cube: Fact table view: 

c1 c2 c3

p1 56 4 50

p2 11 8
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CUBE Operator (SQL-99) 
Chevy Sales Cross Tab 

Chevy  1990 1991 1992  Total (ALL) 

black  50 85 154 289 

white 40 115 199 354 

 Total 

(ALL) 

90 200 353 1286 

 

SELECT  model, year, color, sum(sales) as sales 

FROM  sales 

WHERE  model in (‘Chevy’) 

AND   year BETWEEN 1990 AND 1992 

GROUP BY  CUBE (model, year, color); 
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CUBE Contd. 
SELECT  model, year, color, sum(sales) as sales 

FROM  sales 

WHERE  model in (‘Chevy’) 

AND  year BETWEEN 1990 AND 1992 

GROUP BY  CUBE (model, year, color); 

 

• Computes union of 8 different groupings: 

– {(model, year, color), (model, year), 
(model, color), (year, color), (model), 
(year), (color), ()} 
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Example Contd. 

CUBE 

             SALES  
Model Year Color Sales 
Chevy 1990 red 5 
Chevy 1990 white 87 
Chevy 1990 blue 62 
Chevy 1991 red 54 
Chevy 1991 white 95 
Chevy 1991 blue 49 
Chevy 1992 red 31 
Chevy 1992 white 54 
Chevy 1992 blue 71 
Ford 1990 red 64 
Ford 1990 white 62 
Ford 1990 blue 63 
Ford 1991 red 52 
Ford 1991 white 9 
Ford 1991 blue 55 
Ford 1992 red 27 
Ford 1992 white 62 
Ford 1992 blue 39

       DATA CUBE  
Model Year Color Sales 
ALL ALL ALL 942 
chevy ALL ALL 510 
ford ALL ALL 432 
ALL 1990 ALL 343 
ALL 1991 ALL 314 
ALL 1992 ALL 285 
ALL ALL red  165 
ALL ALL white 273 
ALL ALL blue 339 
chevy 1990 ALL 154 
chevy 1991 ALL 199 
chevy 1992 ALL 157 
ford 1990 ALL 189 
ford 1991 ALL 116 
ford 1992 ALL 128 
chevy ALL red 91 
chevy ALL white 236 
chevy ALL blue 183 
ford ALL red 144 
ford ALL white 133 
ford ALL blue 156 
ALL 1990 red 69 
ALL 1990 white 149 
ALL 1990 blue 125 
ALL 1991 red 107 
ALL 1991 white 104 
ALL 1991 blue 104 
ALL 1992 red 59 
ALL 1992 white 116 
ALL 1992 blue 110



Aggregates 

• Operators: sum, count, max, min,        
  median, ave 

• “Having” clause 

• Cube (& Rollup) operator 

• Using dimension hierarchy 

– average by region (within store) 

– maximum by month (within date) 
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Query & Analysis Tools 

• Query Building 

• Report Writers (comparisons, growth, graphs,…) 

• Spreadsheet Systems 

• Web Interfaces 

• Data Mining 
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Other Operations 

• Time functions 

– e.g., time average 

• Computed Attributes 

– e.g., commission = sales * rate 

• Text Queries 

– e.g., find documents with words X AND B 

– e.g., rank documents by frequency of 
         words X, Y, Z 
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Data Warehouse Implementation 



Implementing a Warehouse 

• Monitoring: Sending data from sources 

• Integrating: Loading, cleansing,... 

• Processing: Query processing, indexing, ... 

• Managing: Metadata, Design, ... 
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Multi-Tiered Architecture 

Data 

Warehouse 

Extract 

Transform 

Load 

Refresh 

OLAP Engine 

Analysis 

Query 

Reports 

Data mining 

Monitor 

& 

Integrator 

Metadata 

Data Sources Front-End Tools 

Serve 

Data Marts 

Operational  

DBs 

other 

sources 

Data Storage 

OLAP Server 



What to Materialize? 

• Store in warehouse results useful for common 
queries 

• Example: 

59 

day 2 
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1 

c1 c2 c3

p1 56 4 50

p2 11 8

c1 c2 c3

p1 67 12 50

c1

p1 110

p2 19

129 

. . . 

total sales 

materialize 



Materialization Factors 

• Type/frequency of queries 

• Query response time 

• Storage cost 

• Update cost 

60 
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Efficient Data Cube Computation 

• Data cube can be viewed as a lattice of cuboids   

– The bottom-most cuboid is the base cuboid 

– The top-most cuboid (apex) contains only one cell 

– How many cuboids in an n-dimensional cube? 
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Problem: How to Implement 
Data Cube Efficiently? 

• Physically materialize the whole data cube 
– Space consuming in storage and time consuming in construction 

– Indexing overhead 

• Materialize nothing 
– No extra space needed but very slow response times 

• Materialize only part of the data cube 
– Intuition: precompute frequently-asked queries? 

– However: each cell of data cube is an aggregation, the value of many 
cells are dependent on the values of other cells in the data cube 

– A better approach: materialize queries which can help answer many 
other queries quickly 
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Motivating example 

• Assume the data cube: 

– Stored in a relational DB (MDDB is not very scalable) 

– Different cuboids are assigned to different tables 

– The cost of answering a query is proportional to the 
number of rows examined 

• Use TPC-D decision-support benchmark 

– Attributes: part, supplier, and customer 

– Measure: total sales 

– 3-D data cube: cell (p, s ,c) 
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Motivating example (cont.) 

• Hypercube lattice: the eight views (cuboids)  constructed by 
grouping on some of part, supplier, and customer 

Finding total sales grouped by part 

Processing 6 million rows if cuboid pc is 

materialized  

Processing 0.2 million rows if cuboid p is 

materialized 

Processing 0.8 million rows if cuboid ps is 

materialized 
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Motivating example (cont.) 

How to find a good set of queries?  

• How many views must be materialized to get 
reasonable performance? 

• Given space S, what views should be materialized to 
get the minimal average query cost? 

• If we are willing to tolerate an X% degradation in 
average query cost from a fully materialized data 
cube, how much space can we save over the fully 
materialized data cube? 



Static vs. Dynamic view selection 

• Static: 

– Query frequencies are static 

– Views are selected from scratch 

• Dynamic 

– Existing pool of materialized views 

– Changing query frequencies 

66 
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Dependence relation 

The dependence relation on queries: 

• Q1 _ Q2 iff Q1 can be answered using only the results of 
query Q2 (Q1 is dependent on Q2). 

 In which 

– _ is a partial order, and 

– There is a top element, a view upon which is dependent 
(base cuboid) 

• Example:  

– (part) _ (part, customer) 

– (part) _ (customer) and (customer) _ (part)  





 


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The linear cost model 

• For <L, _>,  Q _ QA,  C(Q) is the number of rows in the table 
for that query QA used to compute Q 
– This linear relationship can be expressed as: 

    T = m * S + c   

(m: time/size ratio; c: query overhead; S: size of the view) 

– Validation of the model using TPC-D data: 

 

 
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The benefit of a materialized view 

• Denote the benefit of a materialized view v, relative to some 
set of views S, as B(v, S) 

• For each w _ v, define BW by: 

– Let C(v) be the cost of view v 

– Let u be the view of least cost in S such that w _ u (such u 
must exist) 

– BW = C(u) – C(v)  if C(v) < C(u) 

                 = 0   if C(v) ≥ C(u) 

– BW is the benefit that it can obtain from v 

• Define B(v, S) = Σ w < v Bw which means how v can improve 
the cost of evaluating views, including itself 

 
 




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A greedy algorithm 

• Objective  

– Assume materializing a fixed number of views, regardless of the space 
they use  

– How to minimize the average time taken to evaluate a view? 

• The greedy algorithm for materializing a set of k views 

 

 

 

 

 

 

• Performance: Greedy/Optimal ≥ 1 – (1 – 1/k) k ≥ (e - 1) / e 


