Spatial Indexing

ΠΜΣ "Ερευνητικές Κατευθύνσεις στην Πληροφορική"

Επεξεργασία και Ανάλυση Δεδομένων

SPRING SEMESTER 2020

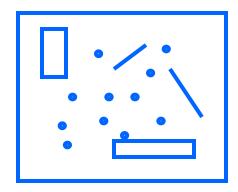
Material taken from 15-415 - Database Applications class @Carnegie Mellon C. Faloutsos

SAMs - Detailed outline

spatial access methods

- problem dfn
 - z-ordering
 - R-trees

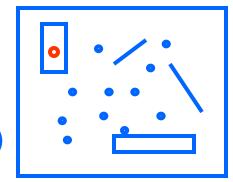
- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer spatial queries (like??)



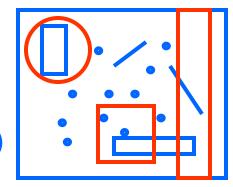
- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)



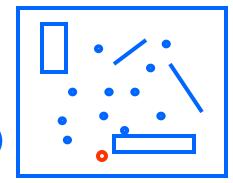
- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)



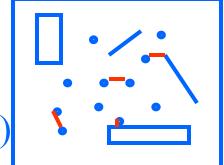
- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)



- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)



- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' within ε)

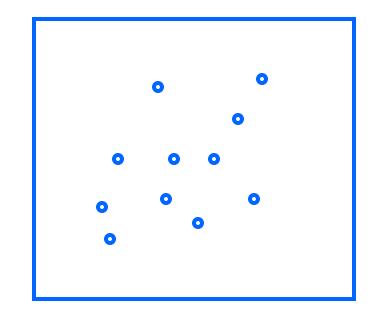


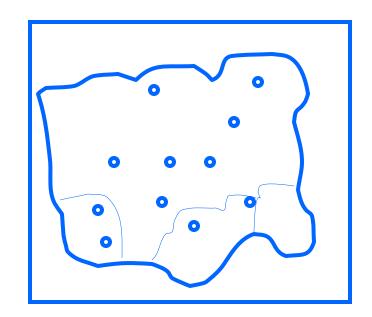
• Q: applications?

traditional DB

GIS

age



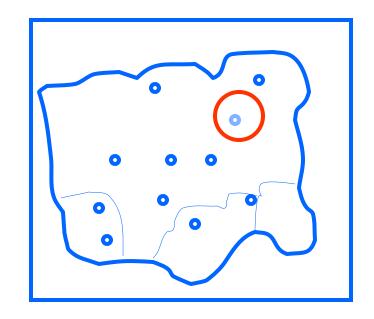


salary

traditional DB

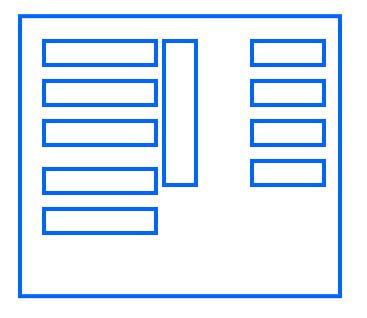
GIS

age



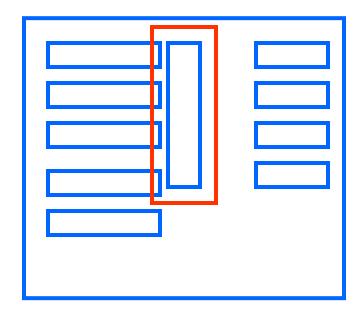
salary

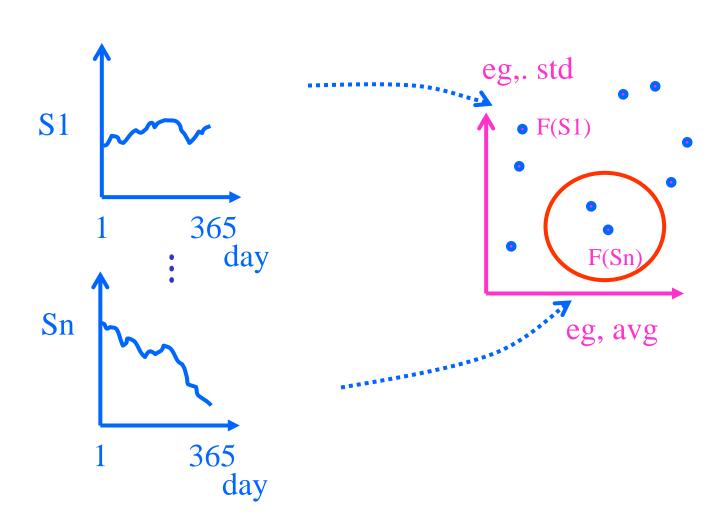
CAD/CAM



find elements too close to each other

CAD/CAM





SAMs - Detailed outline

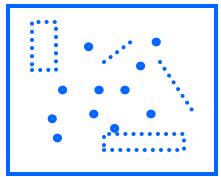
- spatial access methods
 - problem dfn

- z-orderingR-trees

SAMs: solutions

- z-ordering
- R-trees
- (grid files)

Q: how would you organize, e.g., *n*-dim points, on disk? (*C* points per disk page)



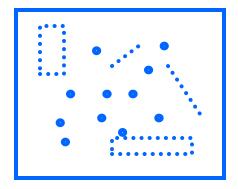
Q: how would you organize, e.g., *n*-dim points, on disk? (*C* points per disk page)

Hint: reduce the problem to 1-d points(!!)

Q1: why?

A:

Q2: how?



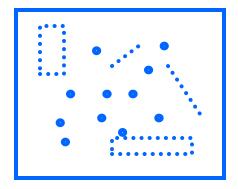
Q: how would you organize, e.g., *n*-dim points, on disk? (*C* points per disk page)

Hint: reduce the problem to 1-d points (!!)

Q1: why?

A: B-trees!

Q2: how?



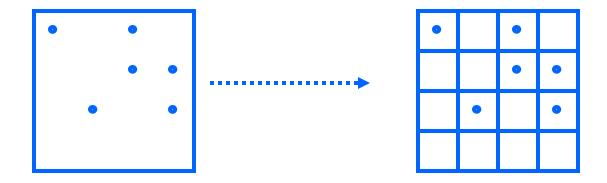
Q2: how?

A: assume finite granularity; z-ordering = bitshuffling = N-trees = Morton keys = geocoding = ...

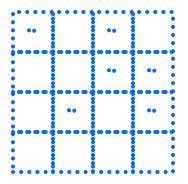
Q2: how?

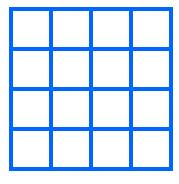
A: assume finite granularity (e.g., $2^{32}x2^{32}$; 4x4 here)

Q2.1: how to map n-d cells to 1-d cells?



Q2.1: how to map n-d cells to 1-d cells?

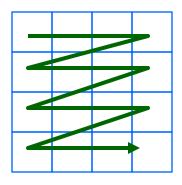




Q2.1: how to map *n*-d cells to 1-d cells?

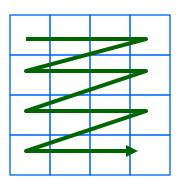
A: row-wise

Q: is it good?



Q: is it good?

A: great for 'x' axis; bad for 'y' axis

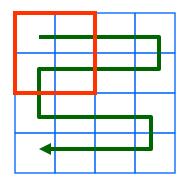


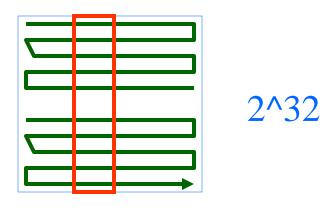
Q: How about the 'snake' curve?



Q: How about the 'snake' curve?

A: still problems:



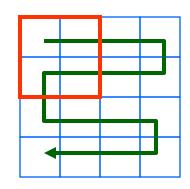


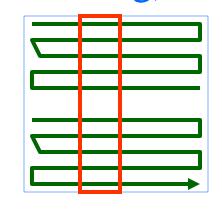
2^32

Q: Why are those curves 'bad'?

A: no distance preservation (~ clustering)

Q: solution?

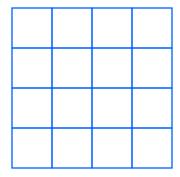




2^32

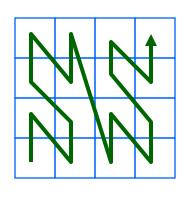
2^32

Q: solution? (w/ good clustering, and easy to compute, for 2-d and *n*-d?)



Q: solution? (w/ good clustering, and easy to compute, for 2-d and *n*-d?)

A: z-ordering/bit-shuffling/linear-quadtrees



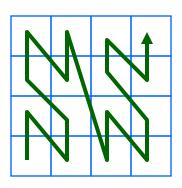
'looks' better:

- few long jumps;
- scoops out the whole quadrant before leaving it
- a.k.a. space filling curves

z-ordering/bit-shuffling/linear-quadtrees

Q: How to generate this curve (z = f(x,y))?

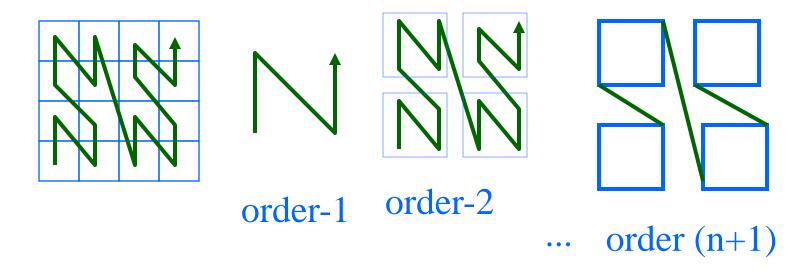
A: 3 (equivalent) answers!



z-ordering/bit-shuffling/linear-quadtrees

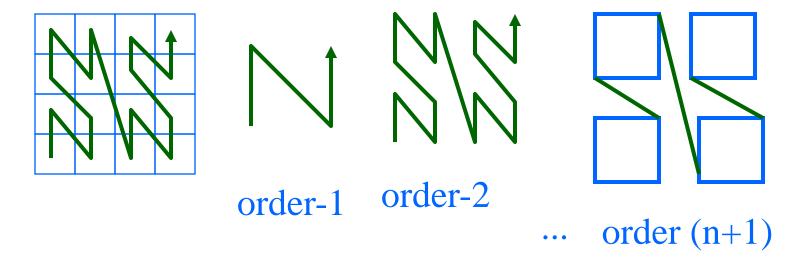
Q: How to generate this curve (z = f(x,y))?

A1: 'z' (or 'N') shapes, RECURSIVELY



Notice:

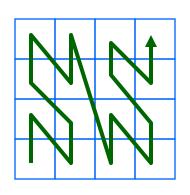
- self similar (we'll see about fractals, soon)
- method is hard to use: z = ? f(x,y)



z-ordering/bit-shuffling/linear-quadtrees

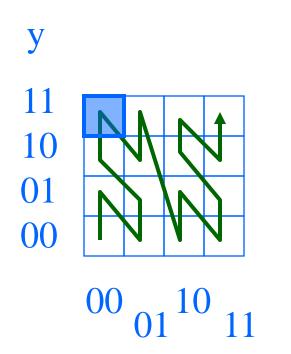
Q: How to generate this curve (z = f(x,y))?

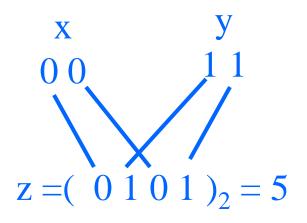
A: 3 (equivalent) answers!



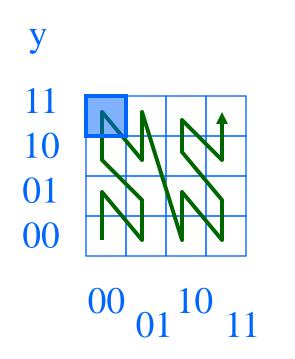
Method #2?

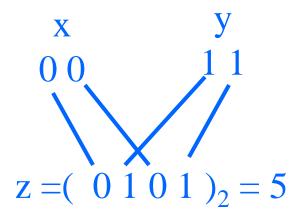
bit-shuffling





bit-shuffling

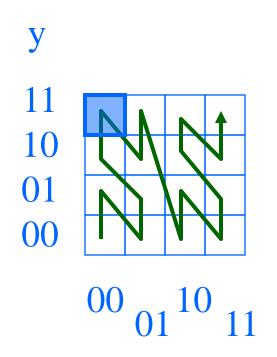


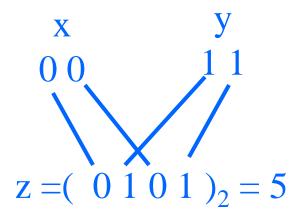


How about the reverse:

$$(x,y) = g(z) ?$$

bit-shuffling



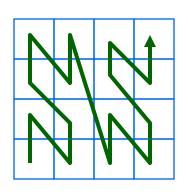


How about *n*-d spaces?

z-ordering/bit-shuffling/linear-quadtrees

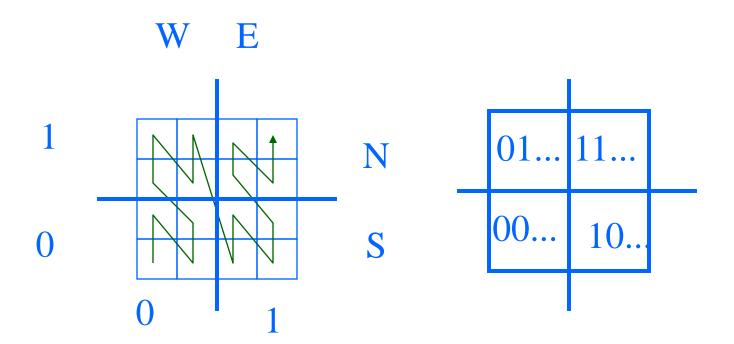
Q: How to generate this curve (z = f(x,y))?

A: 3 (equivalent) answers!

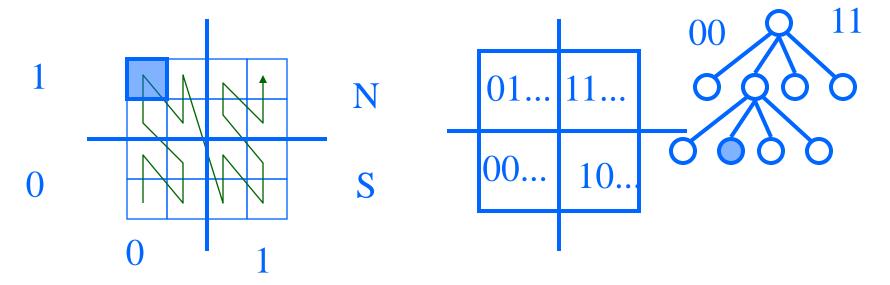


Method #3?

linear-quadtrees: assign N->1, S->0 e.t.c.



... and repeat recursively. Eg.: $z_{\text{blue-cell}} = WN; WN = (0101)_2 = 5$ W E



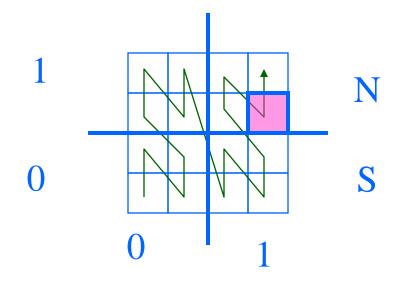
Drill: z-value of magenta cell, with the three methods?

1 N N S

W

Drill: z-value of magenta cell, with the three methods?

 \mathbf{W} \mathbf{E}



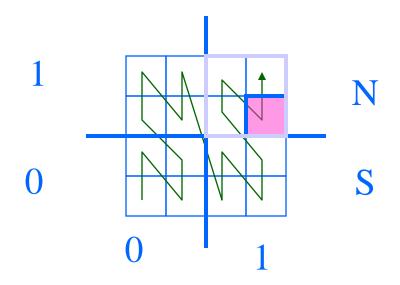
method#1: 14

method#2: shuffle(11;10)=

$$(1110)_2 = 14$$

Drill: z-value of magenta cell, with the three methods?

 \mathbf{W} \mathbf{E}



method#1: 14

method#2: shuffle(11;10)=

 $(1110)_2 = 14$

method#3: EN;ES = ... = 14

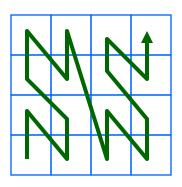
z-ordering - Detailed outline

- spatial access methods
 - z-ordering
 - main idea 3 methods
 - use w/ B-trees; algorithms (range, knn queries ...)
 - non-point (eg., region) data
 - analysis; variations
 - R-trees

Q1: How to store on disk?

A:

Q2: How to answer range queries etc

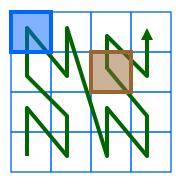


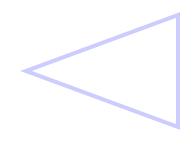
Q1: How to store on disk?

A: treat z-value as primary key; feed to B-tree

PGH

SF





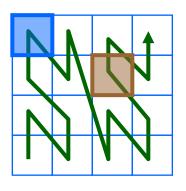
L	Chame	eic
5	SF	
12	PGH	

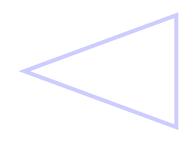
MAJOR ADVANTAGES w/ B-tree:

- already inside commercial systems (no coding/debugging!)
- concurrency & recovery is ready

PGH

SF



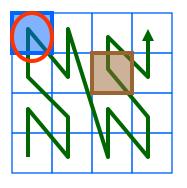


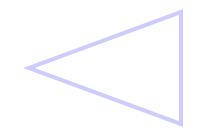
Z	cname	etc
5	SF	
12	PGH	

Q2: queries? (eg.: *find city at* (0,3))?

PGH

SF





L	Chame	
5	SF	
12	PGH	

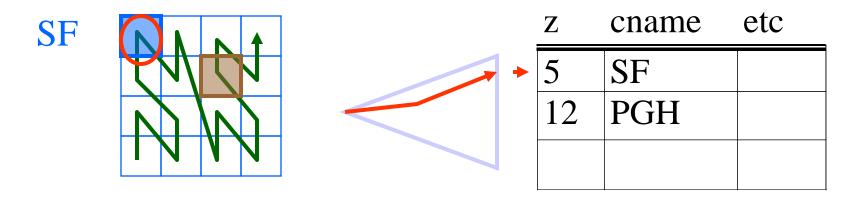
chame

Atc

Q2: queries? (eg.: *find city at* (0,3))?

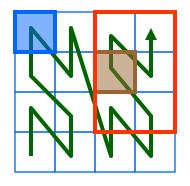
A: find z-value; search B-tree

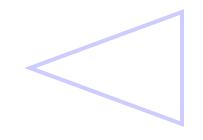
PGH



Q2: range queries?

SF





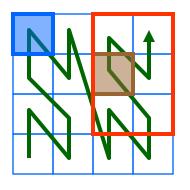
Z	Chame	eic
5	SF	
12	PGH	

Q2: range queries?

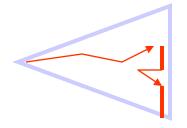
A: compute ranges of z-values; use B-tree

PGH

SF



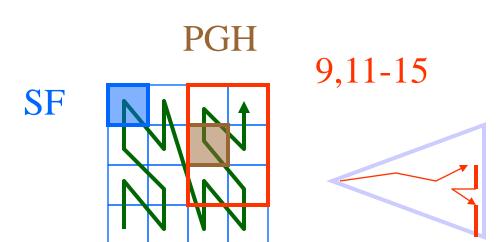
9,11-15



Z	cname	etc
L	Chame	CIL

5	SF	
12	PGH	

Q2': range queries - how to reduce # of qualifying of ranges?



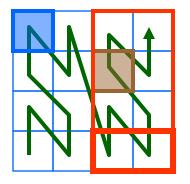
Z	chame	eic
5	SF	
12	PGH	

Q2': range queries - how to reduce # of qualifying of ranges?

A: Augment the query!

PGH

SF



1

5	SF	
12	PGH	

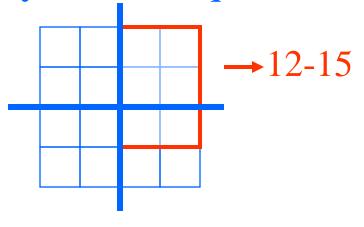
cname

etc

Q2'': range queries - how to break a query into ranges?

Q2'': range queries - how to break a query into ranges?

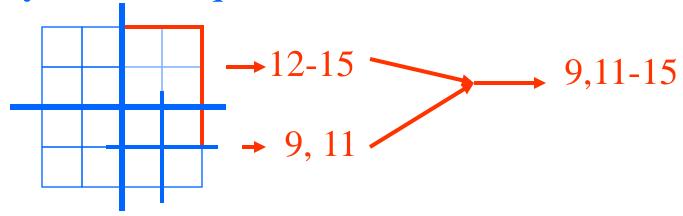
A: recursively, quadtree-style; decompose only non-full quadrants



9,11-15

Q2'': range queries - how to break a query into ranges?

A: recursively, quadtree-style; decompose only non-full quadrants



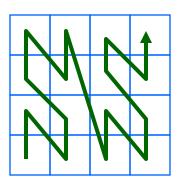
z-ordering - Detailed outline

- spatial access methods
 - z-ordering
 - main idea 3 methods
 - use w/ B-trees; algorithms (range, knn queries ...)
 - non-point (eg., region) data
 - analysis; variations
 - R-trees

z-ordering - Detailed outline

- spatial access methods
 - z-ordering
 - main idea 3 methods
 - use w/ B-trees; algorithms (range, knn queries ...)
 - non-point (eg., region) data
 - analysis; variations
 - R-trees

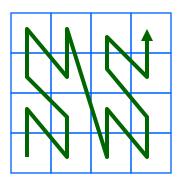
Q: is z-ordering the best we can do?



Q: is z-ordering the best we can do?

A: probably not - occasional long 'jumps'

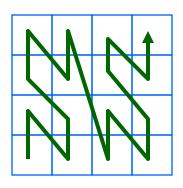
Q: then?

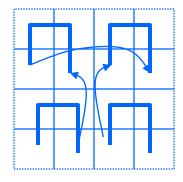


Q: is z-ordering the best we can do?

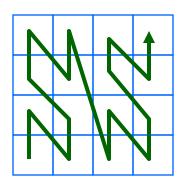
A: probably not - occasional long 'jumps'

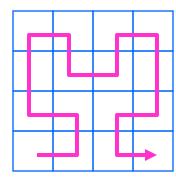
Q: then? A1: Gray codes



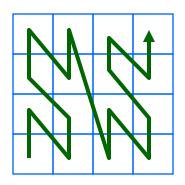


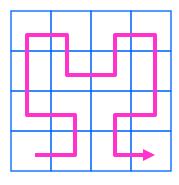
A2: Hilbert curve! (a.k.a. Hilbert-Peano curve)



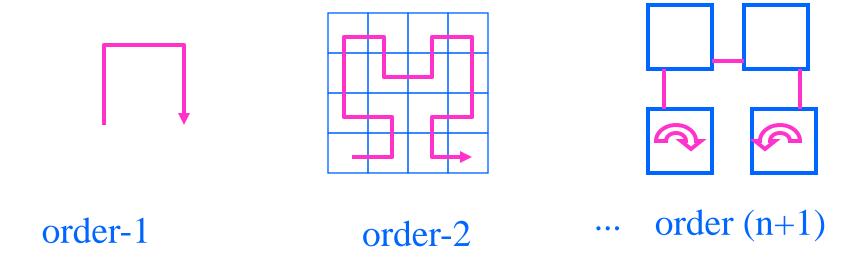


'Looks' better (never long jumps). How to derive it?





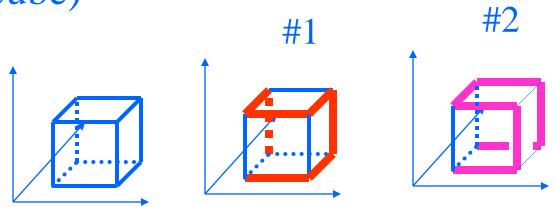
'Looks' better (never long jumps). How to derive it?



Q: function for the Hilbert curve (h = f(x,y))? A: bit-shuffling, followed by post-processing, to account for rotations. Linear on # bits. See textbook, for pointers to code/algorithms (eg., [Jagadish, 90])

Q: how about Hilbert curve in 3-d? n-d?

A: Exists (and is not unique!). Eg., 3-d, order-1 Hilbert curves (Hamiltonian paths on cube)



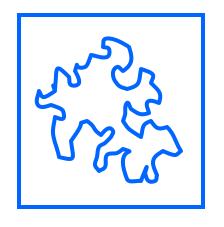
z-ordering - Detailed outline

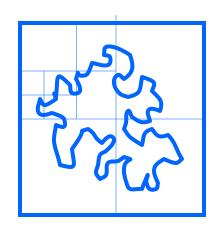
- spatial access methods
 - z-ordering
 - main idea 3 methods
 - use w/ B-trees; algorithms (range, knn queries ...)
 - non-point (eg., region) data
 - analysis; variations
 - R-trees

— ...

Q: How many pieces ('quad-tree blocks') per region?

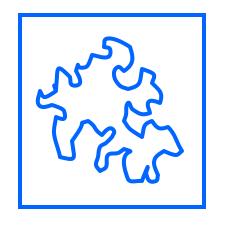
A: proportional to perimeter (surface etc)

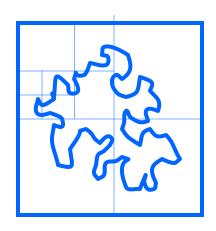




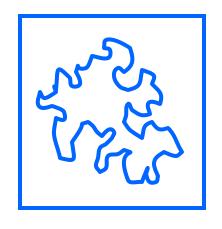
(How long is the coastline, say, of England?

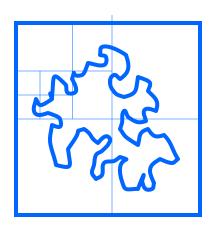
Paradox: The answer changes with the yardstick -> fractals ...)





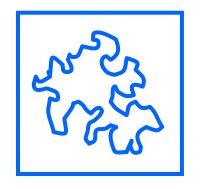
Q: Should we decompose a region to full detail (and store in B-tree)?

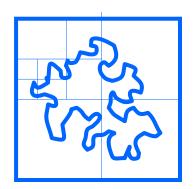




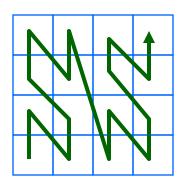
Q: Should we decompose a region to full detail (and store in B-tree)?

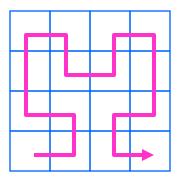
A: NO! approximation with 1-3 pieces/z-values is best [Orenstein90]





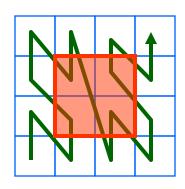
Q: how to measure the 'goodness' of a curve?

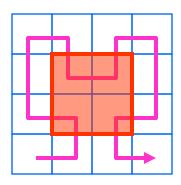




Q: how to measure the 'goodness' of a curve?

A: e.g., avg. # of runs, for range queries





4 runs 3 runs (#runs ~ #disk accesses on B-tree)

Q: So, is Hilbert really better?

A: 27% fewer runs, for 2-d (similar for 3-d)

Q: are there formulas for #runs, #of quadtree blocks etc?

A: Yes ([Jagadish; Moon+ etc] see textbook)

z-ordering - fun observations

In general, Hilbert curve is great for preserving distances, clustering, vector quantization etc

Conclusions

- z-ordering is a great idea (n-d points -> 1-d points; feed to B-trees)
- used by TIGER system and (most probably)
 by other GIS products
- works great with low-dim points

SAMs - Detailed outline

- spatial access methods
 - problem dfn
 - z-ordering

- R-trees

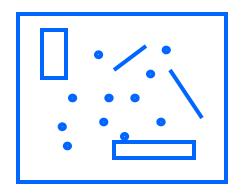
SAMs - more detailed outline

• R-trees

- main idea; file structure
- (algorithms: insertion/split)
- (deletion)
- (search: range, nn, spatial joins)
- variations (packed; hilbert;...)

Reminder: problem

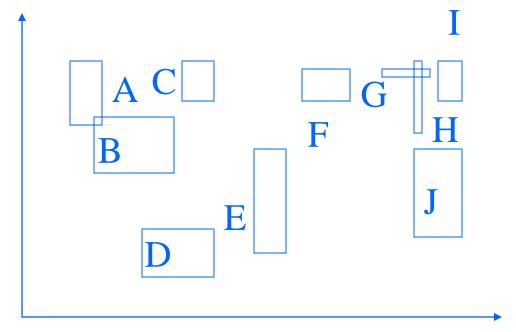
- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer spatial queries (range, nn, etc)



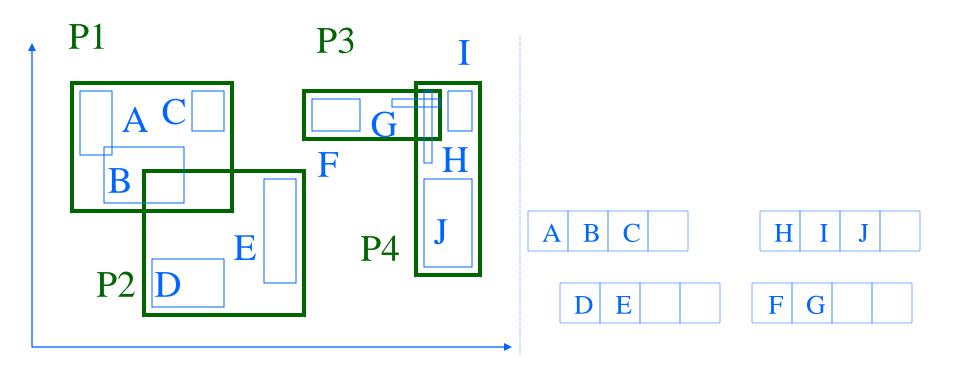
- z-ordering: cuts regions to pieces -> dup.
 elim.
- how could we avoid that?
- Idea: Minimum Bounding Rectangles

- [Guttman 84] Main idea: allow parents to overlap!
 - − => guaranteed 50% utilization
 - => easier insertion/split algorithms.
 - (only deal with Minimum Bounding Rectangles)
 - MBRs)

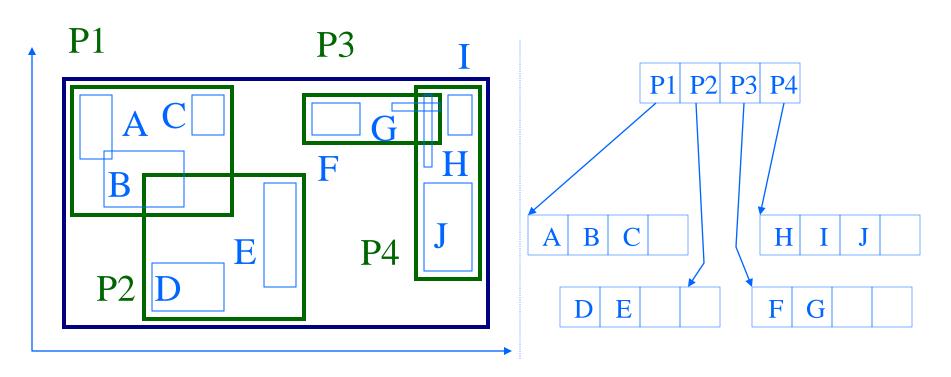
• eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page



• eg., w/ fanout 4:

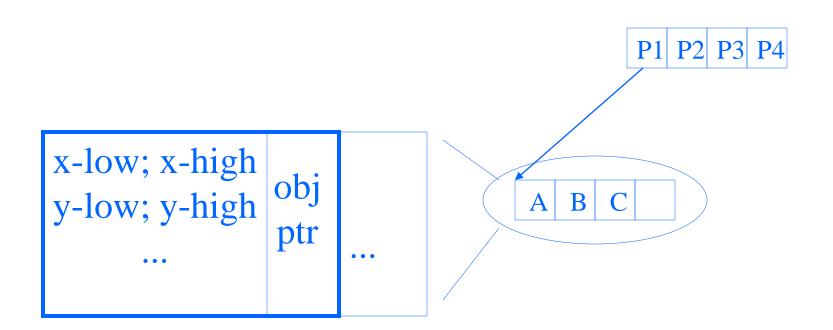


• eg., w/ fanout 4:



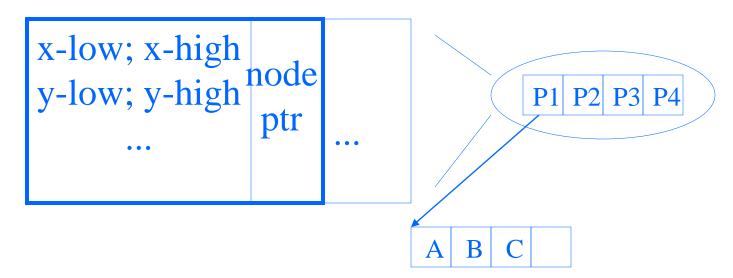
R-trees - format of nodes

• {(MBR; obj-ptr)} for leaf nodes

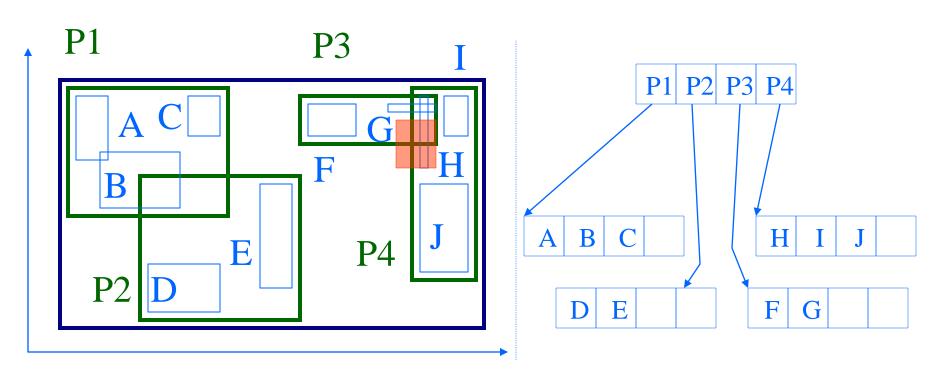


R-trees - format of nodes

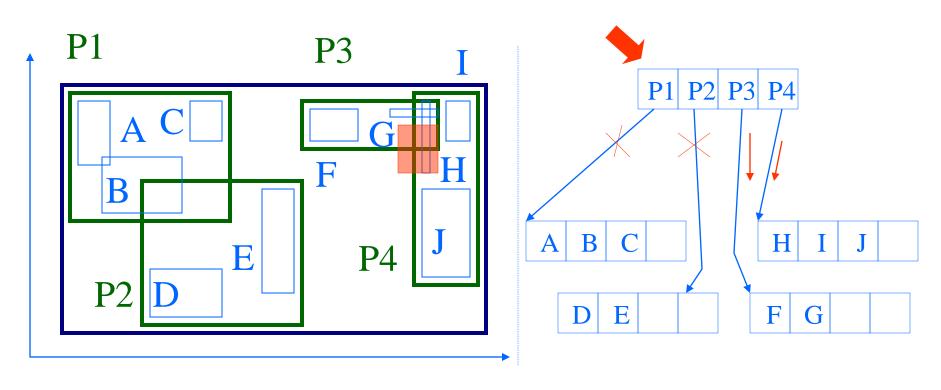
• {(MBR; node-ptr)} for non-leaf nodes



R-trees - range search?



R-trees - range search?



R-trees - range search

Observations:

- every parent node completely covers its 'children'
- a child MBR may be covered by more than one parent it is stored under ONLY ONE of them. (ie., no need for dup. elim.)

R-trees - range search

Observations - cont'd

- a point query may follow multiple branches.
- everything works for any dimensionality

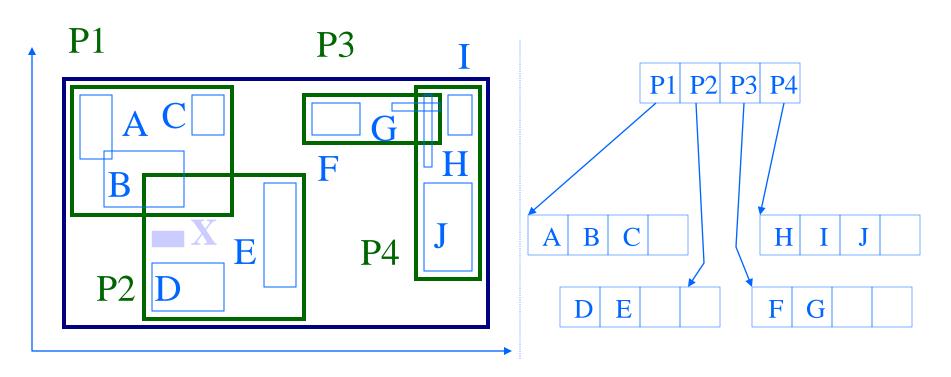
SAMs - more detailed outline

• R-trees

- main idea; file structure
- algorithms: insertion/split
- deletion
- search: range, nn, spatial joins
- performance analysis
- variations (packed; hilbert;...)

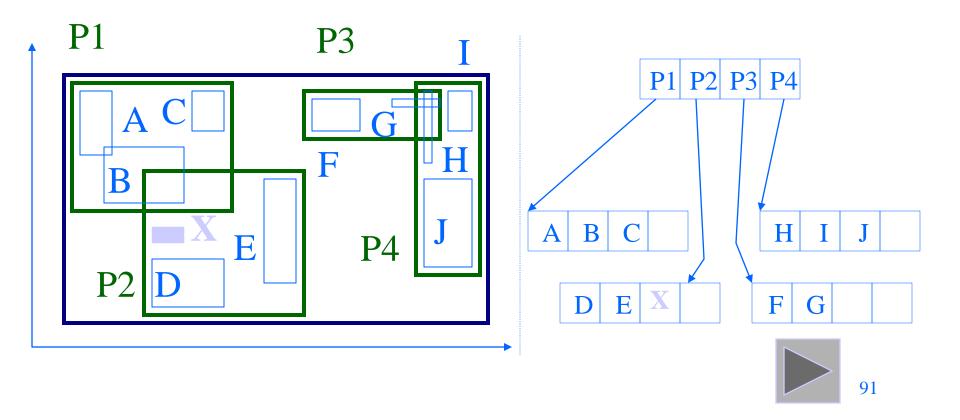
R-trees - insertion

• eg., rectangle 'X'



R-trees - insertion

• eg., rectangle 'X'



SAMs - more detailed outline

• R-trees

- main idea; file structure
- algorithms: insertion/split
- deletion

- search: range, nn, spatial joins
- performance analysis
- variations (packed; hilbert;...)

R-trees - range search

```
pseudocode:
check the root
for each branch,
  if its MBR intersects the query rectangle
      apply range-search (or print out, if this
           is a leaf)
```

SAMs - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins

Guttman's R-trees sparked much follow-up work

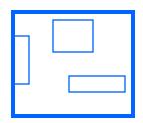
- can we do better splits?
 - what about static datasets (no ins/del/upd)?
 - what about other bounding shapes?

Guttman's R-trees sparked much follow-up work

- can we do better splits?
 - − i.e, defer splits?

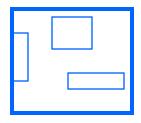
A: R*-trees [Kriegel+, SIGMOD90]

- defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
- Which ones to re-insert?
- How many?



A: R*-trees [Kriegel+, SIGMOD90]

- defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
- Which ones to re-insert?
- How many? A: 30%



Q: Other ways to defer splits?

Q: Other ways to defer splits?

A: Push a few keys to the closest sibling node (closest = ??)

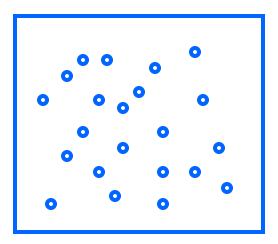
R*-trees: Also try to minimize area AND perimeter, in their split.

Performance: higher space utilization; faster than plain R-trees. One of the **most** successful R-tree variants.

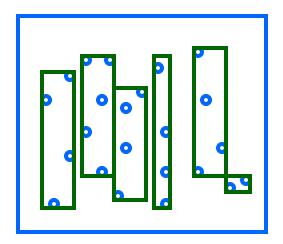
Guttman's R-trees sparked much follow-up work

- can we do better splits?
- what about static datasets (no ins/del/upd)?
 - Hilbert R-trees
 - what about other bounding shapes?

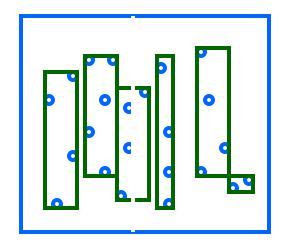
- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?



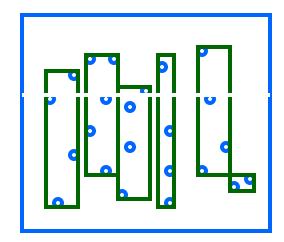
- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep great for queries on 'x'; terrible for 'y'



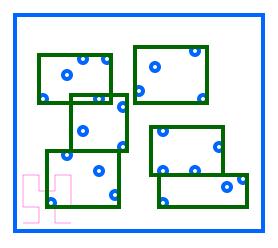
- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep great for queries on 'x'; bad for 'y'



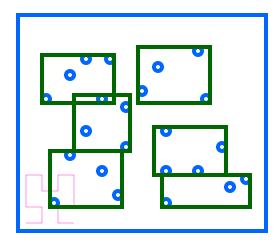
- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep great for queries on 'x'; terrible for 'y'
- Q: how to improve?



• A: plane-sweep on HILBERT curve!



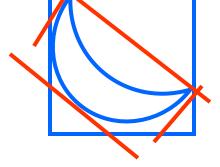
- A: plane-sweep on HILBERT curve!
- In fact, it can be made dynamic (how?), as well as to handle regions (how?)
- A: [Kamel+, VLDB94]



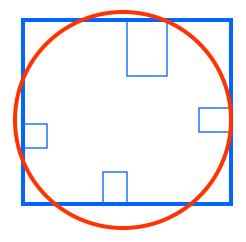
Guttman's R-trees sparked much follow-up work

- can we do better splits?
- what about static datasets (no ins/del/upd)?
- what about other bounding shapes?

- what about other bounding shapes? (and why?)
- A1: arbitrary-orientation lines (cell-tree, [Guenther]
- A2: P-trees (polygon trees) (MB polygon: 0, 90, 45, 135 degree lines)



- A3: L-shapes; holes (hB-tree)
- A4: TV-trees [Lin+, VLDB-Journal 1994]
- A5: SR-trees [Katayama+, SIGMOD97] (used in Informedia)



R-trees - conclusions

- Popular method; like multi-d B-trees
- guaranteed utilization
- good search times (for low-dim. at least)
- R*-, Hilbert- and SR-trees: still used
- Informix ships DataBlade with R-trees

References

- Guttman, A. (June 1984). R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD, Boston, Mass.
- Jagadish, H. V. (May 23-25, 1990). Linear Clustering of Objects with Multiple Attributes. ACM SIGMOD Conf., Atlantic City, NJ.
- Lin, K.-I., H. V. Jagadish, et al. (Oct. 1994). "The TV-tree
 An Index Structure for High-dimensional Data." VLDB Journal 3: 517-542.

References, cont'd

- Pagel, B., H. Six, et al. (May 1993). Towards an Analysis of Range Query Performance. Proc. of ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Washington, D.C.
- Robinson, J. T. (1981). The k-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes. Proc. ACM SIGMOD.
- Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.