Business Intelligence: OLAP, Data Warehousing, Materialized views

ΠΜΣ "Ερευνητικές Κατευθύνσεις στην Πληροφορική"

Επεξεργασία και Ανάλυση Δεδομένων SPRING SEMESTER 2020

Why we still study OLAP/Data Warehouse in Big Data?

- Understand the Big Data history
 - How does the requirement of (big) data analytics/business intelligence evolve over the time?
 - What are the architecture and implementation techniques being developed? Will they still be useful in Big Data?
 - Understand their limitation and what factors have changed from 90's to now?
- NoSQL is not only SQL[©]
- Hive/Impala aims to provide OLAP/BI for Big Data using Hadoop

Highlights

- OLAP
 - Multi-relational Data model
 - Operators
 - SQL
- Data warehouse (architecture, issues, optimizations)
- Materialized view maintenance

Let's get back to the root in 70's: Relational Database

Basic Structure

- Formally, given sets D₁, D₂, ..., D_n a relation r is a subset of D₁ x D₂ x ... x D_n Thus, a relation is a set of n-tuples (a₁, a₂, ..., a_n) where each a_i ∈ D_i
- Example:

customer_name = {Jones, Smith, Curry, Lindsay} customer_street = {Main, North, Park} customer_city = {Harrison, Rye, Pittsfield} Then r = { (Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield) } is a relation over customer_name, customer_street, customer_city

Relation Schema

- A₁, A₂, ..., A_n are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema Example:

Customer_schema = (customer_name, customer_street, customer_city)

 r(R) is a relation on the relation schema R Example: customer (Customer_schema)

Relation Instance

- The current values (*relation instance*) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

customer_name	customer_street	customer_city(pr columns)
Jones	Main	Harrison	
Smith	North	Rye	
Curry	North	Rye	(or rows)
Lindsay	Park	Pittsfield	

customer

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information

 Storing all information as a single relation such as *bank(account_number, balance, customer_name, ..)* results in repetition of information (e.g., two customers own an account) and the need for null values (e.g., represent a customer without an account)

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customercity)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Relational Algebra

- Primitives
 - Projection (π)
 - Selection (σ)
 - Cartesian product (×)
 - Set union (\cup)
 - Set difference (-)
 - Rename (ρ)
- Other operations
 - Join (⋈)
 - Group by... aggregation

— ...

What happens next?

- SQL
- System R (DB2), INGRES, ORACLE, SQL-Server, Teradata
 - B+-Tree (select)
 - Transaction Management
 - Join algorithm

In early 90's: OLAP & Data Warehouse

Database Workloads

- OLTP (online transaction processing)
 - Typical applications: e-commerce, banking, airline reservations
 - User facing: real-time, low latency, highly-concurrent
 - Tasks: relatively small set of "standard" transactional queries
 - Data access pattern: random reads, updates, writes (involving relatively small amounts of data)
- OLAP (online analytical processing)
 - Typical applications: business intelligence, data mining
 - Back-end processing: batch workloads, less concurrency
 - Tasks: complex analytical queries, often ad hoc
 - Data access pattern: table scans, large amounts of data involved per query

OLTP

- Most database operations involve On-Line Transaction Processing (OTLP).
 - Short, simple, frequent queries and/or modifications, each involving a small number of tuples.
 - Examples: Answering queries from a Web interface, sales at cash registers, selling airline tickets.

OLAP

- Of increasing importance are *On-Line Application Processing* (OLAP) queries.
 - Few, but complex queries --- may run for hours.
 - Queries do not depend on having an absolutely up-to-date database.

OLAP Examples

- Amazon analyzes purchases by its customers to come up with an individual screen with products of likely interest to the customer.
- 2. Analysts at Wal-Mart look for items with increasing sales in some region.

OLTP vs. OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

One Database or Two?

- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency
- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?

OLTP/OLAP Architecture

OLTP/OLAP Integration

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - Business intelligence: reporting, ad hoc queries, data mining, etc.
 - Feedback to improve OLTP services

The Data Warehouse

- The most common form of data integration.
 - Copy sources into a single DB (*warehouse*) and try to keep it up-to-date.
 - Usual method: periodic reconstruction of the warehouse, perhaps overnight.
 - Frequently essential for analytic queries.

Warehouse Architecture

Star Schemas

- A *star schema* is a common organization for data at a warehouse. It consists of:
 - 1. Fact table : a very large accumulation of facts such as sales.
 - Often "insert-only."
 - 2. Dimension tables : smaller, generally static information about the entities involved in the facts.

Example: Star Schema

- Suppose we want to record in a warehouse information about every beer sale: the bar, the brand of beer, the drinker who bought the beer, the day, the time, and the price charged.
- The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)

Example, Continued

- The dimension tables include information about the bar, beer, and drinker "dimensions":
 - Bars(bar, addr, license) Beers(beer, manf) Drinkers(drinker, addr, phone)

Visualization – Star Schema

Dimensions and Dependent Attributes

- Two classes of fact-table attributes:
 - 1. Dimension attributes : the key of a dimension table.
 - 2. Dependent attributes : a value determined by the dimension attributes of the tuple.

Warehouse Models & Operators

- Data Models
 - relations
 - stars & snowflakes
 - cubes
- Operators
 - slice & dice
 - roll-up, drill down
 - pivoting
 - other

Star

product	prod	d name	e price				store	storeld	city
	p1	bolt	10					c1	nyc
	p2	nut	5					c2	sfo
							-	c3	la
	sale	oderld	date	custld	prodld	storeld	qty	amt	
		o100	1/7/97	53	p1	c1	1	12	
		o102	2/7/97	53	p2	c1	2	11	
		105	3/8/97	111	p1	c3	5	50	
	custon	ner	<u>custld</u>	name	ad	dress	C	ity	
			53	joe 10 main		main	5	sfo	
			81	fred	12	main	5	sfo	
			111	sally	80	willow		la	

Star Schema

Example of Snowflake Schema

March 23, 2020

Example of Fact Constellation

A Concept Hierarchy: Dimension (location)

Dimension Hierarchies

Aggregates

- Add up amounts for day 1
- In SQL: SELECT sum(amt) FROM SALE
 WHERE date = 1

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

Aggregates

- Add up amounts by day
- In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

Another Example

- Add up amounts by day, product
- In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date, prodId

sale	prodld	storeld	date	amt				
	p1	c1	1	12	sale	prodld	date	amt
	p2	c1	1	11		n1	1	62
	p1	c3	1	50			1	
	p2	c2	1	8		ρΖ	1	19
	p1	c1	2	44		p1	2	48
	p1	c2	2	4				

ROLAP vs. MOLAP

• ROLAP:

Relational On-Line Analytical Processing

 MOLAP: Multi-Dimensional On-Line Analytical Processing

Cube

Fact table view:

sale	prodld	storeld	amt
	p1	c1	12
	p2	c1	11
	p1	c3	50
	p2	c2	8

Multi-dimensional cube:

dimensions = 2

3-D Cube

Fact table view:

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

Multi-dimensional cube:

dimensions = 3

Multidimensional Data

 Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time Hierarchical summarization paths

Month

A Sample Data Cube

Cuboids Corresponding to the Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice:
 - project and select
- Pivot (rotate):
 - aggregation on selected dimensions.
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

Cube Aggregation

Cube Operators

Extended Cube

Aggregation Using Hierarchies

	region A	region B
p1	56	54
p2	11	8

(customer c1 in Region A; customers c2, c3 in Region B)

Pivoting

Fact table view:

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

Multi-dimensional cube:

	c1	c2	c3
p1	56	4	50
p2	11	8	

CUBE Operator (SQL-99)

Chevy Sales Cross Tab						
Chevy	<i>1990</i>	<i>1991</i>	<i>1992</i>	Total (ALL)		
black	50	85	154	289		
white	40	115	199	354		
Total	90	200	353	1286		
(ALL)						

SELECT model, year, color, sum(sales) as sales

- FROM sales
- WHERE model in ('Chevy')
- AND year BETWEEN 1990 AND 1992

GROUP BY CUBE (model, year, color);

CUBE Contd.

- SELECT model, year, color, sum(sales) as sales
- FROM sales
- WHERE model in ('Chevy')

AND year BETWEEN 1990 AND 1992

GROUP BY CUBE (model, year, color);

Example Contd.

SALES					
Model	Year	Color	Sales		
Chevy	1990	red	5		
Chevy	1990	white	87		
Chevy	1990	blue	62		
Chevy	1991	red	54		
Chevy	1991	white	95		
Chevy	1991	blue	49		
Chevy	1992	red	31		
Chevy	1992	white	54		
Chevy	1992	blue	71		
Ford	1990	red	64		
Ford	1990	white	62		
Ford	1990	blue	63		
Ford	1991	red	52		
Ford	1991	white	9		
Ford	1991	blue	55		
Ford	1992	red	27		
Ford	1992	white	62		
Ford	1992	blue	39		

DATA CUBE						
Model	Year	Color	Sales			
ALL	ALL	ALL	942			
chevy	ALL	ALL	510			
ford	ALL	ALL	432			
ALL	1990	ALL	343			
ALL	1991	ALL	314			
ALL	1992	ALL	285			
ALL	ALL	red	165			
ALL	ALL	white	273			
ALL	ALL	blue	339			
chevy	1990	ALL	154			
chevy	1991	ALL	199			
chevy	1992	ALL	157			
ford	1990	ALL	189			
ford	1991	ALL	116			
ford	1992	ALL	128			
chevy	ALL	red	91			
chevy	ALL	white	236			
chevy	ALL	blue	183			
ford	ALL	red	144			
ford	ALL	white	133			
ford	ALL	blue	156			
ALL	1990	red	69			
ALL	1990	white	149			
ALL	1990	blue	125			
ALL	1991	red	107			
ALL	1991	white	104			
ALL	1991	blue	104			
ALL	1992	red	59			
ALL	1992	white	116			
ALL	1992	blue	110			

Aggregates

- Operators: sum, count, max, min, median, ave
- "Having" clause
- Cube (& Rollup) operator
- Using dimension hierarchy
 - average by region (within store)
 - maximum by month (within date)

Query & Analysis Tools

- Query Building
- **Report Writers** (comparisons, growth, graphs,...)
- Spreadsheet Systems
- Web Interfaces
- Data Mining

Other Operations

- Time functions
 - e.g., time average
- Computed Attributes

– e.g., commission = sales * rate

- Text Queries
 - e.g., find documents with words X AND B
 - e.g., rank documents by frequency of words X, Y, Z

Data Warehouse Implementation

Implementing a Warehouse

- *Monitoring*: Sending data from sources
- Integrating: Loading, cleansing,...
- *Processing*: Query processing, indexing, ...
- Managing: Metadata, Design, ...

Multi-Tiered Architecture

What to Materialize?

 Store in warehouse results useful for common queries

Materialization Factors

- Type/frequency of queries
- Query response time
- Storage cost
- Update cost

Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - How many cuboids in an n-dimensional cube?

$$\sum_{k=0}^n \binom{n}{k} = 2^n$$

Problem: How to Implement Data Cube Efficiently?

- Physically materialize the whole data cube
 - Space consuming in storage and time consuming in construction
 - Indexing overhead
- Materialize nothing
 - No extra space needed but very slow response times
- Materialize only part of the data cube
 - Intuition: precompute frequently-asked queries?
 - However: each cell of data cube is an aggregation, the value of many cells are dependent on the values of other cells in the data cube
 - A better approach: materialize queries which can help answer many other queries quickly

Motivating example

- Assume the data cube:
 - Stored in a relational DB (MDDB is not very scalable)
 - Different cuboids are assigned to different tables
 - The cost of answering a query is proportional to the number of rows examined
- Use TPC-D decision-support benchmark
 - Attributes: *part, supplier,* and *customer*
 - Measure: total *sales*
 - 3-D data cube: cell (p, s, c)

Motivating example (cont.)

 Hypercube lattice: the eight views (cuboids) constructed by grouping on some of *part*, *supplier*, and *customer*

Finding total sales grouped by part

- Processing 6 million rows if cuboid pc is materialized
- Processing 0.2 million rows if cuboid p is materialized

 Processing 0.8 million rows if cuboid ps is materialized

Motivating example (cont.)

How to find a good set of queries?

- How many views must be materialized to get reasonable performance?
- Given space S, what views should be materialized to get the minimal average query cost?
- If we are willing to tolerate an X% degradation in average query cost from a fully materialized data cube, how much space can we save over the fully materialized data cube?

Static vs. Dynamic view selection

- Static:
 - Query frequencies are static
 - Views are selected from scratch
- Dynamic
 - Existing pool of materialized views
 - Changing query frequencies

Dependence relation

The dependence relation on queries:

 Q1 ≤ Q2 iff Q1 can be answered using only the results of query Q2 (Q1 is dependent on Q2).

In which

- \preceq is a partial order, and
- There is a top element, a view upon which is dependent (base cuboid)
- Example:
 - (part) \leq (part, customer)
 - (part) $\not\preceq$ (customer) and (customer) $\not\preceq$ (part)

The linear cost model

- For <L, \leq >, Q \leq Q_A, C(Q) is the number of rows in the table for that query Q_A used to compute Q
 - This linear relationship can be expressed as:

T = m * S + c

(m: time/size ratio; c: query overhead; S: size of the view)

Validation of the model using TPC-D data:

Source	Size	Time (sec.)	Ratio
From cell itself	1	2.07	not applicable
From view (supplier)	10,000	2.38	.000031
From view (part, supplier)	800,000	20.77	.000023
From view (part, supplier, customer)	6,000,000	226.23	.000037

Growth of query response time with size of view

The benefit of a materialized view

- Denote the benefit of a materialized view v, relative to some set of views S, as B(v, S)
- For each $w \leq v$, define B_w by:
 - Let C(v) be the cost of view v
 - Let u be the view of least cost in S such that $w \leq u$ (such u must exist)

$$-B_W = C(u) - C(v) \text{ if } C(v) < C(u)$$
$$= 0 \qquad \text{if } C(v) \ge C(u)$$

 $-B_{W}$ is the benefit that it can obtain from v

• Define $B(v, S) = \sum_{w \le v} B_w$ which means how v can improve the cost of evaluating views, including itself

A greedy algorithm

- Objective
 - Assume materializing a fixed number of views, regardless of the space they use
 - How to minimize the average time taken to evaluate a view?
- The greedy algorithm for materializing a set of k views

```
S = {top view};
for i=1 to k do begin
    select that view v not in S such that B(v,S) is maximized;
    S = S union {v};
end;
resulting S is the greedy selection;
```

• Performance: Greedy/Optimal $\geq 1 - (1 - 1/k)^{k} \geq (e - 1) / e$