
Γραφικά Υπολογιστών

Ιόνιο Πανεπιστήμιο

Τμήμα Πληροφορικής

Στέργιος Παλαμάς, Επίκουρος Καθηγητής

Οι διαφάνειες βασίζονται σε videos διαλέξεων του: 
Cem Yuksel
Assoc. Prof, 
School of Computing, University of Utah)





Textures

Ένας πολύ «στενός» ορισμός για τα Textures είναι ότι είναι εικόνες που εφαρμόζουμε πάνω σε αντικείμενα. 



Textures

Το ερώτημα που γεννιέται είναι λοιπόν «Με ποιόν τρόπο εφαρμόζω  την εικόνα πάνω στο αντικείμενο;»

Planar Mapping Cubical Mapping Cylindrical Mapping

Spherical Mapping



Textures

Τι γίνεται όμως με πολύπλοκα μοντέλα που δεν είναι απλά γεωμετρικά στερεά;  

Σε τέτοιες περιπτώσεις ακολουθούμε μια διαδικασία που λέγεται «texture mapping».



Textures

Το ζητούμενο στο texture mapping είναι να βρούμε μια συνάρτηση, που να πάρει το texture και να το 
αντιστοιχήσει στο αντικείμενο. Να κάνει δηλαδή την μετατροπή από το texture space στο Object Space. Στην 
πράξη όμως αυτό που κάνουμε είναι το ακριβώς αντίθετο! Ζητάμε έναν τρόπο να αντιστοιχήσουμε το Object
Space στο Texture Space!.

Καθώς όπως είδαμε τα αντικείμενά μας καταλήγουν να 
γίνονται triangular meshes, ουσιαστικά αναζητούμε έναν 
τρόπο να αντιστοιχήσουμε κάθε τρίγωνο που απαρτίζει το 
αντικείμενο σε μια περιοχή του texture.



Textures

Ή διαδικασία ΔΕΝ είναι ένας μαθηματικός τρόπος αντιστοίχισης, δεν περιγράφεται πχ από μία συνάρτηση. 

Θα πρέπει για κάθε ένα από τα 3 vertices του 
τριγώνου να βρω το αντίστοιχο σημείο στο 
texture.

Συνεπώς έχω μια αντιστοίχιση από το Object
Space (x,y,z) σε ένα 2D texture space (u,v).

Γι’ αυτό και η όλη διαδικασία συχνά αναφέρεται 
και με τον όρο «UV mapping». 

Είναι σημαντικό να έχουμε κατά νου ότι αυτή η διαδικασία δε γίνεται μέσω κάποιας μαθηματικής συνάρτησης. 
Ουσιαστικά αντιστοιχώ κάθε τρίγωνο σε μια περιοχή του texture.

Αυτό που γίνεται λοιπόν είναι ότι κατά τη διάρκεια του σχεδιασμού του 3D αντικειμένου, με μηχανισμούς 
που παρέχουν τα κατάλληλα λογισμικά 3D modeling, γίνεται από το σχεδιαστή και το UV Mapping. ΤΟ 
λογισμικό βοηθάει εξαιρετικά τη διαδικασία, αλλά απαιτείται και χειρωνακτική εργασία από τον σχεδιαστή. 
Το UV Mapping λοιπόν μας έρχεται έτοιμο μαζί με το μοντέλο. 



Textures

Συνήθως τα προγράμματα 3d modeling κάνουν το λεγόμενο «UV unwraping”. Ξεδιπλώνουν το 3D μοντέλο σε 
ένα δισδιάστατο χώρο διευκολύνοντας έτσι να αντιστοιχήσουμε στα πολύγωνα περιοχές μιας εικόνας ή να τα 
«βάψουμε» με εργαλεία που διαθέτει το λογισμικό. 



Textures

Υπάρχουν και λογισμικά που μας επιτρέπουν να «βάφουμε» κατευθείαν πάνω στο 3D model κατασκευάζοντας 
παράλληλα και το ίδιο το texture αλλά και το UV Mapping.



Textures

Υπάρχουν και λογισμικά που μας επιτρέπουν να «βάφουμε» κατευθείαν πάνω στο 3D model κατασκευάζοντας 
παράλληλα και το ίδιο το texture αλλά και το UV Mapping.



Textures

Στο GPU Pipeline, τα textures πηγαίνουν κατευθείαν στο 
Fragment Shader που χρωματίζει τα fragments που έχει 
φτιάξει ο Rasterizer.

Οι συντεταγμένες UV για κάθε vertex συνοδεύουν εξαρχής 
τα vertices σαν properties (μαζί με τ τις συντεταγμένες 
θέσεις τους και άλλα Properties που αφορούν τα vertices).
Περνάνε από στάδιο σε στάδιο και φτάνουν στο Fragment
shader για να τις χρησιμοποιήσει. 

Ο Rasterizer για κάθε τρίγωνο του μοντέλου , κατασκευάζει 
τα fragments που το «γεμίζουν». H GPU Λοιπόν θα πρέπει 
για το κέντρο κάθε fragment να υπολογίσει τις 
συντεταγμένες του texture (UV) που αντιστοιχούν ! 

(Υπενθύμιση : είναι γνωστές οι συντεταγμένες UV μόνο για 
τα 3 vertices του τριγώνου – όχι για κάθε fragment στο 
εσωτερικό του!)



Textures

Ο Rasterizer για κάθε τρίγωνο του μοντέλου , κατασκευάζει τα fragments
που το «γεμίζουν». H GPU Λοιπόν θα πρέπει για το κέντρο κάθε fragment
να υπολογίσει τις συντεταγμένες του texture (UV) που αντιστοιχούν ! 

(Υπενθύμιση : είναι γνωστές οι συντεταγμένες UV μόνο για τα 3 vertices 
του τριγώνου – όχι για κάθε fragment στο εσωτερικό του!)

Αν εξετάσουμε λοιπόν ένα από τα παραπάνω κέντρα των fragments, τότε 
ακολουθώντας ακριβώς την ίδια λογική με τις βαρυκεντρικές 
συντεταγμένες που είδαμε στα triangular meshes, γνωρίζοντας τις UV
συντεταγμένες των 3 vertices του τριγώνου (u0, u1 και u2), μπορούμε να 
υπολογίσουμε τις  UV συντεταγμένες του u με γραμμικό interpolation 
των τριών vertices! 

Αυτό το κάνει αυτόματα η GPU ή το λογισμικό (πχ OpenGL).



Textures

Έτσι λοιπόν μπορούμε να υπολογίσουμε τη θέση του u στο 
texture και να πάρουμε από εκεί το χρώμα με το οποίο θα 
χρωματιστεί όλο το συγκεκριμένο fragment και 
τελειώσαμε! 

Όχι ακριβώς, στην πραγματικότητα η λήψη του χρώματος 
από το texture δεν είναι τόσο απλή, και εδώ μπαίνουμε 
στη διαδικασία του texture sampling!



Texture Sampling (Filtering)

Texture sampling λέγεται η διαδικασία με την οποία λαμβάνουμε από ένα texture μια τιμή χρώματος για 
κάποιο σημείο του. 

Κάθε pixel του texture θα πρέπει να το 
αντιλαμβανόμαστε όχι σαν χρωματισμένο 
«κουτάκι» αλλά σαν μια τιμή χρώματος στο κέντρο 
του, που ονομάζουμε Texel.



Texture Sampling (Filtering)

Ο απλούστερος λοιπόν τρόπος για να 
πάρουμε μια τιμή χρώματος σε ένα σημείο 
του texture είναι να πάρουμε το χρώμα του 
πιο κοντινού στο σημείο texel.

Με αυτό τον τρόπο, είναι σα να έχουμε χωρίσει το texture
σε ένα grid και μέσα σε κάθε «κελί» του grid έχουμε ένα 
χρώμα. Είναι το απλούστερο που μπορούμε να κάνουμε 
αλλά ΔΕΝ έχει το καλύτερο αποτέλεσμα. 



Texture Sampling (Filtering)

Ένας εναλλακτικός τρόπος είναι να λάβουμε υπόψη τα 4 γειτονικά στο σημείο 
texels και να κάνουμε μια γραμμική παρεμβολή (linear interpolation) στον οριζόντιο 
και τον κατακόρυφο άξονα – μια BILINEAR λοιπόν παρεμβολή (Interpolation)

Υπολογίζουμε λοιπόν την τιμή του χρώματος c σαν bilenear interpolation των 
χρωμάτων των τεσσάρων γειτονικών textles c0, c1, c2 kαι c3.

Οριζόντια (1o interpolation): 
Υπολογίζουμε δύο interpolated τιμές, τις : 
c01 ως interpolation των c0 και c1 
c23 ως interpolation των c2 και c3

Κατακόρυφα (2o interpolation): 
Υπολογίζουμε την τελική τιμή c σαν interpolation των c01 και c23 που υπολογίσαμε 
πριν.  



Texture Sampling (Filtering)

To όφελος από το Bilinear sampling (filtering) είναι 
μια πιο ομαλή μετάβαση από texel σε texel του 
texture σε σχέση με το σαφώς διακριτό του 
nearest.

Ακόμα και στο bilinear όμως μπορούμε να 
διακρίνουμε σε κάποιες περιοχές τη μετάβαση. 

Αυτό συμβαίνει γιατί αν το σημείο που κάνουμε 
δειγματοληψία πάει πχ αριστερότερα θα 
υπολογιστεί με μια διαφορετική τετράδα texels και 
θα προκύψει μια κάπως απότομη μετάβαση.   



Texture Sampling (Filtering)

Για ακόμα ομαλότερη μετάβαση μπορούμε να 
κάνουμε Bicubic Filtering (sampling) λαμβάνοντας 
υπόψη ένα πλέγμα 4Χ4 των γειτονικών texels. Με 
αυτό τον τρόπο έχουμε μια ομαλότερη μετάβαση 
χρώματος καθώς το σημείο δειγματοληψίας 
κινείται μέσα στην περιοχή του texture.



Texture Sampling (Filtering)

Μεγαλύτερος αριθμός από interpolated texels δε 
θα φέρει σημαντικό όφελος. 

Αν θέλουμε καλύτερο τελικό αποτέλεσμα  η λύση 
είναι μία: ΜΕΓΑΛΥΤΕΡΗΣ ανάλυσης texture!

Ιδανική απεικόνιση έχω όταν το μέγεθος του texel 
είναι ίδιο ή μικρότερο από το μέγεθος του Pixel 
στην οθόνη. 



Texture Sampling (Filtering)

Ένα υψηλής ανάλυσης texture όμως χάνει τη 
σκοπιμότητά του όσο απομακρύνομαι από το 
αντικείμενο και μικραίνει το μέγεθός του στην οθόνη. 

Δε χρειαζόμαστε τόσο υψηλής ανάλυσης texture σε 
τέτοια απόσταση!



Texture Sampling (Filtering)

Όταν εφαρμόζω ένα texture σε μια επιφάνεια και κάνω rendering από μια συγκεκριμένη κάμερα, κάθε pixel 
στην οθόνη θα χρωματιστεί με δειγματοληψία του texture στο κέντρο κάθε Pixel. 

Κατά το rendering, για ένα συγκεκριμένο Pixel, θα γίνει η δειγματοληψία στο 
texture (με όποιον αλγόριθμο επιλέξουμε) και θα επιλεγεί το χρώμα που 
αντιστοιχεί και θα βαφεί όλο το Pixel.

Με μια πολύ μικρή μετατόπιση όμως της κάμερας, ή κίνηση του 
αντικειμένου, η δειγματοληψία μπορεί να δώσει ένα εντελώς διαφορετικό 
χρώμα. 



Texture Sampling (Filtering)

Όταν θέλω να κάνω δειγματοληψία σε μια περιοχή ενός 
texture για να βρω με τι χρώμα θα βάψω ένα pixel, θέλω να 
προκύψει ένα αντιπροσωπευτικό χρώμα από τη συγκεκριμένη 
περιοχή του texture.

Αν όμως το texture είναι πολύ υψηλής ανάλυσης στην 
περιοχή αυτή που θα χρωματίσει ένα pixel μπορεί να 
αντιστοιχεί νέας πολύ μεγάλος αριθμός από texels. Αν 
μάλιστα το αντικείμενο είναι μακριά θα μπορούσε και 
ολόκληρο το texture να αντιστοιχεί στο χρωματισμό ενός 
pixel!

Αυτό εισάγει έναν πολύ υψηλό υπολογιστικό φόρτο χωρίς να 
υπάρχει κανένα όφελος στην ποιότητα. 

Η λύση είναι το pre-filtering



Mipmaps

O πιο συνηθισμένος τρόπος για να κάνω το pre-filtering είναι τα MIPMAPS

Αυτό που κάνω είναι από το αρχικό texture
υψηλής ανάλυσης (level 0) να παράξω μια 
σειρά από αντίγραφά του , όλο και 
χαμηλότερης ανάλυσης (levels 1-7). 

Κάθε επίπεδο έχει τη μισή ανάλυση από το 
προηγούμενό του , τόσο οριζόντια όσο και 
κατακόρυφα. 

Αυτός είναι και ο λόγος που οι μηχανές 
γραφικών προτιμούσαν (ή επέβαλαν) τα textures
να έχουν διαστάσεις που είναι δύναμη του 2 , 
ώστε να είναι εύκολη η παραγωγή των mipmaps. 
Κάθε 4 Pixels θα αντιστοιχούν σε 1 pixels του 
επόμενου level mipmap.

 



Mipmaps

Πώς χρησιμοποιώ τα mipmaps;

Όταν για να χρωματίσω ένα Pixel πρέπει να κάνω δειγματοληψία σε μια περιοχή του texture (εικόνα 1), χρησιμοποιώ μια τετράγωνη 
προσέγγιση της περιοχής (εικόνα 2). 

Αντί μετά να κάνω δειγματοληψία στο υψηλής ανάλυσης texture, επιλέγω το mipmap του οποίου το texel έχει παραπλήσιο μέγεθος με 
την περιοχή δειγματοληψίας (εικόνα 3). Έτσι η δειγματοληψία θα υπολογιστεί από πολύ λιγότερες τιμές. 

 



Mipmaps

Ένα επιπλέον πρόβλημα είναι ότι τα διαθέσιμα mipmap levels μπορεί να είναι μεγαλύτερα (level 5) ή μικρότερα (level 4) από την 
περιοχή που θα ήθελα .

Το καλύτερο που μπορώ να κάνω είναι να κάνω bilinear interpolation στα δύο levels και στη συνέχεια ένα linear Interpolation στο 
χρώμα που θα δώσουν αυτά τα δύο. Αυτό το ονομάζω Trilinear Filtering.



Mipmaps

Στο bilinear filtering τα πράγματα δείχνουν σωστά κοντά, 
αλλά όσο απομακρυνόμαστε και το texture αντιστοιχεί 
σε όλο και λιγότερα pixels της οθόνης, εμφανίζονται 
τεχνουργήματα. 

Με τα mipmaps (trilinear filtering) το αποτέλεσμα είναι 
πολύ καλύτερο καθώς όσο απομακρυνόμαστε το texture
απλά θολώνει αντί να εισάγονται παραμορφώσεις. 



Mipmaps

O λόγος που όσο απομακρυνόμαστε το texture θολώνει, 
είναι ότι στα απομακρυσμένα pixels, για το χρώμα τους 
έχουμε κάνει δειγματοληψία σε μια περιοχή του texture 
που προσεγγίζεται με ένα τετράγωνο και 
χρησιμοποιήσαμε το κατάλληλο level mipmap.

Αν κάπως καταφέρναμε να διατηρήσουμε όμως το 
σχήμα της περιοχής που δειγματοληπτούμε αντί να το 
προσεγγίζουμε με ένα τετράγωνο το αποτέλεσμα θα 
ήταν πιο ακριβές. Αυτό το ονομάζουμε Anisotropic
Filtering.



Anisotropic Filtering with MipMaps

Αντί να προσεγγίζουμε την περιοχή δειγματοληψίας με ένα τετράγωνο που την περικλείει, κάνουμε πολλαπλά trilinear filterings σε 
μικρότερα επιμέρους τετράγωνα που προσεγγίζουν καλύτερα την περιοχή. Το Anisotropic Filtering ωστόσο είναι ακριβό υπολογιστικά. 

Οι σύγχρονες GPUs υποστηρίζουν σε 
επίπεδο hardware όλες αυτές τις 
διαδικασίες και τις εκτελούν εξαιρετικά 
γρήγορα. 



Anisotropic Filtering with MipMaps


	Slide 1: Γραφικά Υπολογιστών
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

