
5ο Φροντιστήριο Δομημένου Προγραμματισμού

Άσκηση 1 – Αντιστροφή δύο τιμών (swap) με δείκτες

Να γραφτεί πρόγραμμα που διαβάζει δύο αριθμούς από τον χρήστη και
ανταλλάσσει τις τιμές τους χρησιμοποιώντας μία εξωτερική συνάρτηση:
void swap(int *a, int *b);

#include <stdio.h>

void swap(int *a, int *b) {

 int temp = *a;

 *a = *b;

 *b = temp;

}

int main() {

 int x, y;

 printf("Δώσε δύο αριθμούς: ");

 scanf("%d %d", &x, &y);

 swap(&x, &y);

 printf("Μετά το swap: x = %d, y = %d\n",x,y);

 return 0;

}

Επεξήγηση
• Η συνάρτηση λαμβάνει διευθύνσεις των x και y.
• Ο δείκτης *a προσπελαύνει την τιμή της μεταβλητής x.
• Η ανταλλαγή γίνεται απευθείας στη μνήμη — όχι αντίγραφα.
• Η swap(&x, &y) περνάει τη διεύθυνση των μεταβλητών.

Άσκηση 2 – Εύρεση μέγιστου με δείκτες

Να γραφτεί πρόγραμμα που διαβάζει 3 αριθμούς και μέσω συνάρτησης:
int *findMax(int *a, int *b, int *c);
επιστρέφει δείκτη προς τον μεγαλύτερο αριθμό.

#include <stdio.h>

int* findMax(int *a, int *b, int *c) {

 int *max = a;

 if (*b > *max) max = b;

 if (*c > *max) max = c;

 return max;

}

int main() {

 int x, y, z;

 printf("Δώσε τρεις αριθμούς: ");

 scanf("%d %d %d", &x, &y, &z);

 int *maxPtr = findMax(&x, &y, &z);

 printf("Μέγιστος αριθμός: %d\n", *maxPtr);

 return 0;

}

Επεξήγηση
• Η συνάρτηση συγκρίνει τις τιμές που δείχνουν οι δείκτες.
• Επιστρέφει δείκτη σε όποια μεταβλητή είναι μεγαλύτερη.
• Στο τέλος τυπώνεται ο μέγιστος μέσω *maxPtr.

Άσκηση 3 – Μετατροπή πεζών σε κεφαλαία σε string

Να γραφτεί συνάρτηση που λαμβάνει ένα string και μετατρέπει όλα τα
γράμματα σε κεφαλαία με χρήση pointer:
void toUpper(char *str);

#include <stdio.h>

#include <ctype.h>

void toUpper(char *str) {

 while (*str != '\0') {

 *str = toupper(*str);

 str++;

 }

}

int main() {

 char text[50];

 printf("Δώσε κείμενο: ");

 fgets(text, 50, stdin);

 toUpper(text);

 printf("Με κεφαλαία: %s", text);

 return 0;

}

Επεξήγηση
• Ο pointer str κινείται χαρακτήρα-χαρακτήρα.
• Η toupper() μετατρέπει το γράμμα.
• Το while (*str != '\0') τερματίζει στο τέλος του string.

Άσκηση 4 – Υπολογισμός μέσου όρου με δείκτες και πίνακα

Να γραφτεί πρόγραμμα που διαβάζει Ν αριθμούς σε πίνακα και υπολογίζει
τον μέσο όρο μέσω pointer arithmetic.

#include <stdio.h>

double average(int *arr, int n) {

 int sum = 0;

 for(int i = 0; i < n; i++)

 sum += *(arr + i);

 return (double)sum / n;

}

int main() {

 int n;

 printf("Πόσα στοιχεία; ");

 scanf("%d", &n);

 int nums[n];

 printf("Δώσε %d αριθμούς: ", n);

 for(int i = 0; i < n; i++)

 scanf("%d", &nums[i]);

 printf("Μέσος όρος = %.2f\n", average(nums,

n));

 return 0;

}

Επεξήγηση
• Το *(arr + i) χρησιμοποιεί pointer arithmetic.
• Ο pointer μετακινείται i θέσεις δεξιά.
• Η average επιστρέφει double.

Άσκηση 5 – Αντιστροφή πίνακα με δείκτες

Να γίνει συνάρτηση που αντιστρέφει τα στοιχεία ενός πίνακα in-place:
void reverse(int *arr, int n);

#include <stdio.h>

void reverse(int *arr, int n) {

 int *start = arr;

 int *end = arr + n - 1;

 while (start < end) {

 int temp = *start;

 *start = *end;

 *end = temp;

 start++;

 end--;

 }

}

int main() {

 int arr[5] = {1,2,3,4,5};

 reverse(arr, 5);

 for(int i=0;i<5;i++)

 printf("%d ", arr[i]);

 return 0;

}

Επεξήγηση
• Δημιουργούμε δύο δείκτες: αρχή και τέλος.
• Τους φέρνουμε προς το κέντρο, ενώ ανταλλάσσουμε τιμές.

Άσκηση 6 – Εύρεση χαρακτήρα σε string

Να δημιουργηθεί συνάρτηση που βρίσκει την πρώτη εμφάνιση ενός
χαρακτήρα σε string και επιστρέφει pointer προς αυτόν.

#include <stdio.h>

char* findChar(char *str, char ch) {

 while (*str != '\0') {

 if (*str == ch)

 return str;

 str++;

 }

 return NULL;

}

int main() {

 char text[50] = "hello world";

 char *pos = findChar(text, 'o');

 if (pos)

 printf("Βρέθηκε στη θέση: %ld\n", pos - text);

 else

 printf("Δεν βρέθηκε.\n");

 return 0;

}

Επεξήγηση
• Αν το βρει, επιστρέφει pointer στη θέση του χαρακτήρα.
• Η θέση υπολογίζεται με pos - text.

Άσκηση 7 – Κυκλική μετατόπιση πίνακα δεξιά

Να γίνει πρόγραμμα που μετατοπίζει έναν πίνακα 1 θέση δεξιά:
[1,2,3,4] → [4,1,2,3]
με χρήση pointers.

#include <stdio.h>

void rotateRight(int *arr, int n) {

 int last = arr[n-1];

 for (int i = n-1; i > 0; i--)

 arr[i] = arr[i-1];

 arr[0] = last;

}

int main() {

 int arr[4] = {1,2,3,4};

 rotateRight(arr, 4);

 for(int i=0;i<4;i++)

 printf("%d ", arr[i]);

 return 0;

}

Επεξήγηση

• Αποθηκεύουμε το τελευταίο στοιχείο.
• Μετακινούμε όλα τα στοιχεία μία θέση δεξιά.
• Το πρώτο στοιχείο γίνεται το αρχικό τελευταίο.

Άσκηση 8 – Μετρητής λέξεων με pointers

Να γίνει συνάρτηση που μετρά πόσες λέξεις υπάρχουν σε ένα string.
Λέξη = ακολουθία χαρακτήρων ανάμεσα σε κενά.

#include <stdio.h>

#include <ctype.h>

int countWords(char *str) {

 int count = 0;

 int inWord = 0;

 while (*str != '\0') {

 if (!isspace(*str) && !inWord) {

 inWord = 1;

 count++;

 }

 else if (isspace(*str)) {

 inWord = 0;

 }

 str++;

 }

 return count;

}

int main() {

 char text[100] = "Hello world this is C";

 printf("Λέξεις: %d\n", countWords(text));

 return 0;

}

Επεξήγηση

• Ο pointer σαρώνει χαρακτήρα-χαρακτήρα.
• Όταν εντοπιστεί μη κενός χαρακτήρας και δεν είμαστε ήδη σε λέξη → νέα λέξη.

• isspace() εντοπίζει κενά.

