
Business Intelligence:
OLAP, Data Warehousing, Materialized

views

D. TSOUMAKOS, Ionian University 1

ΠΜΣ “Ερευνητικές Κατευθύνσεις στην
Πληροφορική”

Επεξεργασία και Ανάλυση Δεδομένων
SPRING SEMESTER 2020

Why we still study OLAP/Data
Warehouse in Big Data?

• Understand the Big Data history

– How does the requirement of (big) data analytics/business
intelligence evolve over the time?

– What are the architecture and implementation techniques
being developed? Will they still be useful in Big Data?

– Understand their limitation and what factors have changed
from 90’s to now?

• NoSQL is not only SQL

• Hive/Impala aims to provide OLAP/BI for Big Data
using Hadoop

2

Highlights

• OLAP

– Multi-relational Data model

– Operators

– SQL

• Data warehouse (architecture, issues,
optimizations)

• Materialized view maintenance

3

Let’s get back to the root in 70’s:
Relational Database

Basic Structure

• Formally, given sets D1, D2, …. Dn a relation r is a subset of

 D1 x D2 x … x Dn

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai  Di

• Example:

 customer_name = {Jones, Smith, Curry, Lindsay}

 customer_street = {Main, North, Park}

 customer_city = {Harrison, Rye, Pittsfield}

Then r = { (Jones, Main, Harrison),

 (Smith, North, Rye),

 (Curry, North, Rye),

 (Lindsay, Park, Pittsfield) }

 is a relation over
 customer_name , customer_street, customer_city

Relation Schema

• A1, A2, …, An are attributes

• R = (A1, A2, …, An) is a relation schema

 Example:

 Customer_schema = (customer_name, customer_street,

customer_city)

• r(R) is a relation on the relation schema R

 Example:

 customer (Customer_schema)

Relation Instance

• The current values (relation instance) of a relation are
specified by a table

• An element t of r is a tuple, represented by a row in a
table

Jones

Smith

Curry

Lindsay

customer_name

Main

North

North

Park

customer_street

Harrison

Rye

Rye

Pittsfield

customer_city

customer

attributes

(or columns)

tuples

(or rows)

Database
• A database consists of multiple relations

• Information about an enterprise is broken up into parts,
with each relation storing one part of the information

 account : stores information about accounts
 depositor : stores information about which customer
 owns which account
 customer : stores information about customers

• Storing all information as a single relation such as
 bank(account_number, balance, customer_name, ..)
results in repetition of information (e.g., two customers
own an account) and the need for null values (e.g.,
represent a customer without an account)

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-
city)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Relational Algebra

• Primitives
– Projection ()
– Selection ()
– Cartesian product ()
– Set union ()
– Set difference ()
– Rename ()

• Other operations
– Join (⋈)
– Group by… aggregation
– …

What happens next?

• SQL

• System R (DB2), INGRES, ORACLE, SQL-Server,
Teradata

– B+-Tree (select)

– Transaction Management

– Join algorithm

11

In early 90’s:
OLAP & Data Warehouse

Database Workloads

• OLTP (online transaction processing)
– Typical applications: e-commerce, banking, airline reservations
– User facing: real-time, low latency, highly-concurrent
– Tasks: relatively small set of “standard” transactional queries
– Data access pattern: random reads, updates, writes (involving

relatively small amounts of data)

• OLAP (online analytical processing)
– Typical applications: business intelligence, data mining
– Back-end processing: batch workloads, less concurrency
– Tasks: complex analytical queries, often ad hoc
– Data access pattern: table scans, large amounts of data involved

per query

14

OLTP

• Most database operations involve On-Line
Transaction Processing (OTLP).

– Short, simple, frequent queries and/or
modifications, each involving a small number
of tuples.

– Examples: Answering queries from a Web
interface, sales at cash registers, selling airline
tickets.

15

OLAP

• Of increasing importance are On-Line
Application Processing (OLAP) queries.

– Few, but complex queries --- may run for hours.

– Queries do not depend on having an absolutely
up-to-date database.

16

OLAP Examples

1. Amazon analyzes purchases by its customers
to come up with an individual screen with
products of likely interest to the customer.

2. Analysts at Wal-Mart look for items with
increasing sales in some region.

March 23, 2020 17

OLTP vs. OLAP

 OLTP OLAP

users clerk, IT professional knowledge worker

function day to day operations decision support

DB design application-oriented subject-oriented

data current, up-to-date

detailed, flat relational

isolated

historical,

summarized, multidimensional

integrated, consolidated

usage repetitive ad-hoc

access read/write

index/hash on prim. key

lots of scans

unit of work short, simple transaction complex query

records accessed tens millions

#users thousands hundreds

DB size 100MB-GB 100GB-TB

metric transaction throughput query throughput, response

One Database or Two?

• Downsides of co-existing OLTP and OLAP
workloads
– Poor memory management

– Conflicting data access patterns

– Variable latency

• Solution: separate databases
– User-facing OLTP database for high-volume

transactions

– Data warehouse for OLAP workloads

– How do we connect the two?

OLTP/OLAP Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

OLTP/OLAP Integration

• OLTP database for user-facing transactions
– Retain records of all activity
– Periodic ETL (e.g., nightly)

• Extract-Transform-Load (ETL)
– Extract records from source
– Transform: clean data, check integrity, aggregate, etc.
– Load into OLAP database

• OLAP database for data warehousing
– Business intelligence: reporting, ad hoc queries, data

mining, etc.
– Feedback to improve OLTP services

21

The Data Warehouse

• The most common form of data integration.

– Copy sources into a single DB (warehouse) and try
to keep it up-to-date.

– Usual method: periodic reconstruction of the
warehouse, perhaps overnight.

– Frequently essential for analytic queries.

Warehouse Architecture

22

Client Client

Warehouse

Source Source Source

Query & Analysis

Integration

Metadata

23

Star Schemas

• A star schema is a common organization for
data at a warehouse. It consists of:

1. Fact table : a very large accumulation of facts
such as sales.

 Often “insert-only.”

2. Dimension tables : smaller, generally static
information about the entities involved in the
facts.

24

Example: Star Schema

• Suppose we want to record in a warehouse
information about every beer sale: the bar,
the brand of beer, the drinker who bought the
beer, the day, the time, and the price charged.

• The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)

25

Example, Continued

• The dimension tables include information
about the bar, beer, and drinker
“dimensions”:

 Bars(bar, addr, license)

 Beers(beer, manf)

 Drinkers(drinker, addr, phone)

26

Visualization – Star Schema

Dimension Table (Beers) Dimension Table (etc.)

Dimension Table (Drinkers) Dimension Table (Bars)

Fact Table - Sales

Dimension Attrs. Dependent Attrs.

27

Dimensions and Dependent
Attributes

• Two classes of fact-table attributes:

1. Dimension attributes : the key of a dimension
table.

2. Dependent attributes : a value determined by
the dimension attributes of the tuple.

Warehouse Models & Operators

• Data Models

– relations

– stars & snowflakes

– cubes

• Operators

– slice & dice

– roll-up, drill down

– pivoting

– other

28

Star

29

customer custId name address city

53 joe 10 main sfo

81 fred 12 main sfo

111 sally 80 willow la

product prodId name price

p1 bolt 10

p2 nut 5

store storeId city

c1 nyc

c2 sfo

c3 la

sale oderId date custId prodId storeId qty amt

o100 1/7/97 53 p1 c1 1 12

o102 2/7/97 53 p2 c1 2 11

105 3/8/97 111 p1 c3 5 50

Star Schema

30

sale

orderId

date

custId

prodId

storeId

qty

amt

customer

custId

name

address

city

product

prodId

name

price

store

storeId

city

March 23, 2020 31

Example of Snowflake Schema

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city_key

location

Sales Fact Table

 time_key

 item_key

 branch_key

 location_key

 units_sold

 dollars_sold

 avg_sales

Measures

item_key

item_name

brand

type

supplier_key

item

branch_key

branch_name

branch_type

branch

supplier_key

supplier_type

supplier

city_key

city

province_or_street

country

city

March 23, 2020 32

Example of Fact
Constellation

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

province_or_street

country

location

Sales Fact Table

time_key

 item_key

 branch_key

 location_key

 units_sold

 dollars_sold

 avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

Shipping Fact Table

time_key

 item_key

 shipper_key

 from_location

 to_location

 dollars_cost

 units_shipped

shipper_key

shipper_name

location_key

shipper_type

shipper

March 23, 2020 33

A Concept Hierarchy: Dimension (location)

all

Europe North_America

Mexico Canada Spain Germany

Vancouver

M. Wind L. Chan

...

... ...

... ...

...

all

region

office

country

Toronto Frankfurt city

Dimension Hierarchies

34

store storeId cityId tId mgr

s5 sfo t1 joe

s7 sfo t2 fred

s9 la t1 nancy
city cityId pop regId

sfo 1M north

la 5M south

region regId name

north cold region

south warm region

sType tId size location

t1 small downtown

t2 large suburbs

store

sType

city region

 snowflake schema

 constellations

Aggregates

35

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Add up amounts for day 1

• In SQL: SELECT sum(amt) FROM SALE

 WHERE date = 1

81

Aggregates

36

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Add up amounts by day

• In SQL: SELECT date, sum(amt) FROM SALE

 GROUP BY date

ans date sum

1 81

2 48

Another Example

37

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Add up amounts by day, product

• In SQL: SELECT date, sum(amt) FROM SALE

 GROUP BY date, prodId

sale prodId date amt

p1 1 62

p2 1 19

p1 2 48

drill-down

rollup

ROLAP vs. MOLAP

• ROLAP:
Relational On-Line Analytical Processing

• MOLAP:
Multi-Dimensional On-Line Analytical
Processing

38

Cube

39

sale prodId storeId amt

p1 c1 12

p2 c1 11

p1 c3 50

p2 c2 8

c1 c2 c3

p1 12 50

p2 11 8

Fact table view:
Multi-dimensional cube:

dimensions = 2

3-D Cube

40

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

day 2
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1

dimensions = 3

Multi-dimensional cube: Fact table view:

Multidimensional Data

• Sales volume as a function of product,
month, and region

P
ro

d
u
ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

 Office Day

A Sample Data Cube

Total annual sales

of TV in U.S.A.
Date

C
o
u

n
tr

y

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

Cuboids Corresponding to the
Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid

March 23, 2020 44

Typical OLAP Operations
• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction

• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed data,

or introducing new dimensions

• Slice and dice:

– project and select

• Pivot (rotate):

– aggregation on selected dimensions.

• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-end

relational tables (using SQL)

Cube Aggregation

45

day 2
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1

c1 c2 c3

p1 56 4 50

p2 11 8

c1 c2 c3

sum 67 12 50

sum

p1 110

p2 19

129

. . .

drill-down

rollup

Example: computing sums

Cube Operators

46

day 2
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1

c1 c2 c3

p1 56 4 50

p2 11 8

c1 c2 c3

sum 67 12 50

sum

p1 110

p2 19

129

. . .

sale(c1,*,*)

sale(*,*,*)
sale(c2,p2,*)

Extended Cube

47

c1 c2 c3 *

p1 56 4 50 110

p2 11 8 19

* 67 12 50 129day 2 c1 c2 c3 *

p1 44 4 48

p2

* 44 4 48
c1 c2 c3 *

p1 12 50 62

p2 11 8 19

* 23 8 50 81

day 1

*

sale(*,p2,*)

Aggregation Using Hierarchies

48

day 2
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1

region A region B

p1 56 54

p2 11 8

customer

region

country

(customer c1 in Region A;

customers c2, c3 in Region B)

Pivoting

49

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

day 2
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1

Multi-dimensional cube: Fact table view:

c1 c2 c3

p1 56 4 50

p2 11 8

50

CUBE Operator (SQL-99)
Chevy Sales Cross Tab

Chevy 1990 1991 1992 Total (ALL)

black 50 85 154 289

white 40 115 199 354

 Total

(ALL)

90 200 353 1286

SELECT model, year, color, sum(sales) as sales

FROM sales

WHERE model in (‘Chevy’)

AND year BETWEEN 1990 AND 1992

GROUP BY CUBE (model, year, color);

51

CUBE Contd.
SELECT model, year, color, sum(sales) as sales

FROM sales

WHERE model in (‘Chevy’)

AND year BETWEEN 1990 AND 1992

GROUP BY CUBE (model, year, color);

• Computes union of 8 different groupings:

– {(model, year, color), (model, year),
(model, color), (year, color), (model),
(year), (color), ()}

52

Example Contd.

CUBE

 SALES
Model Year Color Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 62
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

 DATA CUBE
Model Year Color Sales
ALL ALL ALL 942
chevy ALL ALL 510
ford ALL ALL 432
ALL 1990 ALL 343
ALL 1991 ALL 314
ALL 1992 ALL 285
ALL ALL red 165
ALL ALL white 273
ALL ALL blue 339
chevy 1990 ALL 154
chevy 1991 ALL 199
chevy 1992 ALL 157
ford 1990 ALL 189
ford 1991 ALL 116
ford 1992 ALL 128
chevy ALL red 91
chevy ALL white 236
chevy ALL blue 183
ford ALL red 144
ford ALL white 133
ford ALL blue 156
ALL 1990 red 69
ALL 1990 white 149
ALL 1990 blue 125
ALL 1991 red 107
ALL 1991 white 104
ALL 1991 blue 104
ALL 1992 red 59
ALL 1992 white 116
ALL 1992 blue 110

Aggregates

• Operators: sum, count, max, min,
 median, ave

• “Having” clause

• Cube (& Rollup) operator

• Using dimension hierarchy

– average by region (within store)

– maximum by month (within date)

53

Query & Analysis Tools

• Query Building

• Report Writers (comparisons, growth, graphs,…)

• Spreadsheet Systems

• Web Interfaces

• Data Mining

54

Other Operations

• Time functions

– e.g., time average

• Computed Attributes

– e.g., commission = sales * rate

• Text Queries

– e.g., find documents with words X AND B

– e.g., rank documents by frequency of
 words X, Y, Z

55

Data Warehouse Implementation

Implementing a Warehouse

• Monitoring: Sending data from sources

• Integrating: Loading, cleansing,...

• Processing: Query processing, indexing, ...

• Managing: Metadata, Design, ...

57

Multi-Tiered Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Analysis

Query

Reports

Data mining

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP Server

What to Materialize?

• Store in warehouse results useful for common
queries

• Example:

59

day 2
c1 c2 c3

p1 44 4

p2 c1 c2 c3

p1 12 50

p2 11 8

day 1

c1 c2 c3

p1 56 4 50

p2 11 8

c1 c2 c3

p1 67 12 50

c1

p1 110

p2 19

129

. . .

total sales

materialize

Materialization Factors

• Type/frequency of queries

• Query response time

• Storage cost

• Update cost

60

March 23, 2020 61

Efficient Data Cube Computation

• Data cube can be viewed as a lattice of cuboids

– The bottom-most cuboid is the base cuboid

– The top-most cuboid (apex) contains only one cell

– How many cuboids in an n-dimensional cube?

March 23, 2020 62

Problem: How to Implement
Data Cube Efficiently?

• Physically materialize the whole data cube
– Space consuming in storage and time consuming in construction

– Indexing overhead

• Materialize nothing
– No extra space needed but very slow response times

• Materialize only part of the data cube
– Intuition: precompute frequently-asked queries?

– However: each cell of data cube is an aggregation, the value of many
cells are dependent on the values of other cells in the data cube

– A better approach: materialize queries which can help answer many
other queries quickly

March 23, 2020 63

Motivating example

• Assume the data cube:

– Stored in a relational DB (MDDB is not very scalable)

– Different cuboids are assigned to different tables

– The cost of answering a query is proportional to the
number of rows examined

• Use TPC-D decision-support benchmark

– Attributes: part, supplier, and customer

– Measure: total sales

– 3-D data cube: cell (p, s ,c)

March 23, 2020 64

Motivating example (cont.)

• Hypercube lattice: the eight views (cuboids) constructed by
grouping on some of part, supplier, and customer

Finding total sales grouped by part

Processing 6 million rows if cuboid pc is

materialized

Processing 0.2 million rows if cuboid p is

materialized

Processing 0.8 million rows if cuboid ps is

materialized

March 23, 2020 65

Motivating example (cont.)

How to find a good set of queries?

• How many views must be materialized to get
reasonable performance?

• Given space S, what views should be materialized to
get the minimal average query cost?

• If we are willing to tolerate an X% degradation in
average query cost from a fully materialized data
cube, how much space can we save over the fully
materialized data cube?

Static vs. Dynamic view selection

• Static:

– Query frequencies are static

– Views are selected from scratch

• Dynamic

– Existing pool of materialized views

– Changing query frequencies

66

March 23, 2020 67

Dependence relation

The dependence relation on queries:

• Q1 _ Q2 iff Q1 can be answered using only the results of
query Q2 (Q1 is dependent on Q2).

 In which

– _ is a partial order, and

– There is a top element, a view upon which is dependent
(base cuboid)

• Example:

– (part) _ (part, customer)

– (part) _ (customer) and (customer) _ (part)





 



March 23, 2020 68

The linear cost model

• For <L, _>, Q _ QA, C(Q) is the number of rows in the table
for that query QA used to compute Q
– This linear relationship can be expressed as:

 T = m * S + c

(m: time/size ratio; c: query overhead; S: size of the view)

– Validation of the model using TPC-D data:

 

March 23, 2020 69

The benefit of a materialized view

• Denote the benefit of a materialized view v, relative to some
set of views S, as B(v, S)

• For each w _ v, define BW by:

– Let C(v) be the cost of view v

– Let u be the view of least cost in S such that w _ u (such u
must exist)

– BW = C(u) – C(v) if C(v) < C(u)

 = 0 if C(v) ≥ C(u)

– BW is the benefit that it can obtain from v

• Define B(v, S) = Σ w < v Bw which means how v can improve
the cost of evaluating views, including itself





March 23, 2020 70

A greedy algorithm

• Objective

– Assume materializing a fixed number of views, regardless of the space
they use

– How to minimize the average time taken to evaluate a view?

• The greedy algorithm for materializing a set of k views

• Performance: Greedy/Optimal ≥ 1 – (1 – 1/k) k ≥ (e - 1) / e

