5 Programming in SuperCollider

Iannis Zannos

5.1 Introduction

This chapter provides an introduction to the SuperCollider programming language
from a more technical viewpoint than David Cottle’s beginner’s tutorial (chapter 1).
Some material presented there and elsewhere in this book is also covered here, but
in a more methodical and exhaustive manner. Although I try to convey programming
skills without presupposing any previous knowledge of programming languages and
compiler technology, some of the more advanced programming concepts in this
chapter can take a little getting used to. The explanations provided here aim to be
complete within the space allowed, but readers new to object-oriented programming
may wish to seek out a good general introductory text to accompany their explo-
rations (<http://en.wikipedia.org/wiki/Object-oriented_programming> isn’t bad!).
Musicians new to computer music may prefer to start earlier in the book and return
here only once they have acquired some basic familiarity with the language; for ex-
perienced computer musicians new to SuperCollider, or experienced programmers
new to audio, this chapter may be the preferred entry route. For everyone, it should
provide a useful reference on the SuperCollider language.

Mechanisms underlying the interpretation and execution of programs and the
programming concepts of SuperCollider will be explained. This will serve as a basis
for understanding how to write and debug effectively in SuperCollider. We will con-
sider the following questions:

What are the basic concepts underlying the writing and execution of programs?
What are the fundamental program elements in SuperCollider?

What are objects, messages, methods, and classes, and how do they work?

How are classes of objects defined?

What are the characteristic techniques of object-oriented programming, and how are
they applied in SuperCollider?

128

Tannis Zannos

SuperCollider employs syntactic elements from C, C++, Java, Smalltalk, and Mat-
lab, creating a style that is both concise and easy to understand for programmers
who know one of these common programming languages. A summary of the Super-
Collider language syntax is given in the appendix of this book.

5.2 Fundamental Elements of Programs

5.2.1 Objects and Classes

The language of SuperCollider implements a powerful method for organizing code,
data, and programs known as object-oriented programming (OOP). SuperCollider is
a pure OOP language, which means that all entities inside a program are some kind
of object. It also means that the way these entities are defined is uniform, as are the
means for communicating with them.

5.2.1.1 Objects
Objects are the basic entities that are manipulated within programs. They bundle
together data and methods that can act on that data (a musical scale object might
store the pitches in the scale and a method to play back those pitches up and down
as a sequence of notes in order). In the simplest case they might look like a single
number or letter (a character), but they still respond to a number of methods for
acting on themselves (return the negative of the current number, return the ASCII
key code for the letter) or to more complex methods combining multiple objects of
that type (add this number to another to make a third number, combine this letter
with another to make a 2-letter word). In practice, there are 2 main types of objects,
categorized according to how their internal contents are organized: objects with a
fixed number of internal slots for storing data and objects with a variable number of
slots. The generic term for the latter type of object is collection. Collections prove
useful for handling big sets of data, such as a library of musical tunings or a mass of
partial frequency, amplitude, and phase data for additive synthesis.

Some examples of objects include those shown in figure 5.1. You can see various
different objects in the code listing, from simple numbers and letters to more abstract
types that will be explained in more detail during the course of this chapter.

5.2.1.2 Classes

A class describes the attributes and behavior that are common to a group of objects.
All objects belonging to a class are called instances of that class. For example, all
integer numbers (e.g., 0, -1, and 50) are instances of class Integer. All integers are
able to perform arithmetic operations on other numbers; therefore the class Integer
describes—among other things—how integers perform arithmetic operations. In-

129

5 Programming in SuperCollider

1 // the Integer number 1
1.234 // the floating-point (Float) number 1.234
$a // the character (Char) a
"hello" // a String (an array of characters)
\alpha // a Symbol (a unique identifier)
'alpha 1' // another notation for a Symbol
100@150 // a Point defined by coordinates x, y
[1, \A, $b] // an Array containing 3 elements
(a: 1, b: 0.2) // an Event
{ 10.rand } // a Function
String // the Class String
Meta_String // the Class of Class String

Figure 5.1

Objects.

stances are created as literals (which act as primitives of the language, such as 1, -10,
$a, \a; more on this below) with one of the shortcut constructor syntax forms (e.g.,
{}, (), a@b, a->b) or by sending a special message to a class that demands an instance.
The most common message for creating instances is new, which can be omitted for
brevity: Rect.new(10, 20, 30, 40) is equivalent to Rect(10, 20, 30, 40), and both
create a rectangle with the specified numbers determining its size and position.

A class can inherit properties and behavior from another class, called its super-
class. A class that inherits properties is a subclass of the class from which it inherits.
The mechanism of inheritance is central in object-oriented programming for defining
a hierarchical family tree of categories that relate to each other. This promotes shar-
ing of common functionality while allowing the specialization of classes for particular
tasks. (We’ll return to this later.)

5.2.2 Literals

Literals are objects whose value is represented directly in the code (rather than com-
puted as a result of sending a message to an object). Literals in SuperCollider are the
following:

Integers (e.g., -10, 0, 123) and floating-point numbers (e.g., 0.1, 0.0, 123.4567),
which can be in exponential notation (e.g., 1e4, 1.2e-4); alternative radices up to
base 36 (e.g., binary for 13 is 2r1101, and the hexadecimal for 13 is 16rD); or com-
bined with the constant pi (e.g., 2pi, -0.13pi).

Strings, enclosed in double quotes: “a string.”

Symbols, enclosed in single quotes (‘a symbol’) or preceded by \:\a_Symbol.

130

Iannis Zannos

Literal Arrays: immutable Arrays of literals declared by prepending the number sign
#.

Classes: A class is represented by its name. Class names start with a capital letter.
Characters (instances of Char), a single character preceded by the dollar sign $ (e.g.,
$A, $a); non-printing characters (tab, linefeed, carriage return) and backslash are
preceded by a backslash (e.g., $\n, $\t, $\).

Variables and constants (see also the SuperCollider Help file on Literals and the
appendix).

5.2.3 Messages and Methods

To interact with an object, one sends it a message. For example, to calculate the
square of a number, one sends the message squared:

15.squared // calculate and return the square of 15

The object to which a message is sent is called the receiver. In response to the mes-
sage, the receiving object finds and runs the code that is stored in the method which
has the same name as the message, then returns a result to the calling program,
which is called the return value. In other words, a method is a function stored under
a message name for an object that can be recalled by sending that object the mes-
sage’s name (see figure 5.2).

Instance methods operate on an instance (such as the integer 1), and class methods
operate on a class. The most commonly used class method is New, which is used to
create new instances from a class.

An alternative way of writing a message is in C-style or Java-style function-call
form. The above example can also be written as follows:

squared(15) // calculate and return the square of 15

SuperCollider often permits one to choose among different writing forms for ex-
pressing the same thing. It is up to the programmer to decide which form of an
expression to use. Two main criteria that programmers take into account are read-
ability and conciseness.

5.2.3.1 Chaining messages
It is possible to write several messages in a row, separated by dots (.), like the one
below:

Server.local.boot // boot the local server
Or this:

Server.local.quit // quit the local server

131

5 Programming in SuperCollider

receiver ° squared | message

squared {
_Squared;
Athis.primitiveFailed

method

return value

Figure 5.2
Receiver, message, method, return value.

When “chaining” messages, each message is sent to the object returned by the
previous message (the previous return value). In the examples above, Server is the
class from which all servers are made. Among other things, it holds by default 2
commonly used servers, the local server and the internal server, which can be ob-
tained by sending it the messages local and internal, respectively. The objects and
actions involved are the following:

Server // the class Server

// message local sent to Server returns the local server: Tocalhost
Server.local

Server.local.boot // the message boot is sent to the local server

5.2.3.2 Performing messages

In some cases, the message to be sent to an object may change, depending on other
conditions. When the message is not known in advance, the messages perform and
performList are used, which allow an object to perform a message passed as an
argument:

Server.local.perform(\boot) // boot the Tocal server
// boot or quit the local server with 50% probability of either:
Server.local.perform([\boot, \quit].choose)

performList permits one to pass additional arguments to the message in Array
form. Thus Rect.performList(\new, [0, 10, 200, 20]) is equivalent to Rect.new(0,
10, 200, 20). (See also the example in section 5.4.5.)

132

Tannis Zannos

5.2.4 Arguments

The operation of a message often requires the interaction of several objects. For ex-
ample, raising a number to some power involves 2 numbers: the base and the expo-
nent. Such additional objects required by an operation are sent to the receiver as
arguments accompanying the message. Arguments are enclosed in parentheses after
the message:

5.pow(8) // calculate the 8th power of 5
If several arguments are involved, they are separated by commas:

// construct an Array of 5 elements starting at 10 and incrementing by 10
Array.series(5, 10, 10)

The same is true in the “function-call” format:
series(Array, 5, 10, 10)

If the arguments are provided as 1 collection containing several objects, they can
be separated into individual values by prepending the * sign to the collection:

Array.rand(*[5, -10, 10])
is equivalent to
Array.rand(5, -10, 10)

This can be useful when one wants to provide arguments as a collection that was
created in some other part of the program. The next example shows how to con-
struct an Array of random size between 3 and 10 with elements whose values have
a random range with 3 as the lowest, and 10 as the highest, possible value.

Array.rand(*Array.rand(3, 3, 10))

When the only argument to a message is a function, the parentheses can be omitted:
10.do {10.rand.postlin}//function as sole argument to a message

5.2.4.1 Argument forms for implied messages at and put

When square brackets are appended to an object, they imply the message at or put

(this follows the C or Java syntax for Array indexing). Thus [1, 5, 12][1] is equiv-
alent to [1, 5, 12].at(1), and (O[\a] = pi is equivalent to ().put(\a, pi).

5.2.4.2 Argument keywords
When calling a function, argument values must be provided in the order in which the
arguments were defined (see section 5.4.4.1). However, when only a few out of many

133

5 Programming in SuperCollider

// Boot the default server first:
Server.default.boot;
// Then select all Tines between the outermost parentheses and run:

(

{
Resonz.ar(GrayNoise.ar,
XLine.kr(100, 1000, 10, doneAction: 2),
XLine.kr(0.5, 0.01, [4, 7], doneAction: 0)
)
}.play
)

// further examples:

{ WhiteNoise.ar(EnvGen.kr(Env.perc, timeScale: 3,
doneAction: 2)) }.play;

{ WhiteNoise.ar(EnvGen.kr(Env.perc, timeScale: 0.3,
doneAction: 2))}.play;

Figure 5.3
Keyword arguments.

arguments of a function need to be provided, one can specify those arguments by
name in “keyword” form,; for instance, if the name of the argument provided is freq,
the call is foo.value(freq: 400). And the kr method for XLine takes the arguments
start, end, dur, mul, add, and doneAction. To provide values only for start, end, dur,
and doneAction, write (for example): XLine.kr(100, 100, 10, doneAction: 2). As
a result, start, end, and dur get the values 100, 1000, and 10, respectively; done-
Action gets the value 2; and mul and add rely on their default values 1 and 0, respec-
tively. (See figure 5.3.)

5.2.5 Binary Operators

SuperCollider uses signs from mathematics, logic, and other programming lan-
guages, such as + (addition), - (subtraction), and & (binary “and”). These are called
binary operators because they operate on 2 objects. For example, ++ joins 2
SequenceableCollections: [\a, \b] ++ [1, 2, 3].

Furthermore, any message that requires just 1 argument can be written as a binary
operator by adding : to the name of the message. Thus, 5.pow(8) can also be written
as 5 pow: 8. With this and other syntax shortcuts included in this chapter, there may
seem to be a bewildering variety of alternatives available. SuperCollider supports a
few different common programming syntaxes, but in vanilla SC, the ‘dot’ notation
would be most common, and with practice you can pick up additional syntax as you

134 Tannis Zannos

((1 + 2).asString).interpret // =3
"1" ++ "2". dinterpret // 12: 2 is translated to string by ++
("1" ++ "2").interpret // 12
(1.asString ++ 2.asString).interpret // 12
"1+2". interpret // 3
(1.asString ++ "+2"). interpret // 3
(1 + 2).interpret // error: interpret not understood by
Integer 3
Figure 5.4

Grouping and Precedence.

code and gain experience. Further details are available in the Syntax Shortcuts Help
file.

5.2.6 Precedence Rules and Grouping

When one combines several operations in 1 expression, the final result may depend
on the order in which those operations are executed. Compare, for example, the
expression 1 + (2 * 3), whose value is 7, with the expression (1 + 2) * 3, whose
value is 9. The order in which operations are executed is determined by the prece-
dence of operators. The precedence rules in SuperCollider are simple but differ
somewhat from those used in mathematics:

Binary operators are evaluated in strict left-to-right order. Thus the expression 1 +
2 * 3isequivalentto (1 + 2) * 3andnotto 1 + (2 * 3).

Message passing, as in receiver.message(arguments) or in collection[index], has pre-
cedence over binary operators. Thus, in 10 * (1..3).addA11([0.1, 0.2, 0.31) the
elements of [0.1, 0.2, 0.3] are first appended to [1, 2, 31, and then the resulting
new Array is multiplied by 10.

To override the order of precedence, one uses parentheses (). For example:

1+ 2 * 3 // Left-to-right order of operator evaluation. Result: 9.
1+ (2 *3) // Forced the evaluation of * before that of +. Result: 7.

Figure 5.4 illustrates the effects of grouping by parentheses and message passing.
5.2.7 Statements

The single-line code examples introduced above normally constitute parts of larger
programs that include many lines of code. The smallest stand-alone elements of code

135

5.3 Variables

5 Programming in SuperCollider

(

a=>5;

5 do: { a=a+ 10; a.postln };

Post << "The value of variable 'a' is now

)

<< a << "\n";

Figure 5.5
Statements.

are called statements.! One creates programs by grouping sequences of statements.
When a program contains more than 1 statement, the individual statements are
separated by a semicolon. The last statement at the end of a program does not need
to have a semicolon, since there are no more statements to separate it from. Figure
5.5 contains 3 statements.

The first statement (a = 5;) assigns the value 5 to variable a. The second state-
ment (5 do: {a = a + 10; a.postIn};) repeats a function 5 times that assigns to a
its previous value incremented by 10, and posts the new value of a each time. The
third statement (Post << "The value of variable 'a' is now "<< a << "\n";) posts
the new value of a.

It is important to distinguish between the lines of code text in a Document win-
dow as seen by a human programmer, and the part of the code that SuperCollider
processes as program when the programmer runs a selected portion of that
code. SuperCollider does not run the whole code in the window, but only the code
that was selected; or, if no code is selected, the line on which the cursor is cur-
rently located. Every time that one runs a piece of code, SuperCollider creates and
runs a new program that contains only the selected code. Code that is meant to be
run as a whole is usually indicated by enclosing it in parentheses. This is useful be-
cause one can select it easily, typically by double clicking to the right of an opening
parenthesis.

A variable is used to store an object that will be used in other parts of a program.
One way to visualize variables is as containers with labels. The name of the variable
is the label pointing to the container. (See figure 5.6.)

One creates variables by declaring them with the prefix var. Several variables can
be declared in one var statement. Variables may be declared only at the beginning of

a function (or a selected block of code, which is essentially the same thing; see sec-
tion 5.4.3).

136

Iannis Zannos

Figure 5.6
Variable as a label pointing to a container.

window

Figure 5.7
ni1 stands for the contents of an empty variable.

var window; // create a variable named 'window'
// rest of program follows here

When a variable is first created, it is empty, so its value is represented by the object
nil, which is the object for no value. (See figure 5.7.)

(

var window; // create a variable named 'window'

window.postin; // post the contents of variable 'window' (nil)
)

One cannot run the lines of a program that use a declared variable separately;
one must always run the code as a whole. This is because the variables declared in
the beginning of a function disappear from memory as soon as the function that
declared them finishes, unless other functions within that function also use them.
In figure 5.7, running the line window.postin; alone produces the error message
Variable 'window' not defined.

To store an object in a variable, use the assignment sign =. For example, after stor-
ing a Window in the variable window, one can send it messages to change its state,
as well as use it as an argument to other objects. (See figure 5.8.)

In the above example, the variable window was indispensable to specify which
window the button was going to appear in.

5.3.1 Variable Initialization

The assignment sign (=) can be used in a declaration statement to initialize the value
of a variable.

137 5 Programming in SuperCollider

(

// A window with a button that posts: "hello there!"

var window, button;

// create a GUI window and store it in variable window

window = Window.new("OLA!", Rect(200, 200, 120, 120));

// create a button in the window and store it in variable button

button = Button.new(window, Rect(10, 10, 100, 100));

button.states = [["'ALLO"]1]; // set one single Tabel for the button
button.action = { "hello there!".postln }; // set the action of the button
window. front; // show the window

)

Figure 5.8
Variables can store objects that need to be used many times.

(

var bounds = Rect(10, 20, 30, 50), x = 100, y = 200;
bounds.width.postin;// post the width of a rectangle
bounds.moveTo(x, y); // move the rectangle to a new position

)

5.3.2 Use of Variables

The object stored in a variable remains there until a new assignment statement re-
places it with something else. Variables also are often used as temporary placeholders
to operate on a changing choice from a set of objects. Figure 5.9 is an example that
makes extensive use of variables to create a chain of upward- and downward-moving
runs of short tones.

5.3.3 Instance Variables

An instance variable is a variable that is contained in a single object. Such a variable
is accessible only inside instance methods of that object—unless special code is writ-
ten to make it accessible to other objects. For example, objects of class Point have
2 instance variables, x and vy, corresponding to the coordinates of a point in
2-dimensional space. (See figure 5.10.)

(

var point = Point(0, pi);

point.x.postIn; point.y.postln; point.y == pi;
)

138 Tannis Zannos

(
// execute this first to boot the server and Toad the synth definition
Server.default.waitForBoot({
SynthDef("ping", { | freq = 440 |
Out.ar(0,
SinOsc.ar([freq, freq * (4/3)1, O,
EnvGen.kr(Env.perc(0.05, 0.3, 0.1, -4), doneAction: 2)

)
)
}).add
D
)
(

// execute this next to create the sounds
var countdown = 100;
var note = 50;
var increment_func, decrement_func;
var action;
increment_func = {
note = note + [2, 5, 7, 12].choose;
if (note > 100) { action = decrement_func };
b
decrement_func = {
note = note - [1, 2, 5, 7, 12].choose;
if (note < 50) { action = increment_func };

3
action = increment_func;
{
countdown do: {
Synth("ping", [\freq, note.midicps]);
action.value;
0.1.wait;
}
}.fork;
)
Figure 5.9

Variables can point to different objects during a process.

139

5 Programming in SuperCollider

Point(0,10) Point (500, 200) Point(-20,7)

Figure 5.10
Three instances of Point with their instance variables.

X:

5.3.4 Class Variables

A class variable is defined once for the class it belongs to and is shared with all its
subclasses. It is accessible to class methods and to instance methods of its class and
all its subclasses. For example, the class variable a11 of OSCresponder holds all cur-
rently active instances of OSCresponder. The instance method add of OSCresponder
adds a responder instance to the class variable a11, and the method remove removes
a responder from all. In that way the system keeps track of all responders that are
active, and checks every OSC message received to see if it matches any of the re-
sponders contained in a11. One can write 0SC.a11 do: _.remove to remove all cur-
rently active OSCresponders.

5.3.5 Environment Variables

Environment variables are preceded by a tilde (~). For example, ~a = pi. These refer-
ence the value of a named variable in the current Environment, a special holding
place for data. They do not need to be declared, but are instantly added to the Envi-
ronment when assigned. An Environment is a kind of Dictionary that represents the
set of bindings of values to names; that is, the Environment variables. These bindings
differ from those created by normal variable declarations in that they have a less
limited scope (though not truly “global” variables in the traditional sense, they can
sometimes be treated as such), and they can be modified more easily (see section
5.6.7 for more details).

The relationship between Environment variables and the Environment that con-
tains them can be seen by printing the current Environment. (See figure 5.11.)

5.3.6 Variables with Special Uses

The variables described in this section provide access to objects that are useful or
indispensable, but either cannot be accessed by conventional programming within
the SuperCollider class system or need to be accessed by all objects in the system.

140

Tannis Zannos

// run each line separately:
currentEnvironment; // empty if no environment variables have been set

~alpha = pi; // set env. variable ~alpha to pi
currentEnvironment; // see current Environment again: ~alpha is set
~freq = 800; // set another environment variable

Server.local.boot;

{ LFNoise0.ar(~freq, 0.1) }.play; // use an environment variable

// setting an environment variable to nil is equivalent to removing it:
~alpha = nil;

currentEnvironment; // alpha is no Tonger set

Figure 5.11

currentEnvironment.

5.3.6.1 Interpreter variables

The class Interpreter defines 26 instance variables whose names correspond to the
lowercase letters a to z. Since all code evaluated at runtime is run by an instance of
Interpreter, these variables are accessible within that code without having to be de-
clared. However, this works only when evaluating code from outside of class defini-
tions, that is, with code selected to be run by the Interpreter. The following example
can be executed one line at a time (first boot the default server with Server.default
.boot).

n = {| freq = 400| LFDNoisel.ar(freq, 0.1)}.play; // store a synth in n
n.set(\freq, 1000); // set the freq parameter of the synth to 1000
n.free; // free the synth (stop its sound)

5.3.6.2 Pseudo variables
Pseudo variables are not declared anywhere in the SuperCollider library but are
provided by the compiler. They are the following:

this represents the object that is running the current method. In runtime code this is
always the current instance of Interpreter (see also section 5.4.3.1). Thus one can
run this.dump to view the contents of the current Interpreter instance, including the
variables a-z.

thisProcess is the process that is running the current code. It is always an instance
of Main. Although rarely used, some possible applications are to send the current
instance of Main messages that affect the entire system, such as thisProcess.stop
(stop all sounds), or to access the Interpreter variables from any part of the system
(thisProcess.interpreter.a accesses the Interpreter variable a).

141

5 Programming in SuperCollider

thisMethod is the method within which the current statement is running. One can
use this in debug messages to print the name of the method where some code is being
checked. For example, [this, this.class, thisMethod.name].postln.
thisFunction is the innermost function within which the current statement is run-
ning. It is indispensable for recursion in functions (see section 5.4.9).
thisFunctionDef is the definition of the innermost function within which the current
statement is running. The function definition contains information about the names
and default values of arguments and variables. Section 5.4.10 briefly discusses its
uses.

thisThread is the thread running the current code. A thread is a sequence of execu-
tion that can run in parallel with other threads and can control the timing of the
execution of individual statements in the program. Examples of the use of thisThread
are found in the classes Pstep and Pseg, where it is employed to control the timing of
the thread.

One special case: The keyword super redirects the message sent to it to look for
a method belonging to the superclass of the object in which the method of the cur-
rent code is running. This is not a variable at all, because one cannot access its value
but can only send it a message. super is used to extend a method in a subclass. For
example, the class method new of Pseq extends the method new of its superclass
ListPattern, which in turn extends the method new of Object. This means Pseq’s new
calls super.new—thereby calling method new of ListPattern—but adds some state-
ments of its own. In turn, ListPattern also calls super.new—thereby calling method
new of Object to create a new instance of ListPattern—but again adds some stuff of
its own.

5.3.6.3 Class variables of Object

The following variables are class variables of class Object. Since all objects are in-
stances of some subclass of Object, they have access to these variables, and thus
these variables are automatically accessible everywhere.

currentEnvironment is the Environment being used right now by the running pro-
gram. This can be changed by the programmer.

topEnvironment is the original currentEnvironment of the Interpreter instance that
runs programs in the system. It can be accessed independently of currentEnviron-
ment, which changes in response to Environment’s use or make methods. (See figure
5.12)

uniqueMethods holds a dictionary that stores unique methods of objects. Unique
methods are methods that are defined not in a class but only in a single instance. For
example:

142 Tannis Zannos

(

~a = "TOP"; // store "TOP" in ~a, top environment

(a: "INNER") use: { // run function in environment with ~a = "INNER"
currentEnvironment.postin; // show the current environment

topEnvironment.postin; // show the top environment (different!)
~a.postln // show ~a's value in current environment
}
~a; // show ~a's value in top environment
)

Figure 5.12

topEnvironment versus currentEnvironment.

(

// create 2 windows and store them in variables p, q
#p, q = [100, 400].collect {|i]|

Window(i.asString, Rect(i, i, 200, 200)).front
}
)
// add a unique method to p only
p.addUniqueMethod(\greet, {|w| w.name = "Hello!"});
p.greet; // p understands 'greet'
g.greet; // but q does not understand 'greet'

dependantsDictionary holds a dictionary that stores dependants of objects. A depen-
dant of an Object o is any object that needs to be notified when o changes in some
way. To notify the dependants of an object that the object has changed, one sends the
message changed. Details of this technique are explained in section 5.7.7.

5.3.7 Variables versus References

A variable is a container with which one can do only 2 things: store an object and
retrieve that object. One cannot store the container itself in another container, so it
is not possible to store a variable x itself in another variable y. As the following ex-
ample shows, what is stored is the content of variable x. When the content of vari-
able x is changed, the previous content still remains in variable y. (See figures 5.13
and 5.14.)

To store a container in a variable, one uses a reference object.

var aref, cvar;
aref = Ref.new; // first create the reference and store it in aref
cvar = aref; // then store the contents of aref in cvar

143 5 Programming in SuperCollider

(

var alpha, beta, gamma;

gamma = alpha; // storing variable alpha in gamma only stores nil
alpha = 10; // store 10 in alpha ...

gamma.postin; // but the value of gamma remains unchanged

alpha = beta; // so one cannot use gamma as 'joker'

beta = 20; // to switch between variables alpha and beta.
gamma.postin; // gamma is still nil.
)

Figure 5.13

Variables store only values, not other variables.

&

Figure 5.14
Assigning a variable to another variable stores its contents only.

aref.value = 10; // change the value of the reference in aref
cvar.value.postin; // and retrieve that value from cvar

5.4 Functions

A function is an object representing a bit of code that can be evaluated from other
code at runtime. In this sense it is like a miniature program. One can “package” a
code that does something useful inside a function and then run that function wher-
ever one wants to do that thing, instead of writing out the same code in different
places. The code that creates a function is called the definition of the function. When
a program runs a function, it is said to call or evaluate that function.

144

Tannis Zannos

To “package” a code into a function, one encloses it in braces {}.
{1 + 1} // a function that adds 1 to 1

This creates a function object or, in other words, defines a function. To run the
function, one sends it the message value:

{1 + 1}.value // evaluate {1 + 1}

This is called function evaluation.
5.4.1 Return Value versus Side Effect

The use of the term “evaluate” here comes from the idea of requesting a value that
is computed and returned by the function for further use. The return value of a func-
tion is the value of the last statement that is computed in the function. However, in
many cases one calls a function not to obtain a final value but to start a process that
will result in some change, such as to create sounds or to show graphics on the
screen. For example, {10.rand} provides a random number between 0 and 9 as a
return value, and {Window.allWindows do: _.close} closes all GUI windows. It is the
effect of the latter, rather than the return value, that matters.

This is also true for methods. In the example presented in section 5.2.3.1, Server
.local.boot, the message local is sent to class Server to obtain the object represent-
ing the local server as a return value, whereas the message boot is sent to the local
server in order to boot it. In the first case (message Tocal) it is the return value of the
operation that is of further use, while in the second case (message boot) it is the effect
of the boot operation that matters.

5.4.2 Functions as Program Modules

Since functions are objects that can be stored in variables, it is easy to define and
store any number of functions (i.e., miniature programs) and run them, whenever
required, any number of times. Thus, defining functions and configuring their com-
binations can be a major part of programming in SuperCollider.

Figure 5.15 illustrates how to call a function that has been stored in a variable in
various ways. The function change_freq in the example does 2 things:

It calculates a new frequency for the sound by moving 1 minor tone upward or
downward from the previous pitch.
It sets the frequency of the sound to the new pitch.

The code of the function consists of 2 statements:

145 5 Programming in SuperCollider

Server.default.boot; // (boot Server before running example)

(

// Define a function and call it in different contexts

var synth; // Synth creating the sound that is changed

var freq = 220; // frequency of the sound

var change_freq; // function that changes the frequency of the sound
var window; // window holding buttons for changing the sound

var buttonl, button2, button3; // buttons changing the sound

// Create a synth that plays the sound to be controlled:
synth = { | freq = 220 | LFTri.ar([freq, freq * 2.01], 0, 0.1) }.play;
// Create frequency changing function and store it in variable change_freq

change_freq = { // start of function definition
freq = freq * [0.9, 0.9.reciprocal].choose; // change freq value
synth.set(\freq, freq); // set synth's frequency to new

value

}; // end of function definition

// Create 3 buttons that call the example function in various ways
window = Window("Buttons Archaic", Rect(400, 400, 340, 120));
/] —mmmmmmm e Example 1 ------—-—-—mmmmmmmm -
buttonl = Button(window, Rect(10, 10, 100, 100));
buttonl.states = [["I"]]; // set the label of buttonl
// buttonl calls the function each time that it is pressed
buttonl.action = change_freq; // make buttonl change freq once
/] —mmmmmmm e Example 2 ------—-—-—mmmmmmmm -
button2 = Button(window, Rect(120, 10, 100, 100));
button2.states = [["III"]];
// Button2 creates a routine that calls the example function 3 times
button2.action = { // make button2 change freq 3 times

{ 3 do: { change_freq.value; 0.4.wait } }.fork; // play as routine
3
[/ e Example 3 ------—-—--mmmmm -
button3 = Button(window, Rect(230, 10, 100, 100));
button3.states = [["VIII"]];
button3.action = { // Tike example 2, but 8 times

{ 8 do: { change_freq.value; 0.1.wait } }.fork; // play as routine
3
// use large size font for all buttons:
[buttonl, button2, button3] do: _.font_(Font("Times", 32));
// stop the sound when the window closes:
window.onClose = { synth.free };
window.front; // show the window

)

Figure 5.15
Multiple use of a function stored in a variable.

146

Tannis Zannos

freq = freq * [0.9, 0.9.reciprocal].choose; // change freq value
synth.set(\freq, freq); // set synth's frequency to new value
}

This function is stored in the variable change_freq and then called in 2 different ways:

It is stored in the action part of a GUI button so that when that button is pressed, it
runs the function.

It is called explicitly by a function inside a Routine that sends it the message value.
(As noted in chapter 3, Routine has the ability to time the execution of its state-
ments, and therefore can run the function in question at timed intervals.)

5.4.3 Compilation and Evaluation: The Details

SuperCollider undergoes a 3-step process every time that it executes code entered in
a work space window: First, it compiles the code of the program and creates a func-
tion that can be evaluated. Second, SuperCollider evaluates that function. Finally,
SuperCollider prints out the result of the evaluation in the post window.

Figure 5.16 shows what happens when one runs the code 3 + 5. The equivalent of
the entire compilation plus evaluation process can be expressed by the code “3 + 5”.
interpret.

5.4.3.1 Who does the compiling?

In SuperCollider, even the top-level processes of interaction with the user are defined
in terms of objects inside the system. An easy way to see what happens is to cause an
error and look at the error message. For example, evaluate: 1.error. The bottom line
shows the beginning of the compilation process.

Process:interpretPrintCmdLine 14A562F0
arg this = <instance of Main>

Immediately above that is the next method call:

Interpreter:interpretPrintCmdLine 15055D00
arg this = <instance of Interpreter>

This shows that the top-level object responsible for compiling and interpreting
text input is an instance of class Main, and that it delegates the interpretation to an
instance of Interpreter, calling the method interpretPrintCmdLine.

5.4.3.2 Byte code: Looking at the compiled form of a function
The compilation process consists in successively replacing the SuperCollider code
of the program with pieces of byte code and data in the computer’s memory. The

147 5 Programming in SuperCollider

Stages Objects Involved ~ Equivalent SuperCollider Code
SuperCollider Code String 345 "3 4 ogn
(Text on Editor Window)
Compile "3 + 5".compile
Function
Compiled SuperCollider Program receiver message argument (3+5}
(Byte Code in SuperCollider)
Evaluate { 3+ 5 }.value
Result Integer 6
(Posted in Window "Untitled") 8

Figure 5.16
Compiling and Evaluating Code.

compiler’s task is first to parse (i.e., understand the program structure contained in
the code) and then to translate that exact structure—including data and instruc-
tions—into byte code. To display the actual byte code of a compiled SuperCollider
program, one sends the definition of the function representing the program the mes-
sage dumpByteCodes. To obtain the definition of the function, one sends it the mes-
sage def. Thus, to display the byte code of the above example 3 + 5, evaluate this
line:

{3 + 5}.def.dumpByteCodes

This first sends the message def to the function to obtain its definition, and then
the message dumpByteCodes to the definition, to print out the byte code. Figure 5.17
explains the resulting printout.

5.4.4 Functions with Arguments

Functions can have inputs for receiving data from the context that calls them. The
inputs, if any, are defined at the beginning of the function, before any variables, and

148 Tannis Zannos

Actual bytes in each byte-code

Index of bytes in code Readable equivalent of byte code instruction

’
i
7
/

... | BYTECODES: oS]
...50 2C 03 &= Pushint 3 <-------—--""""
2 2C05 Pushint 5

4 B0 TailCallReturnFromFunction
5 E0 SendSpecialBinaryArithMsg '+'
6 F2 BlockReturn

a FunctionDef - closed
Ay
AN

object returned by def.dumpByteCode

Figure 5.17
Bytecode of Function { 3 + 5 }.

are called arguments. Arguments are variables of a function whose values can be set
by the program that calls it. When a function needs to be evaluated with different
sets of data each time, it defines as many arguments as there are data items required.
The program can then give data to a function by appending them as arguments in
the value message. Here is how to define and call a function that computes and re-
turns the sum of 2 numbers, a and b:

(

var sum2; // define variable to store the function;

// define the function and store it in variable sum2:

sum2 = {arg a, b; // start of function definition, arguments a, b
// the body of the function (the program) is here
a+b // compute and return the function of a and b

}; // end of function definition

// call the function, giving it the numbers 2 and 3as arguments:
sum2.value(2, 3); // the returned value is 5

)

See the Functions Help file for a depiction of the metaphorical “inputs” and “out-
put” of a function.

5.4.4.1 Defining arguments
In SuperCollider, arguments are defined by prepending the declaration keyword arg
or by enclosing them in vertical bars | |. (See figure 5.18.)

Three dots (... argName) before the final (or only) argument name in the argu-
ment list can be used to collect any number of provided arguments into 1 array
passed as a single argument to the function. (See figure 5.19.)

149 5 Programming in SuperCollider

(

// a function that calculates the square of the mean of two numbers

var sg_mean;

sq_mean = { arg a, b; // arguments a, b defined in arg statement form
(a + b / 2).squared;

b

// calculate the square of the mean of 3 and 1:

sg_mean.value(3, 1);

)

Figure 5.18
Simple function with arguments.

(

// a function that calculates the square of the mean of any numbers

var sg_mean_all;

sq_mean_all = { | ... numbers | // using ellipsis and | | argument form
(numbers.sum / numbers.size).squared;

b

// calculate the square of the mean of [1, 3, 5, -7]:

sq_mean_all.(1, 3, 5, -7); // short form: omit message 'value'

)

Figure 5.19
Using ... for undefined number of arguments.

5.44.2 Default argument values

The default values of arguments can be included in argument definitions, in the same
manner as variables. A default value is used only if no value was provided for the
argument when the function was called. (See figure 5.20.)

Since functions are objects in SuperCollider—or, more exactly, “first-class
objects”*—their behavior can easily be extended to include other things besides run-
ning them with the message value. The following sections describe common ways of
using functions.

5.4.5 Customizing the Behavior of Objects with Functions

Several classes of objects that deal with user interface, or with interactive fea-
tures that should be easily set by the programmer, store functions in variables. Such

150 Tannis Zannos

(
var w_func;
w_func = { arg message = "warning!", bounds = Rect(200, 500, 500, 100);
var window;
window = Window("message window", bounds).front;
TextView(window, window.view.bounds.insetBy(10, 10))
.string = message;
b

// provide text, use default bounds
w_func. (String.new.addAT1(Array.new.addA11(" Major news! ").pyramid(7)));
)

Figure 5.20
Using and overriding default values of arguments.

(

var window, button;

window = Window("Server Button", Rect(400, 400, 200, 200));

button = Button(window, Rect(5, 5, 190, 190));

button.states = [["boot!"], ["quit!"]];

button.action = { |me| Server.default perform: [\quit, \boot][me.value] };
window. front;

)

Figure 5.21
Performing messages chosen by index.

functions in variables define how an object should react to certain messages. For
example, buttons or other GUI widgets use the variable action to store the function
that should be called when the user activates the widget by a mouse click.

Example 1. The action of the button chooses between 2 messages to perform on
the default Server, depending on the value (state) of the button. (See figure 5.21.)
Example 2. The action chooses between 2 functions, depending on the state of the
button. (See figure 5.22.)

5.4.6 Functions as Arguments in Messages for Asynchronous Communication

Asynchronous communication happens when a program requests an action from the
system but cannot determine when that action will be completed. For example, it

151

5 Programming in SuperCollider

(
var window, button;
window = Window("Server Button", Rect(400, 400, 200, 200));
button = Button(window, Rect(5, 5, 190, 190));
button.states = [["boot"], ["quit"]1];
button.action = { | me |
[{ "QUITTING THE DEFAULT SERVER".postln;
Server.default.quit;
},{ "BOOTING THE DEFAULT SERVER".postln;
Server.default.boot;
}1[me.value].value;
};
window. front;

)

Figure 5.22
Evaluating functions chosen by index.

may ask for a file to be loaded or to be printed, but the time required for this to fin-
ish is unknown. In such a situation, it would be disruptive to pause the execution
of the program while waiting for the action to complete. Instead, the program dele-
gates the processing of the answer expected from the action to an independent
process—represented by a function—that waits in the background. Two common
cases are the following.

5.4.6.1 Asynchronous communication with a Server

The system asks for an action to happen on a server, for example, to load a sound
file into a buffer (Buffer.read). Since the time it will take the server to load the file is
not known in advance, a function is given to read as argument, which is executed
when the server completes loading the buffer. Figure 5.23 demonstrates that the ac-
tion passed as an argument to the read method is executed after the statement fol-
lowing Buffer.read.

5.4.6.2 Dialogue windows

Dialogue windows that demand input from the user employ an action argument to
determine what to do when input is provided. This prevents the system from waiting
indefinitely for the user. (Boot the server first with Server.default.boot.)

(
Buffer.loadDialog(action: {|buffer]|

format("loaded % at: %", buffer, Main.elapsedTime).postin;

152

Tannis Zannos

Server.default.boot // boot default server before running example

(

var buffer;

buffer = Buffer.read(path: "sounds/allwlk0l.wav",
action: { | buffer |
format("loaded % at: %", buffer, Main.elapsedTime).postin;

D;

format("Reached this after 'Buffer.read' at: %", Main.elapsedTime).postin;

buffer;
)

Figure 5.23
Asynchronous communication with the server.

D;

format("continuing at: %", Main.elapsedTime).postin;

)
5.4.7 lterating Functions

Iteration is the technique of repeating the same function a number of times. It may
be run for a prescribed number of times (anInteger.do(aFunction)), an unlimited
number of times (loop(aFunction)) while a certain condition is true (while), or over
the elements of a Collection (see section 5.6.3).

5.4.7.1 lterating a specified number of times

do: Iterate n number of times, pass the count as argument:

10 do: {|i| [i, i.squared, i.isPrime].postin}

I: Iterate n number of times, pass the count as argument, collect results
in an Array:

{10.rand * 3}!5

for: Iterate between a minimum and a maximum integer value:

30.for(35, {|i| i.postln});

forBy: Iterate between 2 values, using a definable step:

2.0.forBy(10, 1.5, {|i]| i.postIn})

5.4.7.2 Iterating while a condition is true
The message while will repeatedly evaluate a function as long as a test function
returns true: {[true, false].choose}.while({"was true".postln;}). It is usually

coded like this:

153

5 Programming in SuperCollider

Server.default.boot; // do this first
(// then the rest of the program
var window, routine;
window = Window("close me to stop").front;
window.onClose = { routine.stop };
routine = {
Toop {
(degree: -10 + 30.xrand, dur: 0.05, amp: 0.1.rand).play;
0.05.rand.wait;
}
}.fork;
)

Figure 5.24
Ilustrates ‘loop’ and the use of Event— (key: value).play—to play notes.

(
var sum = 0;
while {sum = sum + exprand(0.1, 3); sum <10} {sum.postin}

)

5.4.7.3 Infinite (indefinite) loop

loop repeats a function until the process that contains the loop statement is stopped.
It can be used only within a process that stops or pauses between statements; other-
wise, it will hang the system with an infinite loop. (See figure 5.24.)

5.4.8 Partial Application: Shortcut Syntax for Small Functions

It is possible to construct functions that apply arguments to a single message call by
using the underscore character _ as a placeholder for an argument. For example,
instead of writing {arg x; x.isPrime}, one can write _.isPrime. If more than 1 _ is in-
cluded, then each _ takes the place of a subsequent argument in the function. Ex-
amples are shown in figure 5.25.

5.4.9 Recursion

Recursion is a special form of iteration in which a function calls itself from inside its
own code. To do this, the function refers to itself via the pseudo variable thisFunc-
tion. (A pseudo variable is a variable that is created and set by the system, and is not
declared anywhere in the SuperCollider class library. See section 5.3.6.2.) The value
of thisFunction is always the function inside which thisFunction is accessed. Figures

154

Iannis Zannos

_.isPrime ! 10

_.squared ! 10

@.(30, 40) // equivalent to: { | a, b | Point(a, b) }.value(30, 40)
Array.rand(12, 0, 1000).cTump(4) collect: Rect(*_)
(1..8).collect([\a, \b, _1);

(a: _, b: _, c: _, d: _, e: _).(*Array.rand(5, 0, 100));

Figure 5.25
Partial application.

(

var iterative_factorial;

iterative_factorial = { | n |
var factorial = 1; // initialize factorial as factorial of 1
// calculate factorial n times, updating its value each time
ndo: { | i | factorial = factorial * (i + 1) };
factorial; // return the final value of factorial;

b

iterative_factorial. (10).postln; // 10 factorial: 3628800

)

Figure 5.26
Iterative factorial.

5.26 and 5.27 show the difference in implementing the algorithm for computing the
factorial of a number iteratively and using recursion. The recursive algorithm is
shorter.

Conciseness is not the only reason for using recursion. There are cases when only
a recursive algorithm can be used. Such cases occur when one does not know in
advance the structure and size of the data to be explored by the algorithm. An ex-
ample is shown in figure 5.28.

5.4.10 Inspecting the Structure of a Function

A particular feature of functions is the ability to access a function’s parts, which
define its structure. An example is the following:

var foo;
foo = {la=1, b =2 a.pow(b)};
foo.def.sourceCode.postin; // print sourceCode

155

5 Programming in SuperCollider

// Define the factorial function and store it in variable f:
f={] x| if (x> 1) { x * thisFunction.value(x - 1) } { x } };
f.value(10); // 10 factorial: 3628800

Figure 5.27
Recursive factorial.

(

/* a function that recursively prints all folders and files
found in a path and its subfolders */
{ | path |
// store function here for use inside the if's {}:
var thisFunc = thisFunction;
format("====== now exploring: %", path).postln;
// for all items in the path:
path.pathMatch do: { | p |
// if the item is a folder, run this function on its contents
// otherwise print the file found
if (p.last == $/) { thisFunc.(p ++ "*") }{ p.postin }
}
}.("*") // run function on home path of SuperCollider
)

Figure 5.28
Recursion over a tree of unknown structure.

The source code of a function is stored only if that function is closed, that is, if it
does not access the variables of an enclosing function. A function’s def variable con-
tains a FunctionDef object that also contains the names of the arguments and vari-
ables of the function and their default values. These are used by the SynthDef class,
for example, to compile a function into a UGen graph and then into a SynthDef that
can be used to create synths on the Server.

5.4.11 Scope of Variables in Functions

As mentioned in section 5.3, variables are accessible only within the context (i.e., the
function) that defines them. However, if a function mother_func creates another
function child_func, then child_func has access to the variables created within
mother_func. This is useful when several functions want to share data. Thus, in
figure 5.15, the variable freq is defined in the (implicit) top-level function, and the

156

Tannis Zannos

function stored in change_freq is a child_func that has access to this variable. The
function change_freq can therefore both read (access) the value of the variable freq
and set (write) it whenever it is called. The set of variables created by a function f
and made available to functions created within that function f is called a function’s
closure.?

It is in fact possible to view a closure as a simple and limited form of an object,
where the variables defined in the top-level function of the closure serve as instance
variables. This technique has been used in Pyrite, an “external object” that provides
a programming language inside Max. Pyrite was created by James McCartney in
1994 and is one of the direct precursors of SuperCollider. The following 2 examples
show how to model the behavior of the Counter class shown in section 5.5 without
writing a class definition.

5.4.11.1 Modeling instances through functions that create other functions

Figure 5.29 defines a mother_func stored as counter_maker, which in turn creates
and returns a child_func. Each time that counter_maker is run, it creates a new in-
stance of its child_func. It also creates copies of its own variables, in this case the
argument variable max_count and the variable current_count, which are accessible
only to its own child function.

So from 1 mother function one can create multiple closures, each closure having
its own set of variables and functions, and each function in that closure is able to run
multiple times. In this way, one can construct programs that make smaller programs
that work on their own copies of data. In the present example, the function stored
in counter_maker is run once with a max_count argument value of 10 and once with
a max_count argument value of 5. Consequently, the first time it creates a function
that counts to 10 and the second time, one that counts to 5.

The effect of this technique is similar to defining instance variables, and the child
functions that have access to these variables are similar to instances of a class that
has access to these variables. Figure 5.30 shows how closures with their own vari-
ables are generated from a function.

5.4.11.2 Functions in Events as methods

This section extends the example of section 5.4.11.1 to add a further feature: the
ability of each counter to reset itself. It also shows a more flexible technique for cre-
ating a graphical user interface: instead of a fixed number of counter items, a func-
tion is defined that can generate a GUI for any number of counters, whose maximum
counts are given as arguments to the function. Instead of a function, the counter_
maker in this example returns an Event. An Event is an object that can hold values
associated to named keys. Instead of having a fixed, predefined number of instance
variables, an Event can hold any number of key-value associations that function

157 5 Programming in SuperCollider

(

// a function that creates a function that counts to any number
var counter_maker;
var window, buttonl, button2; // gui for testing the function

// the function that makes the counting function
counter_maker = { | max_count |

// current_count is used by the function created below

// to store the number of times that it has run

var current_count = 0;

{ // start of definition of the counting function

if (current_count == max_count) {
format("finished counting to %", max_count).postln;

max_count; // return max count for eventual use
H
current_count = current_count + 1; // increment count
format("counting % of %", current_count, max_count).postin;
current_count // return current count for eventual use
}
} // end of definition of the counting function
};
/] ----- Test application for the counter_maker function -----

// window displaying 2 buttons counting to different numbers

window = Window("Counters", Rect(400, 400, 200, 80));

// make a button for triggering the counting:

buttonl = Button(window, Rect(10, 10, 180, 20));

buttonl.states = [["counting to 10"]]; // labels for buttonl

// make a function that counts to 10 and store it as action in buttonl
buttonl.action = counter_maker.(10);

button2 = Button(window, Rect(10, 40, 180, 20));

button2.states = [["counting to 5"]1]; // labels for button2

// make a function that counts to 5 and store it as action in button2
button2.action = counter_maker.(5);

window. front; // show the window

)

Figure 5.29
A function that creates functions that count.

158

mother-func

{

arg max_count;
generating function e
("Class”) {
current_count = current_count + 1;

}

} /s

Tannis Zannos

_________________ closure n
closure 1 closure2 y 0 TTTTTTTEeeenl .

child-func (1) child-func (2) X
max_count (1) current_count (1) max_count (2) current_count (2)
{ { closures
current_count = current_count + 1; current_count = current_count + 1; ("instances")
} }
Figure 5.30

Functions created by functions as models of instances.

similarly to the named instance variables of an Object. In the current example the
Event contains 3 keys—‘count1,’ ‘reset_count,” and ‘max_count’—whose values are
bound to functions that operate on the variables of the counter_maker closure.
These functions assigned as values to keys act the way an instance method would in
a normal class definition. Thus, an Event made by counter_maker is the model of an
object with 2 variables and 3 methods. The code in the example of figure 5.31 is
hardly any bigger than the previous version, despite the addition of 2 features.

The above example can be seen as a rudimentary class definition constructed with-
out employing the regular class definition system of SuperCollider. It is left to the
reader to extend the example in one further step, by storing the functions of counter
_maker and make_counters_gui in an Event to model a class Counter with 2 class
methods.

The syntax for running the functions stored in an Event is the same as that of a
method call, (receiver.message), the only difference being that the first argument
passed to a function in an Event is the Event itself. There is a catch, however. If one
stores a function in an Event under the name of an instance method that is defined
in the class Event, then that method will be run instead of the function stored by the
user. So, for example, one cannot use a function stored in an Event under reset:

(reset: {"this is never called".postln;}).reset;

For more information on this approach, see chapter 8.

159 5 Programming in SuperCollider

(

var counter_maker; // creator of counters
var make_counters_gui; // function making counters + a gui
/* a function that creates an event that counts to any number,
and resets: */
counter_maker = { | max_count |
var current_count = 0;
(// the counter object is an event with 3 functions:
countl: // function 1: increment count (stored as countl)
{ // start of definition of the counting function
if (current_count == max_count) {
format("finished counting to %", max_count).postln;
H
current_count = current_count + 1; // increment count
format("counting % of %", current_count, max_count).postin;
}
}, // end of definition of the counting function
reset_count: { // function 2: reset count (stored as reset_count)
format("resetting % counter", max_count).postin;
current_count = 0

}!
max_count: { max_count } // function 3: return value of max_count
)
3
// Function that makes several counters and a GUI to control them
make_counters_gui = { | ... counts |
var window, counter;
window = Window("Counters",
Rect (400, 400, 200, 50 * counts.size + 10));
// enable automatic placement of new items in window:
window.view.decorator = FlowLayout(window.view.bounds, 5@5, 5@5);
counts collect: counter_maker.() do: { | counter |
Button(window, Rect(0, 0, 190, 20))
.states_([["Counting to: " ++ counter.max_count.asString]])
.action = { counter.countl };
Button(window, Rect(0, 0, 190, 20))
.states_([["Reset"]1])
.action = { counter.reset_count };
};
window. front;
3

make_counters_gui.(5, 10, 27); // example use of the GUI test function
)

Figure 5.31
Functions stored in events as instance methods.

160 Tannis Zannos

5.5 Program Flow Control and Design Patterns

Control structures are structures that permit you to choose the evaluation of a func-
tion depending on a condition. That is, a function is evaluated only if the value of a
test condition is true. There are variants involving 1 or more functions. (For alterna-
tive syntax forms, see the Help file Syntax-Shortcuts.)

5.5.1 If Statements

Run a function only if a condition is true:
if ([true, false].choose) {"was true".postin}
Run a function if a condition is true; otherwise, run another function:

if ([true, false].choose) {"was true".postin} {"was false".postln}
5.5.2 Case Statements

A case statement is a sequence of function pairs of the form “condition-action.” The
condition functions are evaluated in sequence until one of them returns true. Then
the action function is evaluated and the rest of the pairs are ignored. One can add a
single default action function at the end of the pairs sequence, which will be executed
if none of the condition functions returns true.

(

i = [0, 1, inf].choose;
x = case {i == 0} {\no}
{i == 1} {\yes}

{\infinity};
)

5.5.3 Switch Statements

A switch statement matches a given value to a series of alternatives by checking for
equality. If a match is found, the function corresponding to that match is evaluated.
The form of the switch statement is similar to that of the case statement. The differ-
ence is that the switch statement uses a fixed test—that of equality with a given
value—whereas the case statement uses a series of independent functions as tests.

(
switch ([0, 1, inf].choose,

0, {\no},

161

5 Programming in SuperCollider

1, {\yes},
{\infinity})

5.5.4 Other Control Techniques: Behavior Patterns

Selecting among alternatives for directing the execution flow of a program is not
limited to the statements above. There are many techniques addressing this topic,
some of which are also known as Design Patterns (Gamma et al. 1994; Beck, 1996).
Typically, techniques of this category would fall under the group Behavior Patterns.
Examples of such patterns are Chain of Responsibility, Command, Iterator, Media-
tor, Observer, and State. Beck (1996) classifies Behavior Patterns into 2 major cate-
gories. Under “Method” he lists patterns that are based on the organization of an
algorithm inside methods. Under “Message” he classifies patterns that use message
passing to create algorithms. These patterns can be very small but equally powerful.
An example is the Choosing Message pattern (Beck, 1996, pp. 45-47). Instead of
choosing among a number of alternatives with an if statement or a switch statement,
one delegates the choice to the methods of the possible objects involved. For exam-
ple, consider an object that represents an entry in a list of publications, and that re-
sponds to the message responsible by returning some object that represents the name
of the person who is responsible for the object. For film publications, the “respon-
sible” is the producer, for edited books it is the editor, for single-author books it is
the author. The Choosing Message pattern says that instead of writing

responsible {|entry|
case {entry.isKindOf(Film)} {Aentry.producer}
{entry.isKindOf(EditedBook)} {Aentry.editor}
{Aentry.author} // in all other cases, return the author

}
one writes
responsible {|entry|Aentry.responsible}

and then codes the different reactions to responsible in the classes of the objects that
are involved:

// add method "responsible" in 3 previously defined classes:
+ Publication {responsible {Aauthor}}

+ Film {responsible {Aproducer}}

+ EditedBook {responsible {Aeditor}}

In this example, Publication is the default class for entries and gives the default
method; all other classes for entries are subclasses of Publication. Only those classes

162 Tannis Zannos

which deviate from the default responsible method need to redefine it. (See section
5.2.1.2 for syntax of methods and class extensions.)

The power of this technique is, first, that the number of choices can easily be ex-
tended by creating new classes and, second, that the method responsible for each
class can be as complex as needed, without resulting in a huge case statement that
aggregates all the choices for “responsible” in 1 place. In other words, complexity is
reduced—or, rather, broken down into pieces in an elegant way—by delegating re-
sponsibility for different parts of the algorithm to different classes. Thus, algorithms
are organized by the combination of a number of method calls, which split the algo-
rithm into pieces and delegate the responsibility for different parts of the algorithm
to different classes. As a result, methods tend to contain very little code, often just a
single line. Although this may seem confusing at the first encounter, it gets clearer
as one becomes familiar with the style of code that pervades good object-oriented
programming,.

5.6 Collections

Collections are objects that hold a variable number of other objects. For example,
figure 5.32 shows a program that adds a new number to a sequence each time the
user clicks on a button, and then plays the sequence as a “melody.”

The above example builds a sequence of notes by adding a new random integer
between 0 and 15 each time. Note that adding an element to nil creates an array with
the added element (i.e., nil add: 1 results in [1]).

Server.default.boot; // boot the server first;
(
var degrees, window, button;
window = Window("meTlodies?", Rect(400, 400, 200, 200));
button = Button(window, window.view.bounds.insetBy(10, 10));
button.states = [["click me to add a note"]];
button.action = {

degrees = degrees add: 0.rrand(15);

Pbind(\degree, Pseq(degrees), \dur, Prand([0.1, 0.2, 0.4], inf)).play;
b
window. front;

)

Figure 5.32
Building an Array with add.

163

5 Programming in SuperCollider

The subclass tree of Collection is extensive (Collection.dumpClassSubtree) and is
summarized in the Help file Collections. Collections can be classified into 3 types
according to the way in which their elements are accessed:

Collections whose elements are accessed by numeric index. For example, [0, 5, 9].
at(0) accesses the first element of the array [0, 5, 9], and [0, 5, 9].put(1, \hello) puts
the symbol \hello into the second position of array [0, 5, 9]. Such collections include
Array, List, Interval, Range, Array2D, Signal, Wavetable, and String. Numeric in-
dexes in SuperCollider start at 0; that is, 0 refers to the first element in a collection.
Accessing an element at an index past the size of the collection returns nil. Other
messages for access exist—wrapAt, clipAt, foldAt—that modify invalid index num-
bers so they always return some element. There are collections that hold only a
specific kind of object, such as Char (String), Symbol (SymbolArray), Float (Signal,
Wavetable).

Collections whose elements are accessed by using a symbol, or another object, as
index. For example (a: 1, b: 2)[\a] returns 1. Such collections are Dictionary, Iden-
tityDictionary, MultiLevelldentityDictionary, Library (a global, nested MultiLevel-
IdentityDictionary that can be accessed by series of objects as indices), Environment,
and Event. All such collections are made up of Association objects, which are pairs
that associate a key to a value and are written as key->value. Although it is possible
to look up such pairs both by key and by value, dictionaries are optimized for lookup
by key.

Collections whose elements are accessed by searching for a match to a condition. For
example, Set[1, 2, 3, 4, 5] select: (_ > 2). These are Set and Bag.

5.6.1 Creating Collections

The generic rule for creating a collection is to enclose its elements in brackets [],
separating each element by a comma. If the class of a collection is other than Array,
it is indicated before the brackets:

List[1, 2, 3]; LinkedList[1, 2, 3]; Signal[l, 2, 3]; Dictionary[\a->1,
2->pi, \c-> 'alpha']; Set[1, 2, 3]

Additionally, there are several alternative techniques for notating and generating
specific types of collections:

An arithmetic series can be abbreviated by giving the beginning and end values and,
optionally, the step between subsequent values: (1..5); (1, 1.2 .. 5).

An Event can be written as a pair of parentheses enclosing a list of the associations
of the Event written as keyword-value pairs: (a: 1, b: 2).

164

Tannis Zannos

Environments and Events can be created from functions with the message make (see
section 5.6.8).

There are several messages for constructing numerical Arrays algorithmically. For
example:

Array.series(5, 3, 1.5); Array.geom(3, 4, 5); Array.rand(5, -10, 10)

Wavetables and Signals are raw Arrays of floating-point numbers that can be created
from functions such as sine or Chebyshev polynomials, or window shapes such as
Welch.

The class Harmonics constructs Arrays that can be used as wavetables for playing
sounds with the UGen Osc and its relatives.

5.6.2 Binary Operators on Collections

Most binary operators on collections can work both between 2 collections of any
sizes and between a collection and a non-collection object: (0..6) < (3..0);
(0..6) +(3..0); 10 * (1..3); (2..5) + 0.1. One can append an adverb to a binary opera-
tor to specify the manner in which the elements of 2 collections are paired for the
operation. For example:

[10, 20, 30, 40, 50] + [1, 2, 3] // default: shorter array wraps
[10, 20, 30, 40, 50] +.s [1, 2, 3] // s = short. operate on shorter array
[10, 20, 30, 40, 50] +.f [1, 2, 3] // f = fold. Use folded indexing

5.6.3 Iterating over Collections

The following messages iterate over each element of a collection with a function:

do(function): Evaluate function over each element, return the receiver. (1..5) do:
_.postln

collect(function): Evaluate function over each element, return the collected results of
each evaluation. (1..5) collect: _.sqrt.

pairsDo(function): Iterate over adjacent pairs of elements of a collection.
inject(function): Iterate passing the result of each iteration to the next one as an
argument:

keysDo, keysValuesDo, associationsDo, pairsDo, keysValuesChange. These work
on dictionaries as follows:

(a: 10, b: 20) keysDo: {|key, index| [key, index].postin}

(a: 10, b: 20) keysValuesDo: {l|k, v, 1i| [k, v, i].postin}

(a: 10, b: 20) associationsDo: {|assoc, index| [assoc, index].postin}
(a: 10, b: 20) pairsbo: {|k, v, 1i| [k, v, i].postin}

(a: 10, b: 20) keysValuesChange: {|key, value, index| value + index}

165

5 Programming in SuperCollider

5.6.4 Searching in Collections

The following messages search for matches and return either a subset or a single ele-
ment from a collection:

select(foo): Return those elements for which foo returns true: (1..5) select: (_ > 2).
reject(foo): Return those elements for which foo returns false: (1..5) reject: (_ > 2).
detect(foo): Return the first element for which foo returns true: “asdfg” detect: {|c|
c.ascii > 100}.

indexOf(obj): Return the index of the first element that matches obj: “asdfg”
indexOf: $f.

includes(obj): Return true if the receiver includes obj in its elements: “asdfg” in-
cludes: $f.

matchRegexp(string, start, end): Perform matching of regular expressions on a
string.

5.6.5 Restructuring Collections

A full account of the structure-manipulation features of the SuperCollider language
would require a chapter of its own. For full details the reader is referred to the Help
files of the various Collection classes (and those of their superclasses, such as Collec-
tion and SequenceableCollection). Here are a few examples of some of the more
commonly used methods:

reverse: Reverse the order of the elements. (1..5).reverse.

flop: Turn rows into columns in a 2-dimensional collection. [[1, 2], [\a, \b]].flop.
scramble: Rearrange the elements in random order. (1..5).scramble.

clump(n): Create subcollections of size n. (1..10).clump(3).

stutter(n): Repeat each element n times. (1..5).stutter(3).

pyramid(n), where 1<=n<=10: Rearrange in quasi-repetitive patterns. (1..5)
.pyramid(5).

sort(foo): Sort using foo as sorting function. Default sorts in ascending order:
“asdfg”.sort. Descending order is specified like this: “asdfg” sort: {|a, b a > b}

Further powerful restructuring, combinatorial, and search capabilities are discussed
in the Help files] Concepts in SC and List Comprehensions.
5.6.6 IdentityDictionary

IdentityDictionary is a dictionary that retrieves its values by looking for a key iden-
tical to a given index. “Identical” means that the key should be the same object as
the index. For example, the 2 strings “hello” and “hello” are equal but not identical:

166

Tannis Zannos

"hello" == "hello"; // true: the two strings are equal
"hello" === "hello"; // false: the two strings are not identical.

By contrast, symbols that are written with the same characters are always stored
as 1 object by the compiler, and are therefore identical: \hello === \hello returns true.

Thus:

a = IdentityDictionary["foo"->1]; // store 1 under the "foo" as key
a["foo"]; // nill

The second “foo” is not identical to the first one.
However:

a = IdentityDictionary[\foo->1];
a[\foo]; // Returns 1

Searching for a matching object by identity is much faster than searching by equal-
ity. Therefore, an IdentityDictionary is optimized for speed. It serves as superclass
for Environment, which is the basis for defining Environment variables. Accessing
an Environment variable thus means looking it up by identity match. Though this is
a fast process, it is still considerably more expensive in computing cycles than access-
ing a “real” variable!

IdentityDictionary defines 2 instance variables: proto and parent. These are used
by the classes Environment and Event to provide a default environment when needed
(see section 5.6.8). The parent scheme makes it possible to build hierarchies of par-
ent events in a way similar to that for class hierarchies.

5.6.7 Environment

An Environment is an IdentityDictionary that can evaluate functions which contain
environment variables (see section 5.5). To make an Environment from a function,
use the message make:

Environment make: {~a = 10; ~b =1 + pi * 7.rand;}

This is not just a convenient notation; it also allows one to compute variables that
are dependent on the value of variables previously created in the Environment:

Environment make: {~a = pi + 10.rand ; ~b = ~a pow: 5}

The message use evaluates a function within an Environment.
Environment make: {~c = 3} use: {~a = 2 pow: 10.rand; ~c + ~a}
Environment.use(f) evaluates f in an empty environment:

Environment use: {~a = 10; ~b = 1 + pi * 7.rand; ~c}

167

5 Programming in SuperCollider

Additionally, an Environment can supply values from its variables to the argu-
ments of a function that is evaluated in it with the message valueEnvir. Only values
for those arguments that are not provided by valueEnvir are supplied:

(a: 1, b: 2).use({ ~a + ~b}); // using Environment variables
Supplying arguments to a function from the Environment with valueEnvir:
(a: 1, b: 2).use({{la, bla + b }.valueEnvir(3)})

Note that the function must be explicitly evaluated with valueEnvir for this to
work. Therefore, the following is not the right way to supply arguments with use:

(a: 1, b: 2).use({la, b] a + b})
valueEnvir in normal code text outside of use draws on the currentEnvironment:

~a = 3; ~b = 5;
{la, b| a + b}.valueEnvir

Patterns are a specific extension library within SuperCollider that is very useful for
musical scheduling, and they rest on the Environment mechanisms to manipulate
musical data. (They actually use Event, a subclass of Environment, which we will
introduce next.) Patterns exploit the ability to supply values for arguments from an
Environment with valueEnvir when playing instruments that are defined as functions.

5.6.8 Event

Event is a subclass of Environment with several additional features. An Event itself
is playable:

(degree: 2, dur: 3).play

Event stores several prototype Events in its class variables that embody default
musical event types (a class variable is globally available to the instances of its class
and its subclasses). These Events define a complete musical environment, covering
aspects such as tuning, scales, legato, chords and chord strumming, MIDI, and play-
ing with different instruments. To play, an Event receives or selects a parent Event as
its Environment, and overrides only those items of the parent that deviate from the
default settings. For example, the parent Event of (degree: 5) is nil before playing:
(degree: 5).parent. To run (degree: 5).play, the Event sets its own parent Event, which
can be printed by (degree: 5).play.parent.asCompileString. The parameters of this
Environment also compute and set the final parameters that are needed to play the
Event. In the present example, these are freq, amp, and sustain, as can be seen in the
resulting Event:

168 Tannis Zannos

Server.default.boot; // boot the server first. Run each following Tine
separately:

(degree: 5).parent; // the parent before playing is nil

(degree: 5).play.parent.asCompileString; // The parent has been set
(degree: 5).play; // Event, becomes ('degree': 5, 'freq':440,...)

5.7 Working with Classes

Classes are the heart of the SuperCollider system because they define the struc-
ture and behavior of all objects. All class definitions are contained in the folder
SCClassLibrary or in the platform-specific extension folder, in files with the exten-
sion .sc. By studying these definitions one can understand the function of any part
of the system in depth. By writing one’s own classes or modifying existing classes,
one can extend the functionality of the system.

5.7.1 Encapsulation, Inheritance, Polymorphism

The 3 defining principles of object-oriented languages are Encapsulation, Inheri-
tance, and Polymorphism. Encapsulation means that data inside an object are acces-
sible only to methods that belong to that object. This protects the data of the object
from external changes, thereby aiding in creating consistent and safe programs. In
Polymorphism, the same message can correspond to different behaviors according to
the class of the object that receives it. In section 5.5.4, an entry of class Film re-
sponds differently to the message responsible than an entry of class EditedBook
does. Inheritance, on the other hand, entails that any subclass of Publication that
does not define its own method responsible will use the method as defined in Publi-
cation instead (see also section 5.7.4). Together, these 3 features are responsible for
the capabilities of object-oriented languages.

5.7.2 Compiling the SuperCollider Class Library

In contrast to code executed from a window holding SuperCollider code, which can
be run at any time, changes made in class definition code take effect only after re-
compiling the SuperCollider Class Library. (See the Shortcuts Help file for platform-
specific info on how to do this.) Compiling the library rebuilds all classes and resets
the entire memory of the system.

5.7.3 Defining a Class

The structure of a class is defined by its variables and its methods. Additionally, a
class may define class variables, constants, and class methods.

169

5 Programming in SuperCollider

As noted above, class variables are accessible by the class itself as well as by all
instances, whereas instance variables are accessible only inside methods of the in-
stance in question. Constants are like class variables, except that their values are set
at the definition statement and cannot be changed subsequently. For example, the
class Char defines several constants that hold the unprintable characters for new
line, form feed, tab, and space as well as the character comma.

Class methods are addressed to the class, and instance methods to instances of
that class. For example, in Window.new(“test,” Rect(500, 500, 100, 100)).front the
class method new is addressed to the class Window and returns an appropriate win-
dow for the platform on which SuperCollider is running, and the method front is
addressed to the instance created by method New.

A class may inherit variables and methods from another class, which is called its
superclass. Inheritance works upward over a chain of superclasses, and always up to
the superclass of all classes: Object. Before explaining the role and syntax of each
element in detail, here is an example showing the main parts (figure 5.33).

As seen in figure 5.33, the code that defines a class has 2 major characteristics in
common with that of a function: it is enclosed in {}, and it starts with variable dec-
larations followed by program code. The code of a class definition is organized in 2
sections: variable declarations and method definitions. (No program statements may
be included in the definition of a class other than those contained in variable declara-
tions and methods.) Class syntax is summarized below.

The name of the class is indicated at the start of the definition. If the class has a
superclass other than Object, it is indicated like this:

Integer: SimpleNumber {// define Integer as subclass of SimpleNumber

In addition to var statements that declare instance variables, there can also be
classvar statements that declare class variables and const statements that create con-
stants. For example, class Server has a class variable set that stores all servers known
to the system. One can quit these servers with Server.set do: _.quit. Class Char has
several const statements declaring special characters.

The special signs < and > prepended to a variable name in a variable declaration
statement construct corresponding methods for getting or setting the value of that
variable:

var <freq; // constructs method: freq {Afreq};
var >freq: // constructs method: freq_ {|argFreq| freq = argFreq}

For example, the class definition Thing {var <>x;} is equivalent to
Thing {var x;

x {Ax}
x_ {arg z; x = z;}

170

Tannis Zannos

Define Class Node.
Since no superclass is specified before {, Node is a subclass of Object

[instance variables|

Node {

var “<>nodelD, <>server, <>group; | variable declarations]
var <>isPlaying = false, <>isRunning = false;

classvar addActions;// a class variable

|a class method| | a class variable |

*basicNew { arg server, nodelD;
server = server ? Server.default;
Asuper.newCopyArgs(nodelD ?? { server.nextNodelD }, server)

[an instance method|

free { arg sendFlag=true;
if(sendFlag, {
server.sendMsg(11, nodelD); //"/n_free"
N
group = nil;
isPlaying = false;
isRunning = false;

}

}
} [End of Class definition|

Figure 5.33
Summary of Class Definition Parts (Excerpt from Definition of Class Node).

The declaration of any variables of a class is followed by the definitions of its meth-
ods. A method is defined by the name of the method followed by the definition of the
function that is executed by that method.

The sign * before a method’s name creates a class method.

*new {arg x=0, y=0; Asuper.newCopyArgs(x, y);} // (from class Point)

The default return value of an instance method is the instance that is executing that
method (the receiver of the message that triggered the method). To return a different
value, one writes the sign * before the statement whose value will be returned. The
method freq {*freq} returns the value of the variable freq. The sign * also has the
effect of returning from the function of the method, which means any further state-
ments will not be executed. This effect can be useful.

171

5 Programming in SuperCollider

countl {
if (current_count >= max_count) {Acurrent_count};
// the next statement is executed only if current_count > max_count:
Acurrent_count = current_count + 1;

Identifiers starting with underscore (_) inside methods call primitives, that is, com-
putations that are done by compiled code in the system, and whose code can be seen
only in the underlying source code of the SuperCollider application. A primitive re-
turns a value if it can be called successfully. Otherwise, execution continues to the
next statement of the method’s code.

*newCopyArgs {arg ... args; // (from class Object)
_BasicNewCopyArgsToInstVars
Athis.primitiveFailed

Three special keywords can be used in methods: this refers to the object that is
running the method (the receiver); thisMethod refers to the method that is running;
super followed by a message looks up and evaluates the method of the message in
the superclass of the instance that is running the method.

If the class method *initClass is defined, then it will be run right after the system
is compiled. It is used to initialize any data needed. To indicate that a class needs to
be initialized before the present initClass is run, one includes the following code in
the definition of initClass:

Class.initClassTree(NameOfClassToBeInitialized).

A class is usually defined in 1 file. If the same class name is found in definitions in
2 or more files, then the compiler issues the message duplicate class found, followed
by the name of the duplicate class. However, one can extend or modify a class by
adding or overwriting methods in a separate file. The syntax for adding methods to
an existing class is

+Function { // + indicates this extends an existing class
// the code of any methods comes here
update { ... args | // method update
this.valueArray(args);
} // other methods can follow here

5.7.4 Inheritance

A class may inherit the properties of another class. This principle of inheritance
helps organize program code by grouping common shared properties of objects in

172 Tannis Zannos

1l.class // the class of Integer 1: Integer

l.class.class // the Class of the Class of Integer 1: Meta_Integer

// the Class of the Class of the Class of Integer 1:

1l.class.class.class // Class

// the Class of the Class of the Class of the Class of Integer 1
1l.class.class.class.class // Meta_Class

// the Class of the Class of the Class of the Class of the Class of 1
1l.class.class.class.class.class // Class

Class.class // the Class of Class is Meta_Class
Meta_Class.class // the Class of Meta_Class is Class

Figure 5.34
Classes of classes.

one class, and by defining subclasses to differentiate the properties and behaviors of
objects that have a more specialized character. For example, the class Integer inherits
the properties of the class SimpleNumber. SimpleNumber is called the superclass of
Integer, and Integer is called a subclass of SimpleNumber. Float, the class describing
floating-point numbers such as 0.1, is also a subclass of SimpleNumber. Classes are
thus organized into a family tree. The following expression prints out the complete
SuperCollider class tree: Object.dumpClassSubtree.

5.7.5 Metaclasses

Since all entities in SuperCollider are objects, classes are themselves objects. Each
class is the sole instance of its “metaclass.” For example, the class of Integer is Meta
_Integer, and consequently Integer is the only instance of the class Meta_Integer. All
metaclasses are instances of Class. The following examples trace the successive
classes of objects starting from the Integer 1 and going up to Class as the class of all
Metaclasses.

The cycle Class-Meta_Class-Class in figure 5.34 shows the end of the Class rela-
tionship tree. Since the class of Class is Meta_Class and Meta_Class is also a Class,
those 2 classes are the only objects that are instances of one another:

Class.class // the class of Class is Meta_Class
Meta_Class.class // the class of Meta_Class is Class

Class methods are equivalent to instance methods of the class’s Metaclass. For
instance, the class method *new of Server is an instance method of Meta_Server. (See
figure 5.35.)

173

5 Programming in SuperCollider

Class

is Instance of is Instance of

Figure 5.35
(Class and Meta_Class are mutually instances of each other.

5.7.6 The SuperCollider Class Tree

At the top of the class hierarchy of SuperCollider is the class Object. This means all
other classes inherit from class Object as its subclasses, and consequently all objects
in SuperCollider share the characteristics and behavior defined in class Object. Ob-
ject defines such global behaviors as how to create an instance, how an object should
react to a message that is not understood, how to print the representation of an ob-
ject as text, and so on. Any subclass can override this default behavior in its own
code, as well as extend it by defining new variables and methods. The tree formed by
Object and its subclasses thus describes all classes in the SuperCollider system.

5.7.7 Notifying Objects of Changes: Observer and Adapter/Controller Patterns

This section shows how to convert the class model from earlier in the chapter into a
real class. The Observer design pattern implemented in class Object allows one to
attach objects (called dependants) to any object in such a way that they are updated
when that object notifies itself with the message changed and an optional list of ar-
guments. This results in the message update (along with the arguments) being sent to
each of the dependants. It is the responsibility of the dependants to know how to
respond correctly to an update message, and the changing object can remain igno-
rant of the kind and number of its dependants. Thus it is possible to attach a sound,
a GUI element, or any other object or process to another object and make it respond
to changes of that object in any manner. Crucially, this can happen without having
to modify the class definition of the changing object to deal with the specifics of the
objects being notified. This technique is similar to the design pattern known as
Model-View-Controller (MVC) (see chapters 9 and 10), and serves as its basis. The
goal of this pattern is to separate data or processes (the model) from their display
(views) and from the control mechanisms, so as to permit multiple displays across
different media and platforms.

174

Iannis Zannos

Counter {
// variables: maximum count, current count
var <>max_count, <>current_count = 1;
// class method for creating a new instance
*new { | max_count = 10 |
Asuper.new.max_count_(max_count)
}
// if maximum count not reached, increment count by 1
countl {
if (current_count >= max_count) {
this.changed(\max_reached)
H
current_count = current_count + 1;
this.changed(\count, current_count);
}
}
// reset count
reset {
current_count = 1;
this.changed(\reset);

Figure 5.36
Counter Class.

The present example adds auditory displays and a GUI display that respond to
counter changes. These displays are completely independent from each other and
from the counter both in code and in functionality, in the sense that one can attach
a display or remove it from any counter at any moment, and that one can attach any
number of displays to one counter.

The definition of the Counter class is shown in figure 5.36.

This must be placed in a file Counter.sc in the SCClassLibrary folder and compiled
with [command-K]. After that, boot the server and add the SynthDefs for the sounds
(see figure 5.37).

Next, create 5 counters and store them in ~counters:

~counters = (6, 11 .. 26) collect: Counter.new();

Now create a sound adapter to follow changes in any counter it is added to (see
figure 5.38).

The sound_adapter function receives update messages from a Counter object and
translates them to actions according to the further arguments of the message. In this

175

5 Programming in SuperCollider

Server.default.boot;

(
SynthDef("ping", { | freq = 440 |
Out.ar(0,
SinOsc.ar(freq, 0,
EnvGen.kr(Env.perc(level: 0.1), doneAction: 2)
))
P .add;

SynthDef ("wham", {
Out.ar(0, BrownNoise.ar(
EnvGen.kr(Env.perc(level: 0.1), doneAction: 2)
)
}) .add;
)

Figure 5.37
SynthDefs for the Counter model example.

(

~sound_adapter = { | counter, what, count |
switch (what,
\reset, { Synth("wham"); },
\max_reached, { counter.reset },
\count, { Synth("ping",
[\freq, count.postln * 10 + counter.max_count * 20]

)
}
)
b
)
Figure 5.38

A dependant that plays sounds.

176

Iannis Zannos

sense it is similar to an Adapter pattern. (An Adapter pattern translates between in-
compatible interfaces.)

This works because class Function defines the method update as a synonym for
value, thus conveniently allowing it to work as a dependant in a straightforward
manner:

update {|obj, what ... args| this.value(obj, what, *args)}

Attach the sound adapter to all 5 counters:
~counters do: _.addDependant(~sound_adapter);

Then start a routine that increments the counters at 0.25-second intervals:
~count = {loop {~counters do: _.countl; 0.25.wait}}.fork;

The routine can be stopped with ~count.stop. But before doing that, let’s add GUI
displays for the counters. (See figure 5.39.)
Now one can make displays for any of the counters at any time.

~make_display. (~counters[0]);

(

~make_display = { | counter |
var window, label, adapter, stagger;
window = Window(
"counting to
Rect(stagger = UniqueID.next % 20 * 20 + 400, stagger, 200, 50)

Tabel = StaticText(window, window.view.bounds.insetBy(10, 10));

counter addDependant: adapter;

/* remove the adapter when window closes to prevent error in
updating non-existent views: */

window.onClose = { counter removeDependant: adapter };

window. front

++ counter.max_count.asString,

= { | counter, what, count |
{ Tlabel.string = counter.current_count.asString }.defer

Figure 5.39
A dependant that displays the count.

177 5 Programming in SuperCollider

Or all of them at once:
~counters do: ~make_display.();

The Observer pattern is considered so important that it is implemented in class
Object and is thus available to all objects.

5.8 Conclusion

The present chapter has attempted to describe the programming language of Super-
Collider and its capabilities in as much detail as possible in the given space. It also
has presented some techniques of programming that may serve as an introduction to
advanced programming. Many other techniques exist. A great many of these are
described in print and on the Web in publications that deal with design patterns for
programming. Kent Beck’s Smalltalk Best Practice Patterns (Beck, 1996) is recom-
mended as a basic manual of good style and because the patterns it describes are as
powerful as they are small. Gamma et al. (1994) is considered a standard book on
patterns. Beck (2000) and Fowler et al. (1999) deal with more advanced techniques
of coding.

The SuperCollider class library itself is a good source for learning more about
programming techniques. The GUI class implements the Factory pattern. The Lilt
library (included on the Web site of this book as supplementary material to the
present chapter) makes extensive use of the Observer pattern and defines a class
Script that enables one to code algorithms for performance in prototypes that create
their own GUIs.

SuperCollider as an open-source project depends on the active participation of
members of the community to continue developing as one of the most advanced
environments for sound synthesis. Contributions by musicians and programmers,
through suggestions and bug reports to the sc-dev mailing list, through Quarks in
the quark repository, or through proposals for inclusion in the SCClassLibrary itself,
are vital for the further development of this environment. Even though SuperCollider
has already gained considerable popularity, there is still much room for growth. One
of the most attractive aspects of this environment is that it is equally a tool for music
making, experimentation, research, and learning about programming and sound.
The features and capabilities of the SuperCollider programming language outlined
in the present chapter can serve as a springboard for projects that will further ex-
pand its capabilities and user base. It remains to be seen how the trend for coding for
performance or composition as a musically creative activity matures in practice. Yet
whatever the future may bring, the particular marriage of toolmaking and music
making that SuperCollider embodies so successfully will mark it as an exceptional

178

References

Notes

Iannis Zannos

achievement, and hopefully will give birth to further original ideas and amazing
sounds.

Beck, K. 1996. Smalltalk Best Practice Patterns. Upper Saddle River, NJ: Prentice Hall.

Beck, K. 2000. eXtreme Programming eXplained: Embrace Change. Reading, MA: Addison-
Wesley.

Burstall, R. 2000. “Christopher Strachey—Understanding Programming Languages.” Higher-
Order and Symbolic Computation, 13(1/2): 52.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring: Improving the
Design of Existing Code. Addison-Wesley Object Technology series. Reading, MA: Addison-
Wesley.

Gamma, E., R. Helm, R. Johnson, and]. Vlissides. 1994. Design Patterns: Elements of Reus-
able Object-Oriented Software. Addison-Wesley Professional Computing series. Boston:
Addison-Wesley.

Strachey, C. 2000. “Fundamental Concepts in Programming Languages.” Higher-Order and
Symbolic Computation, 13(1/2): 11-49.

1. Two relevant definitions of statements are “An elementary instruction in a programming
language” (<http://www.thefreedictionary.com/statement>) and “A statement is a block of
code that does something. An assignment statement assigns a value to a variable. A for state-
ment performs a loop. In C, C++, and C# Statements can be grouped together as 1 statement
using curly brackets” (<http://cplus.about.com/od/glossar1/g/statementdefn.htm>). In Super-
Collider, statements enclosed in {} create a function object, which is different from a statement
group in C or C++.

2. When a program can construct functions while it is running and store them as objects in
variables, it is said that it treats functions as “first class objects” (Burstall, 2000).

3. Wikipedia writes about closures: “In computer science, a closure is a function that is eval-
uated in an environment containing one or more bound variables. When called, the function
can access these variables. The explicit use of closures is associated with functional program-
ming and with languages such as ML and Lisp. Constructs such as objects in other languages
can also be modeled with closures.”

