

W

Acknowledgements

The writing and editing of this book presents a large effort on many people and
institutions who I want to express my gratitude to. Without their help, this work
would not have been completed.

First, I wish to thank the Austrian Science Fund (FWF), the Styrian Provincial
Government’s Science and Research Department, the City of Graz Department of
Cultural Affairs and the Society for the Promotion of Electronic Music and Acous-
tics (GesFEMA) for their generous financial support.

My sincere thanks to Ilona Leimisch, who translated the book into English, for
her efforts and patience during our collaboration.

In particular I am grateful for the help of the former head of the Institute of Elec-
tronic Music and Acoustics Graz (IEM) at the University of Music and Dramatic
Arts Graz, Robert Höldrich, who contributed valuable advice. I also wish to thank
several people who have provided their kind assistance with proofreading. These
include the present head of the IEM, Gerhard Eckel, as well as Alberto de Campo,
Markus Noisternig, Alois Sontacchi and Camilla Leimisch, who also helped editing
the book.

Many institutions and publishers have given generous support concerning the
illustrative material. I would particularly like to name and thank (in alphabetical
order) A-R editions, Badische Landesbibliothek, Carl Hanser Verlag, Casa Editrice
Leo S. Olschki, Dover Publications, IBM, Institute for Advanced Study, Los Alamos
National Laboratories, Massachusetts Institute of Technology, Moravian Library,
Naval Historical Center, Pearson Education, Pendragon Press, Princeton University
Library, Research Library in Olomouc, Technisches Museum Wien and Wolfram
Media for providing interesting material free of charge.

In addition to the abovementioned, I acknowledge with appreciation the assis-
tance of some significant scientists for making available pictures and other material
free of charge that were of great value for the book. These are (in alphabetical or-
der) Moray Allan, Bernard Bel, Wei Chai, Noam Chomsky, David Cope, Roger
Luke DuBois, Sidney Fels, David Goldberg, Ricardo Gudwin, Douglas Hofstadter,
John H. Holland, Philip Johnson-Laird, the recently deceased Edward Lorenz,
Benoit Mandelbrot, Jonatas Manzolli, Herbert Matis, Artemis Moroni, Craig Nevill-

v

vi Acknowledgements

Manning, Somnuk Phon-Amnuaisuk, Alan Smaill, Mark Steedman, Andrew Tuson,
Geraint Wiggins, Stephen Wolfram and Ferdinando von Zuben.

Lastly, I want to thank Springer-Verlag and especially Stephen Soehnlen, whose
generous contribution of time and expertise were of invaluable importance for the
development of the book.

Contents

1 Introduction . 1
References . 6

2 Historical Development of Algorithmic Procedures 7
2.1 Interdependencies . 7
2.2 Development of Symbol, Writing System and Numeral System 9
2.3 Much Ado About Nothing – The Development of the Zero 13
2.4 The Formalization of Thinking Processes . 15
2.5 A Truth Machine from the 13th Century . 17
2.6 Early Approaches to Algorithmic Composition 21
2.7 A Utopia of an All-Embracing Representation of Knowledge 26
2.8 Calculating Machines . 28
2.9 A New Numeral System for Automated Calculations 33
2.10 Replacing the Mechanistic Determinism . 34
2.11 Language and Music Generators – A Book of Books 36
2.12 From the Loom to the “Analytical Engine” . 39
2.13 The Implementation of Logical Operations . 44
2.14 On Formally Undecidable Propositions . 45
2.15 From Census Collector to Chess World Champion 48
2.16 Automata and Computability . 58
2.17 The Model of a Universal Computer . 61
2.18 Programming . 62
2.19 The Computer in Algorithmic Composition . 63
References . 65

3 Markov Models . 67
3.1 Theoretical Basis . 68
3.2 Hidden Markov Models . 69
3.3 Markov Models in Algorithmic Composition 71

3.3.1 Alternative Formalisms . 75
3.4 Hidden Markov Models in Algorithmic Composition 77

vii

viii Contents

3.4.1 A Hierarchical Model . 78
3.4.2 Stylistic Classification . 80

3.5 Synopsis . 81
References . 82

4 Generative Grammars . 83
4.1 Generative Grammars as a Model of the Theory of Syntax 84

4.1.1 The Chomsky Hierarchy . 87
4.1.2 Grammatical Transformation . 90

4.2 Generative Grammars in Algorithmic Composition 91
4.2.1 Musical Analysis by Generative Models 93
4.2.2 Folk Music and European Art Music . 96
4.2.3 Music Ethnology . 99
4.2.4 Bol Processor . 101
4.2.5 Jazz . 106
4.2.6 Grammatical Inference . 112

4.3 Synopsis . 117
References . 118

5 Transition Networks . 121
5.1 Experiments in Musical Intelligence . 122
5.2 Petri Nets . 127

5.2.1 Petri Nets in Algorithmic Composition 128
5.3 Synopsis . 129
References . 130

6 Chaos and Self-Similarity . 131
6.1 Chaos Theory . 131
6.2 Strange Attractors . 134
6.3 Fractals . 135
6.4 Lindenmayer Systems . 137

6.4.1 Forms of Lindenmayer Systems . 139
6.5 Chaos and Self-Similarity in Algorithmic Composition 144

6.5.1 Fractional Noise . 144
6.5.2 Chaotic Systems . 146

6.6 Lindenmayer Systems in Algorithmic Composition 148
6.6.1 Mapping Strategies of Different Lindenmayer Systems 149

6.7 Synopsis . 153
References . 155

7 Genetic Algorithms . 157
7.1 The Biological Model . 157
7.2 Genetic Algorithms as Stochastic Search Techniques 158
7.3 Genetic Programming . 161
7.4 Genetic Algorithms in Algorithmic Composition 164

7.4.1 Analogies to the Process of Composition 165

Contents ix

7.4.2 Varieties of Genetic Operations and Fitness Ratings 167
7.4.3 Limits of Genetic Algorithms – A Comparison 170
7.4.4 Rhythmic Generators . 173
7.4.5 Applications of Genetic Programming 174
7.4.6 Interactive Systems . 176
7.4.7 Artificial Life-Forms . 180

7.5 Synopsis . 182
References . 184

8 Cellular Automata . 187
8.1 Historical Framework and Theoretical Basics 187
8.2 Types of Cellular Automata . 189

8.2.1 1-Dimensional Cellular Automata . 189
8.2.2 2-Dimensional Cellular Automata . 191
8.2.3 3-Dimensional Cellular Automata . 193
8.2.4 Extended Types of Cellular Automata 194

8.3 Cellular Automata in Algorithmic Composition 195
8.3.1 Polyrhythmic Structures . 200
8.3.2 Comparison of Cellular Automata . 200

8.4 Synopsis . 201
References . 203

9 Artificial Neural Networks . 205
9.1 Theoretical Basis . 206
9.2 Historical Development of Neural Networks . 207
9.3 The Architecture of Neural Networks . 208

9.3.1 The Perceptron . 209
9.3.2 The Back-Propagation Net as an Extension of the Perceptron211
9.3.3 Recurrent Neural Networks . 211
9.3.4 Kohonen Feature Maps . 212
9.3.5 Hopfield Nets . 212
9.3.6 The Adaptive Resonance Theory . 212

9.4 Artificial Neural Networks in Algorithmic Composition 213
9.4.1 Strategies of Musical Representation 214
9.4.2 Boltzmann Machines and LSTMs . 219

9.5 Synopsis . 221
References . 222

10 Artificial Intelligence . 225
10.1 Algorithmic Composition in AI . 228

10.1.1 State Space . 231
10.1.2 Context-Dependent Variants of Knowledge Representation . 233
10.1.3 Reasoning . 235
10.1.4 Production Systems and Rule-Based Systems 236
10.1.5 Machine Learning . 244

x Contents

10.1.6 Agents . 252
10.2 Synopsis . 254
References . 255

11 Final Synopsis . 259
11.1 Algorithmic composition as a genuine method of composition 259
11.2 The dominance of style imitation in algorithmic composition 262
11.3 Origins and characteristics of the treated procedures 264
11.4 Strategies of encoding, representation and musical mapping 266
11.5 The evaluation of generated material . 269
11.6 Limits of algorithmic composition . 270
11.7 Transpersonalization and systems of “universal” validity 272
11.8 Concluding remark . 272
References . 273

Index . 275

Chapter 1

Introduction

Algorithmic composition – composing by means of formalizable methods – has a
century old tradition not only in occidental music history. Guido of Arezzo who,
with his “Micrologus de disciplina artis musicae” created a groundbreaking work
of music theory as early as 1025, is today mainly known for inventing ‘solfeggio’
as well as due to his essential contributions to the development of musical nota-
tion. Less known is Arezzo’s work in the field of algorithmic composition where he
invented a method for the automatic conversion of text into melodic phrases.

The inclusion of rules and general frameworks into the creative process of com-
position, however, becomes apparent not only in exemplary systems which generate
musical structures “at the push of a button”; it is also expressed in a number of works
throughout music history. Well-known examples such as Bach’s“The Art of Fugue”
or Schönberg’s twelve-tone technique immediately come to mind which often leads
to placing the development of formal complexity exclusively into the context of Eu-
ropean, or occidental, art music. One reason for the nearsightedness of this approach
which excludes numerous “non-European” music traditions from investigation can
definitely be found in the over-emphasis of European art music in musical educa-
tion; the term “non-European” incidentally points out this problem very clearly –
would you, for example, refer to the sonata as a “non-Australian” music genre?

This book, however, does not deal with the treatment of formalizable aspects in
single works or particular musical traditions, but attempts to provide an overview
of prominent procedures of algorithmic composition in a pragmatic way. Though
some passages in this work nevertheless refer to the working methods of specific
composers or formal principles in certain music genres, these are only mentioned
as examples and do not present an exhaustive enumeration. So, for example, the
examination of algorithmic principles in the works of composers such as Xenakis or
König alone goes far beyond the scope of this book and would furthermore represent
an analytical musicologist approach not intended here. Also, the comprehensive and
rapidly developing field of mathematical music theory,1 which opens up innovative
approaches not only for computer assisted analysis, cannot be treated in this work.

1 So, as a prime example the comprehensive work of Guerino Mazzola [3].

1

2 1 Introduction

If one now poses the legitimate question about which musical approaches ac-
tually may be subsumed under the term “algorithmic composition,” an answer can
be found in the investigation of some general definitions of “algorithm.” Etymo-
logically, this term may be derived from the Greek word “arithmos” (number) and
also from the name of the Persian mathematician Abu Jafar Muhammad ibn Musa
al-Khwarizmi2 in two different ways. Around AD 820, al-Khwarizmi wrote a trea-
tise on the calculation with Indian numerals, which was translated into Latin around
1120 AD as “Algorismi de numero Indorum.” In this translation, the author was
given the Latinized name “Algorismus.” In “Carmen de Algorismo,” a mathemat-
ical treatise in rhymes by French scholar Alexander de Villa Dei from AD 1220,
calculating in the new numeral systems is also referred to with the term “Algoris-
mus.”3 Later, it was Grecized and became “Algorithmus,” being used as a general
indication for a controlled procedure. Let us now turn to some definitions of the
term, e.g.:

• A set of mathematical instructions that must be followed in a fixed order, and that,
especially if given to a computer, will help to calculate an answer to a mathematical
problem [1].

• A systematic procedure that produces – in a finite number of steps – the answer to a
question or the solution of a problem [2].

• [...] (especially computing) a set of rules that must be followed when solving a particular
problem [4].

For a ‘classical algorithm,’ in general also a number of conditions may apply, e.g.
it must terminate, i.e. produce solutions after running for a finite time of steps, or
be deterministic, i.e. with a particular input, it will always produce the same correct
output. However, some classes of algorithms and systems of algorithmic composi-
tion may produce output indefinitely, or involve probability-based decisions in the
problem solving process. In many cases, for example, in control algorithms within
operating systems, terminating behavior can be observed frequently, but the fulfill-
ment of this condition is nevertheless not decidedly desired. Similarly, an algorithm
for the generation of musical structure will not terminate, if, for example, new ma-
terial is to be made continuously audible for the arrangement of a sound installation.
The involvement of probability allows for stochastic algorithms to produce differ-
ent results with the same initial values – this approach can be found in most systems
designed for algorithmic composition. Disregarding this special classification, an al-
gorithm may be, based on the abovementioned definitions, very generally described
as a formalizable and abstracting procedure which – applied to the generation of
musical structure – determines the field of application of algorithmic composition.

Accordingly, models for generating musical structure may be obtained from
nearly every scientific discipline. Apart from that, interesting musical results may
also be reached through simple but innovative compositional strategies or an ap-

2 “Mohammed the father of Jafar and the son of Musa, the Khwarizmian,” also referred to as “al
Khowarizmi,” lived ca. 780–850.
3 In Latin also “alchorismus” and “algoarismus”; in Old French “algorisme” and “argorisme”; in
Middle English “augrim” and “augrym.”

1 Introduction 3

propriate mapping of data onto musical parameters. Necessary restrictions for the
framework of this book also result from these comprehensive application possibili-
ties: Procedures are described here that on the one hand are very well suited to the
generation of musical structure, and on the other hand each represent a class of al-
gorithms that can process or generate musical information in a specific way. Herein,
the scope ranges from generative grammars that process and produce musical ma-
terial in concise formalisms, to cellular automata in which a few simple initial rules
lead to a complex behavior.

For the musical applications of the specific classes of algorithms, only examples
are selected that – in the stricter sense of algorithmic composition – treat the gener-
ation of musical structure on a symbolical level. This means that in these cases the
outputs mostly represent control data or note values, whose acoustical realization –
be it with conventional instruments or synthesis processes – is no longer a task of
the generating algorithm. This delimitation may, of course, also be seen as a restric-
tion because the structure and sonic detail of a musical event are in general closely
connected factors.

Within the respective procedures, music-specific knowledge is made available in
different ways: Rules for the generation of musical structure are either formulated
or generated through the analysis of a corpus. The type of the examined procedures
and their strategy of knowledge representation promote different approaches to the
production of structure that are either applied for the generation of ‘style imitations’
– the generation of musical material according to a given notion of a musical style
– or as a means of implementing compositional strategies for the creation of a new
piece of art, which may be called ‘genuine composition.’

The single chapters

After a historic overview, the following chapters each present a specific class of
algorithm in the context of algorithmic composition, first providing a general intro-
duction to their development and their theoretical basics, and then describing differ-
ent musical applications. At the end of each chapter, strengths and weaknesses as
well as possible aesthetical implications resulting from the application of the treated
approaches are outlined. Since the discussed algorithm classes each enable a spe-
cific approach to musical structure generation, one could in this context also speak
of different “paradigms” of algorithmic composition.

In the chapter “Historical Development of Algorithmic Procedures,” inno-
vations are described, beginning with the first documented use of counting to the
invention of the computer as it is today, which form the basis for the different appli-
cations of algorithmic composition. Technical improvements do not present singular
events, but are produced in the context of a sociological, sociopolitical and philo-
sophical framework. The automatization of procedures is preceded by necessary
processes of abstraction that may be traced back to a number of historical develop-
ments. Here, the scope ranges from the creation of numeral and writing systems, the
formalization of thinking processes up to attempts to automatize the establishment

4 1 Introduction

of truth in systems of “universal validity.” Primary principles of automated infor-
mation processing can already be found in the 13th century. Through the works of
Charles Babbage and Ada Lovelace, functioning concepts of modern computer ar-
chitecture were developed already hundred years before the creation of the “first”
digital computers by Konrad Zuse and Howard Hathaway Aiken. The fact that world
view and scientific advancement are interrelated factors of human societies can be
seen in aspects such as the invention of the number zero or the philosophical impli-
cations of probability theory. The history of algorithmic composition has its begin-
ning shortly after the turn of the first millennium with a system developed by Guido
of Arezzo enabling the generation of melodic material from texts, spans over the ap-
plication of algorithmic principles in the developing complex polyphony and is also
found in the “composition machines” of Athanasius Kircher in the Baroque period.
Furthermore, first applications of algorithms for compositional tasks can be found
in the popular “musical dice game” in the 18th century. Finally, on August 09, 1956
the “Illiac Suite,” the first computer-generated composition, had its world premiere
at the University of Illinois. In regard to the history of algorithmic composition, this
date, however, marks only the beginning of a number of forthcoming fascinating
developments which involve technical advancements as well as the investigation of
new scientific disciplines.

Markov models, which were originally developed in the context of language
processing, are a well-established paradigm of algorithmic composition. For the
generation of structure, a sequence of states and also their transition probabilities
are extracted by analysis of a corpus. The number of preceding states that are ap-
plied for the calculation of the new state is determined by the order of the Markov
model – higher orders produce sequences that are more and more similar to the
corpus, but may also have disadvantageous effects in musical structure generation.
Hidden Markov models present an interesting variant, since observable events en-
able inferences on hidden underlying state changes. Markov models are for the most
part employed in the field of style imitation, but also, for example by Hiller and Xe-
nakis, for applications of genuine composition.

With generative grammars, a powerful formalism for the generation of musi-
cal structure establishes itself in algorithmic composition. Developed in the context
of linguistics as well, they allow for the production of structures that are context-
sensitive over long passages. In the field of algorithmic composition, generative
grammar is above all used according to the hierarchy created by the American
linguist Noam Chomsky. This approach distinguishes grammar types of different
expressiveness – higher types are easier to manage, but inferior to lower types re-
garding their generative capacity. Grammatical inference enables the automatic gen-
eration of rewriting rules from a corpus – in contrast to Markov models, different
context depths of a musical material may be comprehended in this case at the same
time.

Transition networks, which are represented in a graph, may be applied to a
broad range of tasks in algorithmic composition. David Cope’s well-known pro-
gram “EMI” uses this formalism for representing and processing musical informa-
tion. “EMI” generates style imitations after having analyzed a sufficient number of

1 Introduction 5

compositions of a particular genre. Cope’s system applies a complex strategy in the
recombination of musical segments, considering their formal significance on differ-
ent hierarchical levels. Transition networks exist in different forms, such as Petri
nets, and allow for an adaptation to distinct musical tasks.

In the 1980s, chaos and self-similarity became catchwords in a broad discussion
that reached far beyond scientific communities through the much-cited “butterfly ef-
fect,” a wide range of fascinating graphical realizations of fractals and other aspects
of the heterogeneous field of chaos theory. For algorithmic composition, these in-
novations opened interesting possibilities for generating complex musical structures
whose temporal developments react highly sensitively to modifications in the initial
configurations. Lindenmayer systems were originally developed for the simulation
of the growth process of plants and are well suited to the simulation of self-similar
processes. The different variants of Lindenmayer systems enable the implementa-
tion of a wide range of compositional concepts for the field of algorithmic compo-
sition.

Genetic algorithms and genetic programming are probability-based search tech-
niques created on the model of Darwin’s theory of evolution. Problems are solved
by applying quasi-biological procedures in a virtual biological environment. Ge-
netic operations such as crossover and mutation produce new individuals in every
generation that are evaluated according to a quality criterion, which has to be met.
The specific behavior of a genetic algorithm promotes primarily compositional ap-
proaches which create musical material as a time-flow, i.e. a process of continu-
ous change. An interesting application of genetic algorithms can be found in some
works that make the interactions of “individuals” in an artificial habitat audible in
an innovative way.

Cellular automata were first created in the 1940s and gained great popularity
after being published in “Scientific American” in 1970. This class of algorithms
can exhibit extremely complex behavior on the basis of comparatively simple initial
rules. Cellular automata are less suited for applications of style imitation, but allow
for captivating results in the field of genuine composition.

Neural networks were originally created for tasks of image recognition. Their
conceptual relation to biological information processing is one reason for their
great popularity. In algorithmic composition, neural networks may generate out-
puts, whose sequences of note values need not necessarily occur in the underlying
corpus. Disadvantages are found in the treatment of musical material that is context-
sensitive over long passages, which can be better handled in generative grammars.
For applications of algorithmic composition, neural networks are often used in the
context of hybrid systems; interesting approaches can be found for neural networks
in regard to suitable representations for musical information.

Artificial intelligence encompasses a variety of procedures for different tasks.
Programs such as “ELIZA” or the well-known test by Alan Turing raise the ques-
tion of a definition of the term “intelligence.” Among other things, this chapter at-
tempts to classify a number of procedures within artificial intelligence with regard
to their relevance for algorithmic composition. Apart from single approaches, such
as rule-based systems, alternative forms of logical reasoning, or variants of machine

6 1 Introduction

learning, it is above all the different forms of knowledge representation that are of
the utmost importance for systems of algorithmic composition.

By means of a final synopsis, the last chapter is devoted to the basic motivations
for algorithmic composition. It compares the properties of the treated paradigms,
outlines principal strategies of encoding, representation and mapping, and finally
deals with the limits of algorithmic composition and the attempts to establish sys-
tems of transpersonal validity.

The selection of the works covered was motivated by their exemplary character,
an interesting approach, or their historic importance; naturally, they were also cho-
sen according to the author’s personal preferences. The richness of material avail-
able made it difficult to choose – thus, essential contributions may well have been
overlooked and only particular aspects of the treated works could be described; also,
any errors in content are solely the responsibility of the author.

References

1. Cambridge Advanced Learner’s Dictionary 2006.
http://dictionary.cambridge.org/define.asp?key=2032&dict=CALD. Cited 17 Jan 2006

2. Encyclopedia Britannica Online 2006.
http://cache.britannica.com/eb/article-9005707. Cited 17 Jan 2006

3. Mazzola G (2003) The topos of music: Geometric logic of concepts, theory, and performance.
Birkhäuser, Basel. ISBN 3764357312

4. Oxford Advanced Learner’s Dictionary 2006.
http://www.oup.com/oald-bin/web getald7index1a.pl. Cited 17 Jan 2006

Chapter 2

Historical Development of Algorithmic

Procedures

2.1 Interdependencies

A number of factors determined by, among others, sociology, social policy and
philosophy, have created the basic conditions for the development of algorithmic
thought processes and the instruments for their implementation. Aesthetics of dif-
ferent fields of art and their adoption in the course of history have also contributed
essentially to their development. Accordingly, the intellectual attitude of an era be-
comes manifest in different disciplines, resulting in a number of interdependencies
between different sciences. In the following, these relations are illustrated in the
context of the period comprising the Baroque and the beginning of the Age of En-
lightenment.

The establishment of natural science as an independent discipline has its ori-
gins in the Renaissance when this field freed itself from theology, and then made
further advances in the Baroque period. Gutenberg’s printing press with movable
type, appearing around 1440, and the first runs of technical textbooks around 1550
were necessary preconditions for the wide transfer of knowledge. Innovations in
seafaring led to drastic developments in precision mechanics, enabling among other
things, the construction of the calculating machines designed by Schickard, Pascal
and Leibniz.

In mathematics, this era marked the introduction of the analytical geometry of
Descartes, the infinitesimal calculus of Newton and Leibniz, and Fermat’s number
theory. During this same period, the first textbook of probability calculus, the “Ars
conjectandi,” was written by Jakob Bernoulli. With Euler’s “Introductio in analysin
infinitorum,” a ground-breaking work of analysis was created. These achievements
are mentioned here only as examples; most of these mathematicians performed as-
tonishingly in several fields, some of them independently achieving similar results,
bringing up the question of first authorship, with perhaps the best known priority
dispute which arose between Leibniz and Newton in the field of infinitesimal calcu-
lus. Logarithms too, for example, were independently discovered by the Scot John
Napier and the Swiss Jost Bürgi at the beginning of this era. Naturally, these math-

7

8 2 Historical Development of Algorithmic Procedures

ematicians also built upon the ideas of others. Single approaches of infinitesimal
calculus, for example, can already be found in Archimedes’ works. Number theory,
too, was not first expounded by Fermat: It already had an important proponent in
the ancient world in the figure of Diophantus of Alexandria.

The application of mathematical discoveries led to important developments in
other branches of research: Galilei founded modern physics by systematically ap-
plying the experimental method. Similarly, Kepler’s laws of planetary motion are
a prime example of applied mathematics and form the basis for Newton’s laws of
gravitation.

As a result of these rapid developments, the scientist established his own inde-
pendent statue. However, at the same time the increased specialization of the re-
searcher became a more common trend and marked the end of the universal scholar
as exemplified by Da Vinci as the personification of the Uomo Universalis. The dis-
solution of alchemy and chemistry by Lavoisier can also be seen in this era’s area of
conflict: alongside the scientific revolutions of the early Enlightenment, witch trials
peaked and torture remained the primary instrument of establishing truth in judicial
procedures.

Also comprising the Age of Absolutism, this era was characterized by the con-
spicuous display of power at European courts. The educational ideal of the Re-
naissance being made up of an agglomeration of educated scholars changed to an
interest in technical apparatuses as part of courtly representation. Trick fountains
like those constructed in Versailles, natural scientific cabinets where experiments
were carried out for the entertainment of the guests of the court, collections of tech-
nical curiosa, theatre machines as well as a wide variety of different automata: all
these became increasingly popular at courts. The entertainment value was the most
important aspect – the more amusing and realistic the machine was, the more attrac-
tive it was for the ruler. The spectrum of devices appearing at this time ranges from
pieces of furniture equipped with diverse technical extras to androids and artificial
animals. Among the outstanding inventors were Jacques de Vaucanson, Pierre and
Henri-Louis Jacquet-Droz and Wolfgang von Kempelen.

The construction of the automata was carried out by different trades. Watchmak-
ers were responsible for fine mechanical motion sequences, millwrights were con-
sulted for larger devices due to their knowledge of wheelworks, power transmission
and leverages. Carpenters designed the body of the automaton and painters were
responsible for its realistic appearance. By constructing automata for the courts,
several trades were permitted to cooperate for the first time, since the ruler could
abolish the mandatory guild membership.

The automaton as a technical innovation did not represent a scientific improve-
ment in this context, but nevertheless required developments in the field of fine
mechanics that could later on be applied in the realization of significant technical
advancements. As an example, the invention of the pin cylinder may be mentioned
here. It was first used for striking idiophones (such as small metal bars or bells), later
being implemented in a modified form in Jacquard’s loom and finally in Hollerith’s
punched card computer as a scanning apparatus. The automaton was also seen as
a model of the biological body. In the dualistic view of Descartes, nature itself is

2.2 Development of Symbol, Writing System and Numeral System 9

nothing other than a complex mechanical apparatus. This view is also reflected in
the materialistic-mechanistic anthropology of Thomas Hobbes. Proponents of the
theory of rationalism arising at that time, including Leibniz, Wolff and Kant, base
their assumptions on postulates such as metaphysics (the world is logical and con-
stitutionally ordered) or epistemology (the world should be fathomed only by ratio-
nality, independent from human experience). These theses favor the presumption of
the principal feasibility of all things. This view is opposed by empiricism with its
proponents Locke, Hume and Berkeley, preferring immediate human experience as
a means of knowledge.

The stages of development treated in the following, leading finally to the com-
puter in today’s sense, are naturally also affected by a number of determining factors
and interdependencies that, however, cannot be covered here in detail.

2.2 Development of Symbol, Writing System and Numeral

System

In order to be able to apply algorithms, the symbol must be introduced as a sign
whose meaning may be determined freely, language must be put into writing and a
number system must be designed.

The development of writing is generally known to be a three to four stage process.
Based on a logogram, in a next step, a syllabary is created by means of phonetization
that in a further differentiation finally develops to be an alphabetic writing system.
Logograms can be pictograms – pictures resembling what they signify, ideograms
– pictures representing ideas and serving as semantic carriers and phonograms –
syllable signs. The phonogram may, but does not have to be, the starting point for
an alphabetic writing system. For example, the chinese writing system consists of
logograms that can also be found in Japan as Kanji along with the common writing
systems. In general, the transition from a syllabary to an alphabetic writing system
only occurs in languages that, due to their structure, can be further subdivided into
their basic components.

The first fully developed writing system can be found around 3000 BC in
Mesopotamia and Egypt. These writing systems are based upon originally picto-
graphic representations that are later developed to reach a higher degree of abstrac-
tion. So, the long-winded notation of hieroglyphs changes to a standardized simpli-
fication, the hieratic system, that after further abstraction is finally replaced by the
demotic system.

For the history of algorithmic thinking, an essential abstraction process has al-
ready taken place with the beginnings of these writing systems. An object may be
represented by a sign and so it is possible to carry out abstract operations with ob-
jects, without using the objects per se.

It is also important to assign to the objects a number for their occurrence – mean-
ing nothing more than the ability to count as well as creating a number system being
capable of clearly representing the chosen values.

10 2 Historical Development of Algorithmic Procedures

An interesting example of a division that has not been carried out between object
and quantities is the counting method of the Tsimshian, an ethnic group in British
Columbia, described by Tobias Dantzig [3, p. 6]. In this culture, there exist seven
different term fields for numbers, depending on the objects associated with them.
The Tsimshian distinguish between flat objects and animals, round objects and time,
humans, long objects and trees, canoes, length specifications as well as objects that
are not specified in detail.

This makes it clear that an essential precondition for the development of number
systems – along with the ability to count – is, above all, the possibility to abstract
the quantity of the related objects. In other words, it must be understood that four
stones and four directions possess the same attribute, namely the number four as
a mutual classification criterion. The example given above should only serve as a
description of a possible process – an object-related number designation may have
different causes and not only mean lacking abstraction ability, as it may possibly be
assumed by an anthropologist from the Western world.

The oldest findings suggesting a conscious process of counting are given by
bones with indentations. An examination under a microscope of the Ishango bone
from Zaire allows interesting assumptions regarding its intended use: “This small
bone, about 8000 years old, has a little piece of quartz stuck in a groove at one end
and has three columns of notches cut into the sides of the bone itself. Microscopic
examination of the bone indicates that the notches were made by some 39 different
tools, thus it likely represents a record of events rather than a random decoration
scratched into the bone. There is some limited evidence that suggests the markings
may represent a record of some activity based upon a lunar calendar. If that is the
case, then the notations record a series of events over a time span of almost six
months. If the Ishango bone is really a numerical record rather than just a decora-
tion, then traces of this type of recording system can be found from as early as the
Upper Paleolithic cultures of 30,000 BC” [27, p. 39–40]. Similar findings that are
much older are for example the Lemombo bone from the area between South Africa
and Swaziland from around 35,000 BC as well as a finding from Vestonice in the
Czech Republic, dated 30,000 BC.

Later, tally sticks are widespread and can be found in several cultures. Another
interesting number notation can be seen in the Quipu, an arrangement of knotted
strings of the Inca culture. With this system, also complex pieces of information
may be encoded. Figure 2.1 shows the page numbers of the single chapters of the
first edition of Donald Knuth’s “The Art of Computer Programming,” divided into
volumes, in the form of a Quipu. The distance to the axe shows here the decimal
position of the respective value given by one or multiple knots. In this case, the
following division results: Volume I (454 pages) consists of chapter 1 (225 pages)
and chapter 2 (229 pages); volume II comprises chapter 3 (155 pages) and chapter
4 (283 pages); volume III (541 pages) finally consists of chapter 5 (379 pages) and
chapter 6 (162 pages). The last knotted string on the right side of the Quipu indicates
the total amount of 1433 pages.

Provided that numbers are realized as an abstract value, further representation is
made within a number system enabling a clearly arranged representation of larger

2.2 Development of Symbol, Writing System and Numeral System 11

Fig. 2.1 Quipu of Knuth’s “The Art of Computer Programming” [27, p. 40]. c© 1986. Reprinted
by permission of Pearson Education, Inc., Upper Saddle River, NJ.

values. Symbols for number units are generated whose main counting unit repre-
sents the basis of the number system. Systems on the basis 5, 10 or 20 can be found
quite often, because of the anatomical correspondent given by the number of fingers
and toes. Today, the decimal system has widely established itself. Still in today’s use
of language, however, evidence of older ways of counting can be detected. Traces
of the supposedly Basque vigesimal system, based on units of twenty, can be found
in French language in number designations such as “quatre-vingt” (four-twenty) for
eighty or “cent-vingt” (hundred-twenty) for one hundred and twenty. Up to the 13th
century, the denotations “six-vingt” (six-twenty) and “sept-vingt” (seven-twenty),
amongst others, existed. In the Danish language, too, counting in units of twenty is
applied, such as for example “tresindstyve” (three-twenty) or “firsindstyve” (four-
twenty). Similar examples can also be found in English, Gaelic and other languages.

When comparing two of the first number systems, two basic systematizations
may be recognized: Number symbols for different values are either cumulatively
merged into units or symbols are used whose value is determined by their position.
These systems are referred to as additive or positional number systems.

First sources of closed number systems can be detected on clay tables of the
Sumerian empire around 3000 BC This sexagesimal system with sixty as a base was
adopted by the succeeding Accadians and finally Babylonians. The basic number
symbols consist of tens and ones that are merged in symbols up to the value 59. The
position of the symbol in the symbol string gives information about the respective

12 2 Historical Development of Algorithmic Procedures

potency. Between the units of sixty, a little space is often left. Around 300 BC a
placeholder is added for clarification in the form of two angular blocks whose func-
tion can be compared to a zero (see below), without, however, being an independent
number which could be used for arithmetic operations. Similar functions are also
performed by different symbols of the twenty-base vigesimal number system of the
Classic era of the Maya from AD 300 to 900.

Fig. 2.2 Babylonian number 693, composed of 11 * 60 + 33 (arrows represent ones and hooks
tens).

The Egyptian number system dates back to the time of the old empire (around
2700–2200 BC). The basic principle stays unchanged through all succeeding eras,
although the hieratic (from around 2500 BC on) and the demotic writing system
(from around 700 BC on) deriving from it enable an easier representation of num-
bers by merging multiply used symbols to single symbols. The hieroglyphic writing
system is a decimal additive number system. The representation indeed starts de-
pending on the notation (from right to left, from left to right or from top to bottom)
with the smallest values; however, the potency of the base is only determined by
the form of the hieroglyph and not by its position. In later times, a product repre-
sentation is also used that, for example, represents the hieroglyph God (the sitting
figure) once over five lines in order to express the number 5,000,000. The four basic

Fig. 2.3 Additive Egyptian number notation [27, p. 10]. c© 1986. Reprinted by permission of
Pearson Education, Inc., Upper Saddle River, NJ.

arithmetic operations are solved in Egyptian mathematics based on addition.
Well-known compendia comprising arithmetic problems were generated with

the “Rhind mathematical papyrus” and the “Moscow mathematical papyrus” (from
around 1700 BC on). The Greek notation developed in two differing systems, mak-
ing use of either special symbols (from around 1100 BC on) or alphabetic charac-
ters (from around 500 BC on) to represent numbers. The Roman number notation

2.3 Much Ado About Nothing – The Development of the Zero 13

is partly used even today; the Indo-Arabic number system became established in
Europe, after some resistance, only from the 13th century.

2.3 Much Ado About Nothing – The Development of the Zero

Along with the introduction of today’s number notation, there was a particular num-
ber gaining in importance that helps to profit from the advantages of positional sys-
tems in the first place. Not considering the placeholders of the Babylonians and
Mayas mentioned above, the number zero as an independent number was developed
by the Indians and first handed down through an inscription from Gwalior about 400
kilometers south of Delhi.1 The inscription gives annualized the date AD 876 and
describes the size of a garden. In the measure of length, a superior circle undoubt-
edly stands as a symbol for the zero. Most likely, the zero was used much earlier
in Indian mathematics. With the campaigns of Alexander the Great, amongst others
the Babylonian number system found its way to India that at this time used a num-
ber system similar to the Greek system. Around the year 500, the number system
changed under the influence of Indian mathematicians. The Babylonian system was
transformed into a decimal system and since 662 at the latest it was put down by a
Syrian bishop that the Indians counted with new numbers. It is unknown whether
the zero was already used at this point; however, it is most likely that the zero was
used already before the inscription of Gwalior. The achievement of the Indian math-
ematicians was giving the number zero in addition to its function as a placeholder
an independent position amongst the numbers – the zero became a value that could
be used for calculations. The reasons for the development of the zero as an inde-
pendent number in India and not gaining ground in Europe for such a long time can
be found in differing philosophical and religious concepts. The zero being also a
symbol for nothingness meets parts of Indian philosophy, which understands empti-
ness as the origin and objective of every development. The Sanskrit designation for
the zero is “sunya,” a term that simplified may be translated as “emptiness.” In real-
ity, the simple translation of “sunya” as “emptiness” is technically incorrect, since
this emptiness may very well have content.2 The introduction of the zero as an ex-
pression of a philosophical concept is, however, also opposed by another view that
originally conceives the zero as the beginning of a new numeral series and therefore
representing something similar to “10.”

The Indian number system was introduced to Islamic culture by al-Khwarizmi
around 820; “sunya” became the Arabic “sifr,” latinization turned it into “zephirus,”
a word which the English term “zero” and the French term “zero” derive from.
“Sifr” was also adopted as “cifra,” a term from which eventually also the English
“cipher,” the French “chiffre” and the German “Ziffer” can be deduced from. A

1 The information given in this section refers mostly to two works treating exhaustively the de-
velopment of the number zero: Robert Kaplan: “The Nothing That Is: A Natural History of Zero”
[13]; Charles Seife: “Zero. The Biography of a Dangerous Idea” [23].
2 Interesting remarks on the definition of this term can be found in [13, p. 69ff].

14 2 Historical Development of Algorithmic Procedures

long time before it was accepted in Europe, the Benedictine monk Gerbert of Au-
rillac (945–1003) made himself familiar with the Indo-Arabic numeral notation in
Spain around 968. Gerbert’s efforts to introduce the concept of the zero in the Chris-
tian occident met strong resistance in clergy. The reasons for this refusal have their
earliest roots in the Pythagorean conception of numbers (around 580–500 BC). Ac-
cording to the Pythagorean system of thought, there is equivalence between num-
bers and forms; therefore a cube with a side length of zero loses its shape, and a
relation including numbers that contain a zero does not make sense anymore. For
the cosmos of the Pythagorean School which only expresses itself in number pro-
portions, the zero therefore poses a threat – an invasion of nothingness, of chaos into
a perfectly designed system. Pythagoras’ approach, however, is controversial: The
atomists postulate an empty space between the smallest components of the world.
Zenon’s paradoxon of Achilles and the turtle can only be solved by a limiting value
of zero. The philosophy of Aristotle (384–322 BC), who adopted the Pythagorean
views into his system, however, remained formative for the occidental thinking for
nearly 2000 years. The zero was also declined by Christian theology that, influenced
by Aristotelian philosophy, also denied the existence of emptiness and the infinitely
small.

Fig. 2.4 Pope Sylvester II. c© akg-images.

Gerbert’s first attempt to introduce the new number system in Europe was not
successful. In 999, he was consecrated Pope Sylvester II, but due to this attempt laid
himself open to attack from the church. In France in the period of the Enlighten-
ment, his coffin was opened to examine whether it not also contained a devil. In the
13th century, Saint Thomas Aquinas announced that God is unable to create nei-
ther an infinitely small nor an educated horse. However, an assembly of scholars,
gathering in the year 1277 and chaired by the bishop of Paris, criticized the Aris-
totelian principles opposing God’s almightiness – God’s almightiness prevailed over

2.4 The Formalization of Thinking Processes 15

the Aristotelian view of the world. Consequently, God can create the infinitely small,
a vacuum. Yet half a century earlier, there had been efforts in Italy to introduce the
zero.

Leonardo da Pisa, also known as Fibonacci, published his “Liber Abaci” in 1202,
presenting a numerical series in which the following number is generated by the
sum of its two preceding numbers, such as for example: 1, 1, 2, 3, 5, 8, 13, 21,
etc. This numerical series also contains an increasingly exact representation of the
golden ratio through the relation of two consecutive numbers. Geometrically, the
golden ratio refers to the division of a quantity such that the ratio of the larger part
to the whole quantity is the same as the ratio of the smaller part to the larger part.
The golden ratio can be found in nature in several proportions and is already for
the Pythagoreans an expression of perfect harmony. So, it is no coincidence that
they chose a symbol for their cult in which the lines are divided in the relationship
of the golden ratio, the pentagram. Leonardo da Pisa’s “Liber Abaci” did not only
introduce this numerical series, later known as Fibonacci series, but also favored
the Indo-Arabic number system for arithmetic calculations. Leonardo was the son
of Pisa’s trade representative for Arabic countries and in this environment the Italian
traders soon recognized the advantages of the new number system. So, it was not
only a change of opinion that finally led to the implementation of the zero and the
new number system, but simply its clear advantage for trade calculations.

Writing and number systems are the basis for the abstract use of any kind of
object. However, developments that finally lead to the computer as it is today also
require a formal system in order to carry out operations with the created symbols;
within a given context, these operations should then lead to utilizable results.

2.4 The Formalization of Thinking Processes

In the occidental tradition, the formalization of thinking processes began with the
development of logic. The term itself derives from the Greek “logos” that can either
have the meaning of “thinking,” “word,” “thought,” “sense” or “rationality.” Again,
it is Aristotle who paved the way for occidental logic. Indeed, the art of argumen-
tation by means of logic is also proved to have been used by Socrates and Plato,
but Aristotle is the one who developed logic as a closed system and established it
as a scientific discipline. His works on logic can be found in the “Organon” as well
as partly in his “Metaphysics.” The denominations “Organon” (“tool,” “sense tool,”
“method”) and “Metaphysics” (“after the physics”) do not originate from Aristotle
but from Andronicus of Rhodes, who published these two works in the first century
CE.

The basis for logical reasoning is thinking, which is assumed to be in principle
consistent. A statement (conclusion) may be made due to facts (premises) and their
mutual concepts. Of course, the underlying facts must be consistent in the sense of
an axiom, being a premise which is accepted as absolutely right and therefore does
not require any further proof. According to Aristotle, an axiom is a sentence that is

16 2 Historical Development of Algorithmic Procedures

taken for granted as valid, but it may be the basis for a proof. However, an axiom
according to Aristotle may, compared to today’s understanding, also represent a
practical basic principle.

The conclusion or the conservation of a true statement out of the given proposi-
tions is subject to the laws of formal logic deduction that subordinates the special
to the general. A syllogism, understood as a three-part conclusion, looks according
to Aristotelian logic as follows: The first premise or major premise, followed by
the second premise or minor premise results in the conclusion. The first and second
premises have one term in common with each other known as the terminus medius
(M) which has a subject (S) defined in the minor premise as part of a quantity defined
in the major premise. A predicate (P) assigned to this quantity can in the conclusion
also be assigned to the subject over the terminus medius. A well-known example for
a three-part syllogism is the following conclusion:

• All men (M) are mortal (P): major premise
• Socrates (S) is a man (M): minor premise
• Socrates (S) is mortal (P): conclusion

Aristotle assumed three preconditions to be the basic principles for the process of
the establishment of the truth. Law of identity: The terms used have the same mean-
ing. Law of contradiction (also law of non-contradiction): There is no statement that
is both true and false at the same time. Law of excluded middle: Every statement is
either true or false. Together with the principle of sufficient reason, stating that ev-
ery true thought must be constituted by a thought whose truth is proved, these four
statements form the four laws of classical logic. Although the principle of sufficient
reason is attributed to Leibniz, a premise of similar content can be found in the
works of Democritus (460–371 BC): Nothing happens without a cause, everything
has a sufficient reason. In order to receive general statements, Aristotle applied two
types of induction: Imperfect induction uses a number of particular statements to
get to a general statement. Induction by enumeration that can also be attributed to
deduction, starts with proving a characteristic for a certain number of elements of a
group in order to then prove this characteristic to be true for all other elements of this
group. Socrates used induction to infer knowledge as a general term by observing
particular cases.

Aristotelian logic determined the development of occidental thinking; however,
from around 600 BC, there was also a tradition of Buddhist logic in India. The fol-
lowing construct is an example of an inductive five-membered syllogism in Indian
logic:

There is fire on the hill (thesis to be proved), because there is smoke on the hill
(smoke concurs with fire); there is smoke in the kitchen, where there is fire (this
shows the relationship by means of a verifiable example); there is smoke on the hill
(the observed state in the kitchen is generalized and applied to the situation on the
hill); there is fire on the hill (conclusion).

Logic experienced further developments by the philosophy of the stoics from
around 300 BC. The stoa distinguished between object, theoretical image and lin-
guistic sign. The statement became the smallest relevant part of a logical operation;

2.5 A Truth Machine from the 13th Century 17

for the first time, particles, known as junctures, were introduced to connect logical
statements. Boethius (480–525) wrote about syllogisms, translated Aristotle’s works
and strove for a synthesis of Aristotelian logic and stoic logic.

The works of Aristotle fell into oblivion and only became present again in the
High Middle Ages in the course of a return to antique writers. The socio-political
changes in this era, such as higher agricultural production, improvement of com-
merce and specialization of trades led to wealth and a higher life expectancy. The
settlement of the Investiture Conflict resulted in the Secularization of the ruling
power. At the end of the 11th century, the first universities emerged from the
monastery and cathedral schools. Reading and writing no longer were privileges
reserved to the clergy.

The era of Scholasticism began with Anselm of Canterbury (1034–1109), putting
rationality as a means of achieving knowledge alongside faith. In the 13th century,
Aristotelian philosophy became, above all with Albertus Magnus (around 1200–
1280) and his student Thomas Aquinas (around 1225–1274), an inherent part of
scholastic thinking. When Anselm of Canterbury (1033–1109) stated, “credo ut in-
telligam”(“I believe that I may understand”), so this implied a clear evaluation of
faith being superior to logical thinking. Scholasticism tried to legitimize faith by
means of rationality – logical thinking was cultivated, but mostly was an instru-
ment for supporting Christian principles of faith. Outstanding logicians of that time
were among others William Shyreswood (1190–1249) and his student Petrus His-
panus (around 1205–1277), whose “Tractatus Logicae” (around 1230), later known
as “Summulae Logicales,” was a recognized text book of logic and had been pub-
lished 200 times by the 18th century.

In the context of these developments, the introduction of logic only represents the
basis for the first attempts to systematize knowledge and to manipulate it in different
ways within a system. These abstraction processes are necessary preconditions for
the development of systems in whose context different algorithms for the generation
of musical structure may also be applied.

2.5 A Truth Machine from the 13th Century

A provocative approach in this direction was made by Raimundus Lullus (also
Ramón Llull, 1232–1316) with his “Ars Magna” (AM). It is about nothing less
than the mathematization of knowledge and accessing it by means of a machine
for the production of logical statements. The revolutionary concept of this approach
exists in the idea that true statements can be obtained by algorithmic combinations
of accepted terms.

Each combination of the AM has an underlying alphabet of nine letters. The sym-
bols from B to K are semantic carriers of expressions in different categories, such
as divine attributes, categorical determinants, question words, subjects, virtues and
vices, as represented in table 2.1. Three diagrams and an arrangement of movable
concentric circles form the working aids of the AM. The first combination figure,

18 2 Historical Development of Algorithmic Procedures

B bonitas differentia utrum deus justitia
C magnitudo concordantia quid angelus prudentia
D aeternitas contrarietas de quo caelum fortitudo
E potestas principium quare homo temperantia
F sapientia medium quantum imaginativa fides
G voluntas finis quale sensitiva spes
H virtus maioritas quando vegetativa caritas
I veritas aequalitas ubi elementativa patientia
K gloria monoritas quomodo instrument. pietas

Table 2.1 Semantic fields of the “Ars Magna.”

or diagram A, represents the divine attributes of the first category that can appear
both as noun and adjective. The lines in the centre describe possible relations. If,
for the AM, the attribute also represents something universal, the meaning changes
through the combination. So, in the combination of two attributes, one automatically
becomes subaltern, such as in “truth is wise,” etc. Because God is all-embracing in
the theological context, his attributes are also universal, therefore forming the basis
for everything that exists.

Fig. 2.5 Diagram A of the “Ars Magna.” c© bpk / Staatsbibliothek zu Berlin.

The next combination figure, or diagram T (figure 2.6), also refers to the alpha-
bet of the AM; however, the letters represent the categories succeeding the divine
attributes, such as categorical determinants, questions, etc. Further semantic fields
in diagram T are three triangles lying on top of each other, representing possible
relations and manifestations of terms. The first triangle includes “difference,” “con-
cordance” and “opposition.” The second one stands for “beginning,” “middle” and
“end,” the third triangle symbolizes “the larger,” “the smaller” as well as “the same.”

2.5 A Truth Machine from the 13th Century 19

Every triangle edge – the relations of the manifestations – again divides into several
possible cases; for example “the end” (finis – assigned to G as categorical determi-
nation) may happen through “termination” (terminationis), “privation” (privationis)
or “perfection” (perfectionis).

Fig. 2.6 Diagram T of the “Ars Magna.” c© bpk / Staatsbibliothek zu Berlin.

According to Lullus, the alphabet of the AM interpreted through the different
categories symbolizes the essence of every possible question as well as every basic
statement of scholastic thinking. Alongside the diagrams, the AM is also made up of
an exhaustive text material, in which uniform definitions for basic terms (“nature,”
“unit,” etc.) are determined, interpretation rules (which attributes may be assigned to
which subjects, etc.) are described and examples of interpretation are offered. Using
the AM is a process of interpretation that happens in the context of three letters of
the alphabet. In an arrangement of movably supported circular discs (figure 2.7), a
letter triple may be placed which examines a particular issue with regard to different
aspects.

These three letters are interpreted in the context of diagram A (divine attributes
and predicates), of diagram T (the succeeding semantic fields) or in a combination
of both these diagrams. These possibilities are shown in the contemplation table
(figure 2.8), in which an interposed T indicates that the following letters are to be
interpreted in the context of diagram T.

However, a necessary precondition for the use of the AM is knowledge of the
interpretation rules and definitions of the text part. So, in the case of the interrogative
particle “if,” for example, a negative and a positive answer should be formulated
that are verified by means of further operations. If a term is combined with the
interrogative pronoun “what,” questions such as the following result: What is the
term? What are essential components or manifestation of the term?

20 2 Historical Development of Algorithmic Procedures

Fig. 2.7 Combination unit of the “Ars Magna.”

Fig. 2.8 Contemplation table of the “Ars Magna.” c© bpk / Staatsbibliothek zu Berlin.

In the combination of semantic fields, it should be noted that, according to the
text part of the AM, only allowed assignments are made, so that for example a vice
cannot achieve the rank of a divine attribute, etc. Naturally, a combination of letters
does not produce a particular question or statement, but opens up a whole field of
discourse that is limited by the user in regard to a particular aspect. Namely these
several possibilities of interpretation, that, however, are limited to a clear field of
discourse by term definitions and interpretation rules, allow the user to consider his
or her questions within a complex network of connected statements. In Lullus’ own
words: “The subject of this art is to answer all questions, provided that what man

2.6 Early Approaches to Algorithmic Composition 21

cannot know, can be formulated in the term [. . .] We have employed an alphabet in
this art so that it can be used to make figures as well as to mix principles and rules
for the purpose of investigating the truth. Through a letter that may carry several
meanings, the intellect more generally comprehends manifold meanings and also
knows them [. . .].” [1, p. 298].

Of course, the way of finding the truth in the AM can be disputed. The main
problem is in the almost exclusive use of circular reasoning, meaning that what you
are supposed to be proving is assumed to be true and the conclusion of the argument
is implicitly or explicitly assumed in one of the premises respectively (also: circulus
vitiosus), and consequently also in the breach of the principle of sufficient reason.
In addition, the ambiguous contexts make clear statements nearly impossible. So in
this system, truth can only be deduced in the context of the Christian dogmatism
of that time, if at all. The underlying theological principles, however, are axioms
according to Lullus and therefore an irrevocable basis of an objective establishment
of the truth. His main objective is the conversion of the Islamic world by means of
rationality, in the shape of the permutation discs of the “AM.” At over eighty years
of age, Lullus undertook his last unsuccessful mission voyage (1314–1316) and was
stoned to death by an enraged crowd in Bugia, Algeria (figure 2.9).

2.6 Early Approaches to Algorithmic Composition

Also in the context of algorithmic composition, by around AD 1000 a first ap-
proach to automatic musical structure genesis had been developed. Guido of Arezzo
(around 991–1031) contributed considerably to the development of notation, devel-
oped solmization and was an important music theorist of the medieval era. One of
his most significant works, “Micrologus,” is the earliest compendium of monodic
and polyphonic singing practice. In chapter 15 and 17, he outlines a system for the
automatic generation of melodies out of text material [20, p. 805]. Letters, sylla-
bles and components of a verse are mapped on tone pitches and melodic phrases
(neumes), whereas groups of neumes are separated by caesurae. On the level of
groups of neumes, the caesurae correspond to breathing pauses and can also be
found in smaller groups in the form of pauses or held notes. The vowels in the text
can be mapped on different tone pitches, as shown in figure 2.10. The concrete de-
sign of the melody is subject to musical limitations that are treated by Arezzo in his
theory on “Motus.”

In the time of Raimundus Lullus, a new musical genre was also becoming in-
creasingly complex. The motet became the dominant form of polyphonic vocal mu-
sic in occidental music history. At the beginning of this development was Leonin’s
(around 1136–1190) “Magnus liber organi de gradali et antiphonario,” a compilation
of chorales out of which through the further development of musical clauses com-
plex polyphonic song forms eventually came into being. Beginning in the early 12th
up to the early 13th century with Pérotin and Petrus de Cruce, the motet advanced
through composers such as Philippe de Vitry (around 1291–1361), Guillaume de

22 2 Historical Development of Algorithmic Procedures

Fig. 2.9 The stoning of Raimundus Lullus. Thomas Le Myésier: Breviculum ex artibus Raimundi
Lulli electum; manuscript of the Badische Landesbibliothek Karlsruhe, Klosterbibliothek Sankt
Peter (St. Peter perg. 92, fol. 10 recto). With kind permission of the Badische Landesbibliothek.

2.6 Early Approaches to Algorithmic Composition 23

Fig. 2.10 Mapping of vowels on tone pitches by Guido of Arezzo.

Machaut (around 1300–1377), Guillaume Dufay (around 1400–1474) and Josquin
Desprez (around 1440–1521) and reached its last high point with Giovanni Pier-
luigi Palestrina (1525–1594) and Orlando di Lassus (1532–1594). From 1600 on,
the motet lost its significance as a central musical genre, although it still appeared in
the compositions of Bach, Schütz and other composers until the middle of the 18th
century. The principle of isorhythm, invented by Philippe de Vitry and reaching its
peak with Guillaume de Machaut consists of multiple repeating melodic (color) and
rhythmic (talea) models that also interfere with each other and can occur in different
proportions.

In order to meet the requirements of an increasingly complex polyphony, also a
new concept of notation developed that, in contrast to chant and modal notation used
until the early 13th century, also allowed the differentiation of rhythmic structures.
Although in chant notation, developing from neumes, notes are arranged on single
text syllables, the concrete rhythmic form cannot be notated with this concept. The
modal notation, however, distinguishes between some triple-timed rhythms in dif-
ferent modes, although complex temporal structuring is still impossible with this
notation form. Around 1280, the music theorist Franco of Cologne created his “Ars
Cantus Mensurabilis,” introducing a system of mensurated singing. The decisive
innovation of mensural notation lies in the ability of the system to indicate the tem-
poral duration of a note by its shape. In the mensural notation of the “Ars Antiqua”
in Franco of Cologne’s system and in the system of the “Ars Nova,” influenced from
1322 on by Philippe de Vitry, the note values are parted in two or three. The values
and the modes resulting from the divisions as well as accepted combination possi-
bilities enable a complex rhythmic repertoire. The form of notation as known today
came into being around the 16th century and stems from further developments and
roundings of the mensural note values.

Both mensural notation and the complex musical procedures of the motet illus-
trate the essential abstraction achievements of this era, ones that are also of great
importance to the development of algorithmic composition. Mensural notation en-
ables the representation of several musical parameters with a symbol and constitutes
an event space for possible rhythmic constellations with constraints of the permit-

24 2 Historical Development of Algorithmic Procedures

ted combination possibilities. The taleas and colors of the motet, however, show the
structure generating application of musical parameter series – a procedure which
came back into use in serialism of the 20th century.

If the abovementioned principles represent the beginnings of algorithmic manip-
ulation of musical material, then the “Ars Magna” of Raimundus Lullus effectively
realizes the concept of a computer (music) system. The analogies to hardware and
software, data memory, program, etc. are evident in the components, definitions and
rules of the “Ars Magna.” Lullus creates a system that due to its underlying structure
(hardware, corresponding to the diagrams), a knowledge base (data, corresponding
to the definitions) as well as application instructions (software, corresponding to the
interpretation rules) independently generates statements. Because of the given com-
bination possibilities, some degree of chance is involved that, however, due to the
interpretation rules, provides coherent statements in the given context whose exact
interpretation is left to the user.

The circular statements inherent in the “Ars Magna” can actually also be found
in a system of algorithmic composition, because any compositional premises can
hardly be compared to axioms. When compositional work is considered under this
point of view, the circular statement is as inherent in it as it is in the “Ars Magna.” Of
course, this objection can be met with a formally closed composition system that al-
gorithmically manages every structural decision. The attempt to generate musically
incontrovertible structure by applying proven or unproven sentences of any designed
system on musical parameters is made time and again. Hauer’s “Zwölftonspiel” or
Schillinger’s3 composition system that is based on “mathematical legalities,” are
only two examples of transpersonalizing compositions by referring to extra-musical
systems and, by doing so, making them unassailable. The formal closedness, or
“truth,” of any principle taken as a basis, becomes inevitably lost through the musi-
cal transfer. What is left is the concretely produced structure, the musical informa-
tion.

The musical quality of a structure produced in this way (as well as in all other
ways) has to be left aside, because even value judgments exerted by musicological
discourse are inevitably subject to personal preferences or trends. The “Ars Magna”
enables the user to make a number of interpretations within the clearly defined rule
system. Here, too, a parallel may be drawn to a system of algorithmic composi-
tion that in most cases allows the generation of a whole class of compositions by
producing a meta-structure.

Whereas, according to Lullus, combinatorics opens a space for self-reflections
within a controlled system, a concept of the Jesuit and universal scholar Athanasius
Kircher (1602–1680) allows the output of directly utilizable material in the musical
context. Kircher worked in the fields of astronomy, mathematics, medicine, music,
mineralogy and physics as well as in linguistics, where he tried to decipher the
Egyptian hieroglyphs with combinatorial methods. Although his effort failed and
the correct decoding was only completed by Jean François Champollion (1790–

3 “The Mathematical Basis of Arts” [22] and “Schillinger System of Musical Composition” [21].

2.6 Early Approaches to Algorithmic Composition 25

1832) with the Rosetta Stone, Kircher’s attempts nonetheless represent a remarkable
achievement in combinatorics and paved the way for applied cryptology.

Fig. 2.11 Atanasius Kircher. c© bpk.

In his exhaustive musicologist work “Musurgia Universalis” from 1650, Kircher
developed amongst others a system of algorithmic composition. This system con-
sists of three categories of labeled wooden sticks (syntagmas) on which both num-
bers and rhythmic values are engraved. Kircher’s system allows for the automatic
generation of contrapuntal compositions in the style of the contrapunctus simplex
and floridus. In an advanced form, style-typical material of particular musical genres
can be produced.

In Kircher’s “Arca Musarithmica,” four-lined number columns can be combined
with four-voice rhythmic patterns by means of the syntagmas. The number columns
represent levels of different modes and are arranged in groups of 2 to 12 units.
These units serve to correctly transfer text passages and represent one syllable each.
Each class of tone pitch symbols of a particular size can be combined with a class
of rhythmic patterns of the same size, finally producing four-voice movements in
the style of the contrapunctus simplex. Because the number of voices differs in a
movement of the contrapunctus flores, in this form of syntagma the voices are only
combined with a selection of appropriate values.

In the so-called “Arca Musurgia” that, however, is only incompletely described
in the “Musurgia Universalis,” the tone pitches and rhythmic patterns are advanced
in a way that they enable the composition of material within five classes of musical
genre (church style, madrigal, motet, fugue, and monody).

The fact that in Kircher’s system tone pitches are represented by numbers ad-
vances the class of possible compositions, since abstractions can be made from

26 2 Historical Development of Algorithmic Procedures

a concrete mode. Moreover, this principle shows an application of pitch classes,
which have been a common representation system in the production and analysis of
musical material since the 20th century.

Combinatorics is also used in another system of Kircher in order to solve tasks
from various fields. In 1661, he created an apparatus for the twelve year old Carl
Joseph of Habsburg that he named “mathematical organ.” This device is similar to a
card index system and treats arithmetic, geometry, the building of forts, ecclesiastic
time calculations, sundials, astronomy, astrology, cryptographs as well as music ac-
cording to the above mentioned principles. For each special field there is a collection
of labeled discs whose use (the possible combinations for solving the task), are ex-
plained in an enclosed booklet. Not all possible procedures are created by Kircher;
the arithmetic part, for example, uses Napier’s bones, for geometrical tasks the con-
struction of the geometrical square (a common instrument of surveyors made up
of a square frame with two scales and a rod to measure distances) is applied. The
importance of Kircher for the development of algorithmic thinking and finally the
computer can be seen amongst other things in the fact that as an advancement of
Lullus’ concept, a mechanical arrangement generates concrete outputs that may di-
rectly be used for solving a problem. Because all solutions possible in the system
are also coded by the combination possibilities of the system, Kircher also paves the
way for a comprehensive representation of knowledge in a chosen field of discourse.

2.7 A Utopia of an All-Embracing Representation of Knowledge

A decisive approach in this direction was made by Gottfried Leibniz (1646–1716).
Besides other essential contributions to the development of science, he also pursued
a method for formulating all knowledge in a kind of “universal language” in order
to enable the solution of any scientific problem within a comprehensive calculus. In
a letter from 1679 asking for support for his plans, Leibniz wrote to his employer
Duke Johann Friedrich of Braunschweig: “[My] invention uses reason in its entirety
and is, in addition, a judge of controversies, an interpreter of notions, a balance
of probabilities, a compass which will guide us over the ocean of experiences, an
inventory of things, a table of thoughts, a microscope for scrutinizing present things,
a telescope for predicting distant things, a general calculus, an innocent magic, a
non-chimerical cabal, a script which all will read in their own languages; and even
a language that one will be able to learn in a few weeks and which will soon be
accepted amidst the world.” [5].

For Leibniz, who often also signed himself “pacidus” (from Latin, meaning “con-
ciliator”), the concept of a universal language was also a vision of cross-national
communication in Europe after the Thirty-Year War. His program for the formal-
ization of the sciences was to be achieved through a number of preconditions: First,
by compiling a complete encyclopedia of all terms that are necessary to formal-
ize the sciences; second, a formal system was to be developed, namely the “lingua
universalis,” within which all scientific terms could be coded; third, by creating a

2.7 A Utopia of an All-Embracing Representation of Knowledge 27

Fig. 2.12 Gottfried Leibniz [4, p. 21].

calculus, the “calculus ratiocinator” that should enable the connection of all terms
of the universal language by means of logical operations. Assuming the universal
encyclopedia to be feasible, Leibniz searched appropriate symbols for the repre-
sentation of all scientific terms in his universal calculus. One postulate was that by
combining such symbols, a logical relationship occurred. As a set of symbols, he
chose the group of natural numbers. All terms whose subject features one particular
characteristic, must be represented by natural numbers that are whole-number fac-
tors of a number representing the predicate or, according to today’s understanding,
the class. Therefore, according to Leibniz’ characteristic numbers, the following
heredity concept (meaning here that every object belonging to a class takes on all
characteristics of its superior classes) would result from the example of the object
‘Englishman’[8, p. 10]:

Fig. 2.13 Characteristic numbers by means of an object hierarchy.

Another logical connection could be of the following form: Animal gets the num-
ber “2,” the predicate “rational” number “3,” consequently for a human as an intel-
ligent being the result is number “6” that can both be divided by three and two. The
characteristic numbers that cannot be divided any further must naturally be repre-
sented by prime numbers in order to enable explicit partition relations. Although it
is a groundbreaking approach, the concept of characteristic numbers also exhibits a
few problems regarding the application of some term attributions as well as the rep-

28 2 Historical Development of Algorithmic Procedures

resentation of combinations of Aristotelian logic. Leibniz himself has carried out
some advancements of his characteristic numbers.4

The concept of an ideal language is also considered by Descartes; for him, too,
numbers represented the best possible symbols of a universal vocabulary. Leibniz,
however, elaborated a concrete outline of a system, regardless of the impossibil-
ity of its realization. Even though through modern logic some aspects of Leibniz’
program are realized, the works of Gödel and others (see below) show the limits
of decision making in logical calculus. In Leibniz, numbers become an instrument
for organizing the world – even music results from a metaphysical act of calculat-
ing: “Musica est exercitium arithmeticae occultum, nescientis se numerare animi”
(“Music is a hidden arithmetic exercise of the soul, which does not know that it is
counting.”). According to another well-known quotation of Leibniz “Dum calculat
Deus, fit mundus” (“When God is counting, a world comes into being.”), counting
becomes a religious creation process. The fact that an attention to formal concepts
may also come with a deep sense of spirituality is also shown by a creation of Leib-
niz’ prominent contemporary J.S. Bach, who combines in The Art of Fugue or in
his Goldberg variations complex structuring procedures with highest musical ex-
pression.

2.8 Calculating Machines

Leibniz’ reflections concerning a comprehensive calculus also include the possi-
bility of mechanized calculation. Due to the progress in fine mechanics, which saw
continuous improvement because of the rapid development of automata in this era, it
was possible for Leibniz to design a prototype of a functioning calculating machine.
Indeed, its development had a long tradition, going back to the ancestor of all calcu-
lating machines, the abacus. The principle is quite simple: Numbers are represented
according to their place value by balls or stones in different columns. By moving the
units, addition, subtraction and also combined calculating operations can be carried
out. Early forms of the abacus can already be found in Babylon. The terms “calcu-
lus” and “to calculate” derive from the Roman term for calculation stones, “calculi.”
The abacus is also known in differing forms around the world: In China as “Suan
Pan,” in Russia as “Stchoty” and in Japan as “Soroban.” A form of abacus that was
used in the Middle Ages, on which marks for the representation of number units
were moved on different lines, is another version of this successful principle.

One of the first actual calculating machines goes probably back to an idea of
Leonardo da Vinci (1452–1519). The device described in a draft has a number of
cog wheels that are capable of moving other cog wheels by one position after ten
turns. With this principle, it is possible to carry out additions in the decimal system;
however, it is not proven if this apparatus should represent a calculating machine or
a system for gear transmission.

4 Further examinations of the concept of characteristic numbers as well as approaches to the men-
tioned problems can be found amongst others in [8].

2.8 Calculating Machines 29

A mechanization of calculating processes, though not by a conventional calcu-
lating machine, was already described in 1617 by the Scottish mathematician John
Napier (1550–1617) in his publication “Rabdologiae.” Napier, who, along with Jost

Fig. 2.14 Napier’s rods and title page of a calculating instruction by Lord Napier, translated into
Italian, Verona 1623 [4, p. 17].

Bürgi (1552–1632) pioneered in the field of logarithms with his “Mirifici logarith-
morum canonis descriptio” appearing in 1614, designed a device for multiplication
and division, based on the principle of the Pythagorean abacus. The Pythagorean
abacus is a tool consisting of a table for reading off the times multiplication table.
Napier’s abacus, also known as Napier’s bones, or Napier’s rods, consists of rods
with product rows printed on each side where the digits of the numbers are separated
by diagonal lines. Figure 2.15 shows this principle with the help of the multiplica-
tion of 2357 * 7. In the seventh line of the number “2357” placed in the first row, are
the products with factor “7.” The result comes from the addition of the digits within
the diagonals. For multi-digit multiplications, the partial products are added. In di-
vision, the quotient is obtained stepwise by indicating all products of the respective
divisor.

Caspar Schott (1608–1666), Jesuit padre and professor of mathematics at Würz-
burg University, described in his “Organum Mathematicum” of 1668, containing
a detailed description of the “mathematical organ” of his teacher Kircher, a me-
chanical arrangement of Napier’s bones. In principle, this device consists of pivoted
cylinders on which Napier’s bones are placed. Each of the openings on the upper
side of the housing makes a column visible. Due to its construction, Schott’s “count-
ing box,” however, is more a representation of a procedure than an actual calculating
machine.

Another predecessor of mechanical calculating machines is an invention of the
English astronomer Edmund Gunter (1581–1626) in 1623. Gunter combined the
concepts of Napier’s logarithms and the calculating rods of the English mathemati-

30 2 Historical Development of Algorithmic Procedures

Fig. 2.15 Multiplication with Napier’s rods.

cian William Oughtred (1574–1660) and developed the basic concept of the slide
rule that was still used in the second half of the 20th century.

The first model of an actual calculating machine that also used the principle of
Napier’s bones was designed by Wilhelm Schickard (1592–1635), professor of as-
tronomy at Tübingen University, around 1623. For addition and subtraction, the
principle of the decadic wheel was used, where after a complete turn the wheel
of higher value raises one notch. In the Thirty-Year War, an eventual prototype
was lost; however, the function principle has come down to us through Schickard’s
correspondence with Kepler and allows for a fully functioning reconstruction that
was built by Bruno Freiherr von Freytag-Löringhoff, professor of philosophy at
Tübingen University. This reconstruction of Schickard’s calculator became popu-
lar in 1973 through its picture on a stamp designed on the occasion of the 350th
anniversary of this invention.

Between 1642 and 1645, Blaise Pascal designed a number of prototypes of his
“Pascaline.” Like Schickard’s calculating machine, this construction, too, consists
of rolls with an automatic ten carry mechanism.

For multiplication, in the machines of Schickard and Pascal, first the partial prod-
ucts have to be formed so that they can be added together by the mechanism. The
Pascaline supports only addition of partial products; in Schickard’s machine, these
can be read off from Napier’s rods.

Other calculating machines containing a mechanism for addition or using Napier’s
bones for multiplication were built by Samuel Morland (1673) and René Grillet
(1678).

A significant step of development was made by Leibniz, who enabled multipli-
cation through automatic multiple additions with his invention of the step reckoner.
The step reckoner is a variable-toothed roll that can move another wheel by up to

2.8 Calculating Machines 31

Fig. 2.16 Reconstruction of Schickard’s calculating machine. Picture courtesy of the archives of
the Technisches Museum Wien. Reproduced with kind permission of the Technisches Museum
Wien.

Fig. 2.17 Pascaline. With kind permission of IBM Corporate Archives, Somers, NY.

Fig. 2.18 Calculating machine by Grillet. Photo Herbert Matis. With kind permission of Herbert
Matis.

32 2 Historical Development of Algorithmic Procedures

nine notches, depending on its position. Leibniz used this concept in his first proto-
type, completed in 1673; the automatic ten carry mechanism remained at this time
a nearly intractable mechanical challenge. Other well-known calculating machines
based on the system of the step reckoner were built by the Protestant priest Philipp
Matthäus Hahn as of 1770 and by Johann Helfrich Müller between 1783 and 1784.

Fig. 2.19 Leibniz’ calculating machine on the principle of the step reckoner. View from below at
the mechanism [4, p. 21].

Another significant construction based on Leibniz’ ideas is the sprocket wheel
which was invented by the Italian mathematician Giovanni Poleni around 1709.
Consisting of a cog wheel with teeth whose number can be varied from the inside,
it enables the same functions as the step reckoner and could be found up to the late
20th century in different calculating machines. Machines using the sprocket wheel
were also built by the German watchmaker Antonius Braun around 1727 and the
German mechanic Jakob Leupold around 1750.

Fig. 2.20 Calculating machine by Leupold [4, p. 24].

2.9 A New Numeral System for Automated Calculations 33

The first mass-produced calculating machine was the “Arithmomètre” of Xavier
Thomas de Colmar (1785–1870) patented in 1820 and built in a run of over 18,000
pieces. Further developments such as the proportional lever, making the ten carry
mechanism easier, or the direct multiplier enabling multiplication in only one step,
led to continuous improvements of mechanical calculating machines and finally
reached their fine mechanical zenith with the “Curta.” This handy four operations

Fig. 2.21 Curt Herzstark’s “Curta.” Photo Herbert Matis. With kind permission of Herbert Matis.

machine (all basic arithmetic operations can be carried out) was developed by the
Austrian producer of calculating machines Curt Herzstark from 1935 on and is the
last mechanical competitor of the pocket calculators, appearing in the 1970s.

2.9 A New Numeral System for Automated Calculations

Leibniz’ reflections on the optimization of mechanical calculations also led a lot fur-
ther. In 1679, Leibniz’ considered a new system for mechanical calculations: “This
[binary] calculus could be implemented by a machine (without wheels), in the fol-
lowing manner, easily to be sure and without effort. A container shall be provided
with holes in such a way that they can be opened and closed. They are to be open at
those places that correspond to a 1 and remain closed at those that correspond to a
0. Through the opened gates small cubes or marbles are to fall into tracks, through
the others nothing. It [the gate array] is to be shifted from column to column as
required.” [12, p. 46–47]. The machine itself was never built; the concept of the
newly invented number system, the binary system, was only formulated 22 years
later in 1701 by Leibniz in his work “Essay d’une nouvelle science des nombres.”
Leibniz’ own evaluation of the new system does not seem exaggerated, regarding
its relevance for later developments: “Despite its length, the binary system, in other
words counting with 0 and 1, is scientifically the most fundamental system, and it

34 2 Historical Development of Algorithmic Procedures

permits new discoveries in [. . .] geometry, because when numbers are reduced to
the simplest principles, like 0 and 1, a wonderful order appears everywhere.” [7].
Leibniz, an admirer of Chinese culture and striving for an intellectual exchange,
described his system in 1701 in a letter addressed to Jesuit padres Joachim Bouvet
and Claudio Filipo Grimaldi, who worked as mathematicians for the Chinese em-
peror. In November of the same year, Bouvet answered Leibniz with reference to
the binary structure of the “I Ching,” 5 whose different hexagrams (in this context,
a symbol consisting of six lines) are only represented by two symbols. Although
all hexagrams in the “I Ching” are made of only two symbols, they cannot be used
for representing information outside of the concrete context. Leibniz, however, de-
signs his binary system or the dyadic as an independent numeral system capable of
carrying out all kinds of calculations. Moreover, the lines in the “I Ching” can get
an additional dimension through the so-called change. Depending on the hexagram,
the female (broken) or male (unbroken) lines can also appear as changing lines that
change to be their opposites in the symbol that is interpreted next. In this respect, the
set of hexagrams of the “I Ching” consists strictly speaking of four symbols; there-
fore, also this system can hardly be considered an early model of a binary system.

Fig. 2.22 The eight basic symbols of the “I Ching” for the construction of the 64 basic hexagrams.

2.10 Replacing the Mechanistic Determinism

Leibniz’ reflections on a comprehensive calculus, however, also include another es-
sential thought: “I have said more than once that we need a new kind of logic,
concerned with degrees of probability. [. . .] Anyone wanting to deal with this ques-

5 For detailed information, see Wilhelm’s descriptive book [26].

2.10 Replacing the Mechanistic Determinism 35

tion would do well to pursue the investigation of games of chance. In general, I
wish that some able mathematician were interested in producing a detailed study
of all kinds of games, carefully reasoned and with full particulars. This would be
of great value in improving the art of invention, since the human mind appears to
better advantage in games than in the most serious pursuits.” [16, p. 466]. The fact
that Leibniz included probability calculus and game theory, developed in its mod-
ern form in the 20th century by John von Neumann and Oskar Morgenstern, in his
reflections, emphasizes that his concept is effectively pointing the way to a compre-
hensive calculus. Amongst others, his reflections comprise the following objectives:

• The construction of a language-independent representation system as a knowl-
edge basis through the concept of his universal language.6 Within this system,
the logical relations between the objects can be seen directly from their symbols;
in the case of the universal language, this would mean the partition ratio of the
numbers representing the objects.

• The attempt to mathematize logic in order to calculate truth values; this should
consequently lead to achieving mechanical decision-making within the calculus.

• The draft of a numeral system optimized for automatic applications, namely the
binary system.

• The integration of probability grading in the process of the logical establishment
of the truth.

• Analysis of action strategies in systems with given rules by means of game the-
ory.

The integration of probability theory in a calculus enables on the one hand rea-
soning in arguable situations, on the other hand a significant reduction of data. With
Leibniz’ own works in the field of infinitesimal calculation, whose basic concepts
Newton also develops, the view of mechanistic determinism is also assured, propa-
gating an unchangeable course of world affairs and therefore opposing the concept
of probability. In this sense, for Pierre Simon de Laplace (1749–1827) knowing all
starting states and rules of a system also includes the possibility of being able to
exactly predict all future states.

This concept of classical physics became obsolete at the latest with the works
of Werner Heisenberg (1901–1976), who states in the closing section of his work
on the indeterminacy relation: “If we know exactly the present, we can predict the
future. In view of the intimate connection between the statistical character of the
quantum theory and the imprecision of all perception, it may be suggested that be-
hind the statistical universe of perception there lies hidden a “real” world ruled by
causality. Such speculation seems to us – and this we stress with emphasis – useless
and meaningless. For physics has to confine itself to the formal description of the
relations among perceptions.” [11, p. 172].

6 Cf. Umberto Eco’s “In Search for the Perfect Language,” which traces the history of a universal
language [5].

36 2 Historical Development of Algorithmic Procedures

2.11 Language and Music Generators – A Book of Books

Whereas Lullus related abstract qualities by combining circular discs, Georg Philipp
Harsdörffer (1607–1658) generated (with a similar arrangement) concrete material
in a linguistic context. The “Fünffache Denckring der Teutschen Sprache” (“Five-
fold thought ring of the German language”) is an arrangement of concentric circles
by whose combination according to Harsdörffer the entire German language can be
represented on one page (figure 2.23). The mechanical principle is identical with
Lullus’ arrangement, but here, the linguistic combination material is placed on five
rings. Harsdörffer structured this material in so-called prefixes, initial letters and
rhyme letters, middle letters, end letters and suffixes. Of course, not every generated
unit is automatically part of the language. The user is responsible for the exami-
nation of the results and so first must know the correct lexicon to be generated in
order to be able to successfully work with this machine. The generative power of
Harsdörffer’s thought ring is unlimited, and it is notably this fact that makes its out-
puts arbitrary, because necessarily the examination of the results is left to the user.

In the 18th century a game became popular where the outputs were also gener-
ated on the basis of combinatorial possibilities but which worked completely inde-
pendently of the evaluation of the user. This was a new musical amusement which
also made it possible for a layperson to produce compositions in different musical
genres. Mostly, the user chose for every temporal unit a bar out of a particular table
by rolling a dice, until a short piece of music of a musical genre had been pro-
duced. The principle of the so-called “musical dice game” is simple, but effective:
For each temporal position (mostly bar positions), a number of musical constella-
tions (mostly bars) must be available out of which one can be chosen deliberately
without running the danger of producing musical clashes by doing so. For example
for bar 1, a number of musical arrangements of the tonic are possible, for bar 2 ar-
rangements of the subdominant are used and for every further bar again a number
of options is available. The process continues until finally the required number of
bars is reached. The number of necessary bar variations complies with the possible
numbers on the dice; with two dice, the most common application, 11 variations
must therefore be available. The application of the musical dice games is trivial;
however, its design requires some talent in composing music, because for all mu-
sical possibilities attached one to another, not only the harmonic but also technical
aspects of voice-leading have to be taken into consideration. The first dice game is
Johann Philipp Kirnberger’s “Der allezeit fertige Menuetten- und Polonaisencom-
ponist” (“The ever-ready minuet and polonaise composer”), designed in 1757; up
to the year 1812, at least 20 other creations of this type were built. Dice games of
well-known composers are “Einfall einen doppelten Contrapunct in der Octave von
sechs Tacten zu machen ohne die Regeln davon zu wissen” (“A method for making
six bars of double counterpoint at the octave without knowing the rules”) by Carl
Philipp Emanuel Bach in 1758 or “Table pour composer des minuets et des Trios à
l’infinie; avec deux dez à jouer” (“A table for composing minuets and trios to infin-
ity, by playing with two dice”), created around 1780 by Maximilian Stadler. From

2.11 Language and Music Generators – A Book of Books 37

Fig. 2.23 To the bookbinder. This figure has to be cut out, separated into five circles and fixed on
five discs of the same size, so that every circle can be moved separately. After that the fivefold ring
can be put in again.
The “Fünffache Denckring der Teutschen Sprache.” Harsdoerfer, G.P.: Delitiae mathematiceae et
physicae ... Nürnberg, Dümlern, 1651. Research Library in Olomouc, sig. 619.407. Reproduced
with kind permission by the Research Library in Olomouc.

38 2 Historical Development of Algorithmic Procedures

1793 on, also musical dice games under the names of Haydn and Mozart appear;
however, their having created these games has not been proven.7

Harsdörffer’s thought ring defines a complete space of linguistically possible
word creations. Procedures combining existing material or constructing new mate-
rial with limited parameters can in literature also lead to the formation of new fields
of artistic expression. Anagrams (generation of new words by rearranging letters),
palindromes (text reading the same in either direction), lipograms (text avoiding
certain letters) and many more are common procedures for the structural treatment
of text material. Beginning with one of the first palindromes “Sator Arepo Tenet
Opera Rotas,” first documented by archaeological excavations in Pompeii, up to the
different methods of rule-bound literature of Raymond Queneau, the tools applied
have a wide range. Queneau was a founding member of “Oulipo” (short for French
“Ouvroir de Littérature Potentielle”) whose members aimed at expanding literature
by means of formal principles. Two examples of Queneau are now demonstrated.
In “cent milliards de pomes,” for a sonnet comprising a total of fourteen lines, 1014
possible sonnets can result from ten different verse lines each. With “un conte à
votre façon” from 1967, he created a branching system enabling multiple readings
of a story through freely selectable segments, similar to the structure of a hyper-
text system. Such a system uses non-linear connections between texts and was first
designed by Vannevar Bush in 1945.

A well-known example for a lipogrammatic novel is “La disparition” by Georges
Perec, also member of “Oulipo.” The text consisting of 85,000 words altogether
avoids the use of the letter “e.”

Combinatorics as a tool for producing a “book of books” also represents a pop-
ular object of speculation. Mallarmé’s draft “Le livre” should – as a work that can
be used in different combinations – represent a universal book, dissociated from its
author, of all potentially possible pieces of literature. These approaches can also be
found, taken more or less seriously, in the works of Jorge Luis Borges,8 Kurd Lass-
witz9 and others. The already mentioned “I Ching” best meets this claim. Because
with the changing lines each of the 64 basic symbols may pass over to another sym-
bol (in resting lines also to themselves), 4096 (642) possible symbol combinations
can result. Because every basic symbol also has texts for all possible lines in their
changing states, every combination of symbols can also be read as a text. However,
the “I Ching” is not universal in the sense of Mallarmé, because it naturally stays
limited to its context.
7 Haydn: “Gioco filarmonico o sia maniera facile per comporre un infinito numero de minuetti e
trio anche senza sapere il contrapunto” (“The game of harmony, or an easy method for composing
an infinite number of minuet-trios, without any knowledge of counterpoint”); Mozart: “Anleitung
zum Componieren von Walzern so viele man will vermittelst zweier Würfel, ohne etwas von der
Musik oder Composition zu verstehen” (“Instructions for the composition of as many waltzes
as one desires with two dice, without understanding anything about music or composition”) as
well as “Anleitung zum Componieren von Polonaisen. . . ” (Instructions for the composition of
polonaises. . . ”). For the history of the dice games in the 18th century, see the detailed article by
Stephen A. Hedges: “Dice Music in the Eighteenth Century” [10].
8 “The library of Babel” [2].
9 “Die Universalbibliothek” [14].

2.12 From the Loom to the “Analytical Engine” 39

Fig. 2.24 Stephan Mallarmé. c© akg-images.

The principles of literature based on rules form a field of general procedures that
also occur in a musical context. Structural parameters or conditions for the applica-
tion of particular material can be found in numerous compositional methods, above
all in the 20th century. Twelve tone technique, serialism and aleatorics are only
some of the methods for musical structure genesis. The variable reading of Que-
neau’s “un conte à votre façon” has its early parallel in Stockhausen’s piano piece
XI from 1956, in which a pianist constantly finds new paths through 19 fragments of
the score. But the “I Ching,” too, finds its way into composition. John Cage’s “mu-
sic of changes” from 1951 generates its pitches and durations out of the symbols of
the “I Ching” that according to a traditional method are selected by threefold coin
flipping.

2.12 From the Loom to the “Analytical Engine”

Leibniz’ idea of applying the binary numeral system to an automaton was realized
by an invention in the textile industry. In the year 1725, Basile Bouchon developed
the first system for an automatic control of looms. Information about raising and
lowering the warp threads is transmitted via punched holes in paper tapes. In 1728,
Jean Baptiste Falcon replaced the fragile paper tapes with punched wooden boards.
The boards, like the paper tapes, must be fed manually; an automatic control mech-
anism was only developed by the automata constructor Jacques de Vaucanson in
1745. In 1805, Joseph-Marie Jacquard built the first model ready for production; by
1812 already 10,000 models were in use in France.

The concept of scanning punched holes to transmit information was later used
for the control of different automata. This basic principle of the punched card as a
control and storage medium was only replaced by the magnetic tape in the 1960s.

40 2 Historical Development of Algorithmic Procedures

Fig. 2.25 Loom after Jean Baptiste Falcon. c© bpk.

On the basis of these concepts, Charles Babbage (1791–1871) was the first to
tackle the construction of a universal calculating machine. Babbage was a math-
ematician and political economist. As an economist, he published amongst oth-
ers “On the Economy of Machinery and Manufactures” in 1834 whose market-
economical analyses and reflections on production and factory system triggered the
reorganization of the English economic system on a scientific basis. Babbage was a
member of the “Royal Society” and “Lucasian professor” at Cambridge University.
His mathematical works also set the life insurance business on a scientific basis.
Babbage’s main objective was the mechanization of calculation processes such as
those that are required for the generation of logarithm tables. Because difference
calculation may be used to trace back complex expressions to continuous addition,
as for example in polynoms, Babbage chose this principle for the construction of his
first calculating machines that besides a saving function only required an addition
function. His plans for this “difference engine” from 1822 were a development in-
dependent of the concept designed by the German engineer Johann Helfrich Müller.
A prototype, the “difference engine no 1” is based on the decimal system and was
completed by Babbage in 1832. Between 1847 and 1849, he designed the “differ-
ence engine no 2” which was originally intended to have a printer, but Babbage
failed to finance the project due to the immense costs for the fine mechanical work-
manship required. However, between 1840 and 1854 the Swede Pehr Georg Scheutz

2.12 From the Loom to the “Analytical Engine” 41

(1785–1873) and his son Edvard (1821–1881), on the basis of Babbage’s ideas, suc-
ceeded in constructing several fully functioning difference engines, some of them
also having a printing device.

Fig. 2.26 Part of the “difference engine” [4, p. 33].

Babbage’s main concern was increasingly with the construction of a machine
capable of solving any kind of mathematical task: “The Analytical Engine. . . is not
merely adapted for tabulating the results of one particular function and of no other,
but for developing and tabulating any function whatever. In fact the engine may be
described as being the material expression of any indefinite function of any degree
of generality and complexity [. . .].” [15, p. 109]. The “analytical engine” was to
consist of the following components: a unit for arithmetical operations, a number
memory with capacity for 1,000 numbers with 50 decimal places each, a control
unit for calculation operations, data transfer and program flow as well as units for
the input and output of data. Control is made possible with punched cards mod-
eled on Jacquard’s looms. “Operation cards” determine the type of calculation in
the arithmetic unit. “Number cards” include values for numeric constants that may
both be already given and also punched through a printer as a result of calculations
and used directly for further calculating operations. “Directive cards” serve as data
transfer between the arithmetic unit and memory by assigning certain positions in
the memory to variables. Further, they consign the content of memory addresses
to the arithmetic processing, whereby in this case also the respective entry may be
erased in the memory. The concrete design of this “analytical engine” comprises
numerous other subtypes of these punched cards that, however, may be subsumed

42 2 Historical Development of Algorithmic Procedures

under one of these three models. Below, there is a scheme10 of a calculation of the
expression: (ab + c)2 by means of “operation cards” and “directive cards” (OC and
DC, see table 2.2).

DC OC

1st ... Places a on column 1 of Store
2nd ... Places b on column 2 of Store
3rd ... Places c on column 3 of Store
4th ... Places d on column 4 of Store
5th ... Brings a from Store to Mill
6th ... Brings b from Store to Mill
. 1 Multiplies a and b = p
7th ... Takes p to column 5 of Store where it is kept for use and record
8th ... Brings p into Mill
9th ... Brings c into Mill
. 2 Adds p and c = q
10th ... Takes q to column 6 of Store
11th ... Brings d into Mill
12th ... Brings q into Mill
. 3 Multiplies d and q = p2
13th ... Takes p2 to column 7 of Store
14th ... Takes p2 to printing or stereo-moulding apparatus

Table 2.2 Scheme of a calculation by the “difference engine.”

Fig. 2.27 Part of the “analytical engine” [4, p. 34].

10 Scheme taken from [24].

2.12 From the Loom to the “Analytical Engine” 43

The conceptual units of the “analytical engine” and its cards represent an ana-
logue model of a processor which is connected to the central memory via data and
address bus. The programming basically comprises assignments of value to certain
memory addresses that are consigned to the arithmetic unit in a certain order. This
concept, too, exhibits the main features of today’s assembler programming. From
1833, Babbage worked on the concepts for his “analytical engine,” but his project
was not to be realized in his lifetime because of the enormous costs and technical
effort. However, his plan was technically correct and its conceptual basics can be
found in the developments of Zuse, Aiken and others.

Fig. 2.28 Ada Countess of Lovelace, contemporary engraving. Photo Herbert Matis. With kind
permission of Herbert Matis.

Alongside Babbage, Ada Countess of Lovelace (1815–1852) played an important
role. She was a self-educated mathematician and worked together with Babbage on
the concept of the “analytical engine.” In 1840, Babbage gave a course of lectures in
Turin on his invention. On the basis of this material, the Italian mathematician Luigi
Frederico Menabrea published the article “Notions sur la machine analytique de
Charles Babbage” in 1842. Ada Lovelace translated this text to English in 1843 and
added her own detailed considerations to the material, including the concepts of the
loop, subroutine and the conditional jump. The Countess of Lovelace is considered
to be the first female programmer in the history of informatics – the programming
language Ada, developed in the 1970s, is named after her.11

11 For a detailed description of the structure and the programming of the “analytical engine,” see
[24].

44 2 Historical Development of Algorithmic Procedures

2.13 The Implementation of Logical Operations

After Leibniz’ contributions to the mathematization of logic, George Boole (1815–
1864) developed in his publications “The Mathematical Analysis of Logic” (1847)
and “An Investigation of the Laws of Thought” (1854) a formalism for the repre-
sentation of propositional logic. The works by William Hamilton (1788–1856), Au-
gustus de Morgan (1806–1871), John Stuart Mill (1806–1873), John Venn (1834–
1923), William Stanley Jevons (1835–1882) and Charles Peirce (1839–1914) must
also be seen in this context. In Germany, too, Hermann Günther Grassmann (1809–
1877) and his brother Robert (1815–1901) established a school for the mathemati-
zation of logic. However, these works have largely been ignored, with the exception
of the works of Ernst Schröder (1841–1902) on the algebra of logic.

In “A Symbolic Analysis of Relay and Switching Circuits” (1940, MIT, Mas-
sachusetts Institute of Technology), Claude Elwood Shannon (1916–2001), later to
become the founder of information theory, described the application of Boolean al-
gebra in electronic circuits and laid the foundation for the construction of digital
computers.

An algebra named after Boole, also referred to as Boolean lattice, uses the log-
ical operators AND (conjunction, symbol: ∧), OR (disjunction, symbol: ∨) and
NOT (negation, symbol: ¬) and applies as elements “1” or “0,” interpreted logi-
cally as true or false. Other operations such as NAND, NOR, EXOR and NEXOR
can be combined by consecutively switching the operations mentioned before. In
the switching algebra, this architecture enables a logical combination system that
may be realized, on the basis of the elements “0” and “1,” through voltage in elec-
tric circuits. In such a system, logical input variables provide value combinations
that set the output variable to 0 or 1. Figure 2.29 shows the realization of a logical
expression by means of a circuit.

Fig. 2.29 Logical expression by means of a circuit.

Already around 1870, Stanley Jevons described in his article “On the mechanical
performance of Logical Performance” a machine for the automatic processing of
logical expressions. The “logical piano” is an apparatus similar to a piano, whose
21 keys are assigned with the elements of a logical operation. The left and the right
half of the keyboard are assigned with the subject and predicate of a judgment, the

2.14 On Formally Undecidable Propositions 45

middle key functions as copula. In this context, the subject refers to an expression
about which something is said, the predicate is a characteristic that is assigned to the
expression, the judgment refers to the whole statement, both as linguistic expres-
sion and to the included statement, and the copula means the connecting element
between argumentation and consequence. Other keys are responsible for mechani-
cal functions as well as disjunctive (mutually exclusive) combinations. In order to
solve the expression, the keys are pressed according to the symbols of the starting
premise; after getting the output premise, the logical piano shows the conclusion of
the deduction.

An application of logical combinations for the generation of musical structure
is represented by the theory of sieves applied by Iannis Xenakis (1922–2001) in a
number of his compositions. In this principle, numeral arithmetic series yield new
series by applying set operations. For example, with the given number series A = 0,
2, 4, 6, 8 (with step size 2) and B = 0, 3, 6, 9 (step size 3), the result of the union is: 0,
2, 3, 4, 6, 8, 9. The series can be applied in various ways for musical parameters such
as pitch or duration, so that the union in the abovementioned example, if mapped
on a chromatic scale, results in the notes C, D, D#, E, F#, G#, A by choosing C as a
starting point. The overlapping of different periodical events can also be found in the
principles of additive rhythmic, and is a fundamental procedure in the compositional
system of Josef Schillinger (1895–1943) [21, 22].

2.14 On Formally Undecidable Propositions

Boolean algebra enables as a propositional logic the combination of statements, but
disregards the scope and characteristics of representational objects. Ludwig Gott-
lob Frege (1848–1925) extended in his works, above all in the “Begriffsschrift” of
1879, the application range of logic with a system which is effectively the fore-
runner of today’s first-order logic (also first-order predicate calculus). In first-order
logic, predicate symbols and function symbols describe the characteristics of objects
to be associated; their scope is expressed by quantifiers. Propositions that are com-
bined atomically in propositional logic by operators are expressed here with terms
and predicates. A term indicates the name of an object from the scope of logical
operation, such as a substantive. The predicate refers to the name of characteristics,
relations and classes, such as verbs, adjectives or similar. For objects unknown at the
moment, variables are introduced. Symbols telling how many objects the predicate
is asserted are known as quantifiers. The universal quantifier refers to all objects,
whereas the existential quantifier refers to at least one object in the domain of dis-
course.

Through further development by Bertrand Arthur William Russell (1872–1970)
and Alfred North Whitehead (1861–1947), the predicate calculus becomes an in-
strument of fundamental mathematical research, whose objectives lead to polariza-
tions among scientists. The “formalists” under David Hilbert (1862–1943) aimed
at putting basic mathematical premises on an axiomatic basis and at proving their

46 2 Historical Development of Algorithmic Procedures

Fig. 2.30 Ludwig Gottlob Frege. c© akg-images.

consistency. In opposition to this group were the “intuitionists,” founded by Luitzen
Egbertus Jan Brouwer (1881–1966), questioning the principal possibility of such an
axiomatization. The objections of the intuitionists caused David Hilbert, in an epic
endeavor, to put the arithmetics of natural numbers on an axiomatically confirmed
basis and also to prove the consistency of mathematical domains such as set theory.

Fig. 2.31 David Hilbert. c© bpk.

The position of the formalists was later strengthened by the “Principia Mathemat-
ica” (1910–1913). In this essential work, Russel and Whitehead, referring to Georg
Cantor’s (1845–1918) set theory as well as the works of Frege and Giuseppe Peano
(1858–1932), succeeded in putting some fields of mathematics on a confirmed ax-
iomatic basis. In 1928, Hilbert and Wilhelm Ackermann’s (1896–1962) “Principles

2.14 On Formally Undecidable Propositions 47

of Theoretical Logic” was published, tackling basic considerations of predicate cal-
culus and of automatic processing of logical calculus. An interesting aspect of this
work is the idea that there could be an algorithm being able to decide for any first
order logical expression if its statement is true or false. This question known as the
decidability problem may also be demonstrated by means of the halting problem of
a Turing machine (see below). The mentioned works made the formalists’ objec-
tives seem increasingly within reach, until Kurt Gödel (1906–1978) in his publica-
tion “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme” (“On Formally Undecidable Propositions of the Principia Mathematica
and Related Systems”) of 1931 set clear limits to their efforts. He showed first that
in a sufficiently powerful system containing at least arithmetics, the consistency of
the system cannot be proven within the system. Secondly, he succeeded in proving
that in such a system propositions can be made that within this system are neither
provable nor disprovable.

Fig. 2.32 Kurt Gödel. Kurt Gödel Papers. Manuscripts Division. Department of Rare Books and
Special Collections. Princeton University Library. Reproduced with kind permission by Princeton
University Library.

The works of Albert Thoralf Skolem (1887–1963) and Jacques Herbrand (1908–
1931), finally led to the restriction regarding the predicate calculus that for a propo-
sition true in the calculus, its truth can be proven in a finite number of steps; in the
other case the proof may be either successful or not. This situation is also referred to

48 2 Historical Development of Algorithmic Procedures

as the semi-decidability of the predicate calculus. These findings advanced also the
development of automatic proof systems, the first of such being developed in 1954
by Martin Davis at the Institute for Advanced Studies in Princeton. The “Logic The-
orist” (1954) by Allen Newell, Herbert Alexander Simon and Cliff Shaw included
heuristics (experience-based strategies) in the decision making process for the first
time.

2.15 From Census Collector to Chess World Champion

For the development of calculating machines, the principle of punched card control
developed by Basile Bouchon was for the first time applied to a data processing
system by Hermann Hollerith (1860–1929).

Hollerith was a mining engineer and worked from 1879 in the American Census
Agency. In 1882, he taught engineering sciences at MIT and conducted experiments
on data storage on punched tapes. On the basis of an idea of the physician and health
statistician John Shaw Billings, he was engaged in constructing a census machine
with a control system according to the principle of Jacquard’s looms. In the course
of his work at the patent office in Washington from 1883 on, he secured the rights
for his invention. From 1889 on, the procedure was successfully tested in Baltimore
and New Jersey and in 1890 was first used for census taking in America, as well as
in Austria.

Fig. 2.33 Hollerith’s punched card tabulator. With kind permission of IBM, Corporate Archives,
Somers, NY.

2.15 From Census Collector to Chess World Champion 49

In 1893, Hollerith founded the Tabulating Machine Company which merged in
1911 with two other companies, and was renamed as the Computing Tabulating
Recording Company.

Fig. 2.34 Tabulating Machine Factory in 1893. With kind permission of IBM Corporate Archives,
Somers, NY.

In 1924, with Thomas Watson as chairman, the company again changed its name,
to become the International Business Machines Corporation (IBM).

Fig. 2.35 Thomas Watson. With kind permission of IBM Corporate Archives, Somers, NY.

50 2 Historical Development of Algorithmic Procedures

Between 1923 and 1927, the first analogue computer for solving differential
equations was developed under Vannevar Bush (1890–1974) at MIT. Analogue com-
puters represent their calculations on the basis of seamless state transitions and the
results can be directly read off a measurement device. However, measuring analogue
values causes fault tolerances that influence the accuracy of the result. In contrast
to that, digital computers calculate on the basis of discrete number representations.
The first digital computers in this sense were built beginning in the 1930s in Ger-
many by the Berliner construction engineer Konrad Zuse (1910–1995), and in the
United States by Howard Hathaway Aiken (1900–1972). These computers served
as a model for all following developments and may already be accurately referred
to as “computers” in today’s sense.

Fig. 2.36 Konrad Zuse and Howard Hathaway Aiken [4, p. 84, 67].

Etymologically, the term derives from the Latin “computare,” French “computer”
and English “to compute.” According to the “Barnhart Concise Dictionary of Ety-
mology,” in the English speaking world the term “computer” was used to refer to
a person from 1646 on. From 1897, it may also have been used for a calculating
machine. Beginning in 1945, the term was introduced in the publications of Eckert,
Neumann and others on the computer systems EDVAC (Electronic Delay Storage
Automatic Computer) and ENIAC and is since its definition in the “Oxford English
Dictionary” of 1946 (where also different types are distinguished), a common des-
ignation for calculating machines.

From 1934 to 1938, Konrad Zuse developed his first model of a program-based
computing machine. The Z1 (Zuse 1) was made entirely of mechanical components.
Zuse used a memory capable of storing 16 binary numbers of 24 bits, each consist-
ing of re-locatable metal sheets. Although his concept was thought out correctly,
some problems arose due to the mechanical material load.

In the follow-up models Z2 (1940) and Z3 (1941), the mechanical switching el-
ements were replaced by relays. The Z3, considered to be the first programmable
electronic computer, enabled the processing of floating-point numbers not imple-
mented in similar models, such as Mark I, ENIAC and others, of that time. The
half-logarithmic notation used by Zuse divides the number into exponent base 2 and

2.15 From Census Collector to Chess World Champion 51

Fig. 2.37 Zuse’s Z1 [4, p. 85].

mantissa and so allows for a more efficient number representation than the fixed-
point notation used in similar computer models. The basic structure of the Z3 com-
prises the elements shown in figure 2.38: The arithmetic unit is separated from the

Fig. 2.38 Block diagram of the Z3.

memory. Input and output of numbers happen with decimal numbers, the intern pro-
cessing is done in binary numbers. The binary memory has a memory capacity of 64
floating-point numbers. Memory and arithmetic unit are linked by a data bus. Every
number is represented in the memory by three binary fields. The first bit stores the
algebraic sign; the next seven bits store the exponent and the last 14 bits contain
the value of the mantissa. As result of these specifications, the smallest possible
representable number is 2−63 and the largest 1.9999 * 262. The arithmetic unit con-
tains two registers each for the calculation of the exponent and the mantissa. The

52 2 Historical Development of Algorithmic Procedures

Fig. 2.39 Details of the mechanical memory of the Z-series [30, p. 172].

following nine commands (table 2.3) from input and output storage and arithmetic
calculation are stored on a punched tape with lines of eight bit each and may be
combined in any order.

Lu read keyboard
Ld display result
P r z read address z
P s z store in address z
Lm multiplication
Li division
Lw square root
Ls1 addition
Ls2 subtraction

Table 2.3 Input, output and arithmetic calculation commands.

A numeral keyboard and lamps serve for input and output. The commands “Lu”
and “Ld” pause the machine, giving the operator the opportunity to type in a num-
ber or read a result, after which the machine continues. Before each calculation, the
values for the registers “R1” and “R2” must be entered through the keyboard be-
fore they are loaded into the registers. “R1” and “R2” may also be loaded through
values from memory. Sequencing is done by a clocked control unit running through
five-stage cycles. Stages IV and V transmit information and I, II and III carry out
arithmetic operations with the loaded values. So, a command consists of the deter-
mination of arguments, the calculation procedure and the rewriting of the result. For
the arguments, the values in “R1” and “R2” are used; the result is then stored in
“R1.” Zuse applied a procedure already used by Babbage, the computing plan for
solving complex formulas in elementary operations. The following example shows
a possible computing plan [30, p. 169]:

2.15 From Census Collector to Chess World Champion 53

√
a2 +b2 = c; a = V1; b = V2; c = V3; V1 ·V1 = V4; V2 ·V2 = V5; V4 +V5 = V6;√

V6 = V3.
A function of the type ((a4 ·x+a3) ·x+a2) ·x+a1 would be processed in Z1 and

Z3, as can be seen in table 2.4.12

P r 4 load a4 in R1
P r 5 load x in R2
Lm multiply R1 and R2, result in R1
P r 3 load a3 in R2
Ls1 add R1 and R2, result in R1
P r 5 load x in R2
Lm multiply R1 and R2, result in R1
P r 2 load a2 in R2
Ls1 add R1 and R2, result in R1
P r 5 load x in R2
Lm multiply R1 and R2, result in R1
P r 1 load a1 in R2
Ls1 add R1 and R2, result in R1
Ld display result

Table 2.4 Processing of a computing plan.

This kind of programming enables, for example, iterative processes, since the
punched tape may run in a loop. However, branch instructions that Zuse later imple-
ments in his Z4, developed between 1942 and 1944, are missing here.

Fig. 2.40 Reconstruction of Z3 in the Deutsches Museum in Munich [30, p. 58].

12 For a detailed description of the architecture of the Z1 and Z3, see [18].

54 2 Historical Development of Algorithmic Procedures

Parallel to the development of Zuse’s computers, in the USA significant new
developments were also occurring. From 1934 on, Howard Hathaway Aiken (1900–
1973) designed, in cooperation with IBM, the Mark I, first presented to the public
at Harvard in 1944. Aiken’s machine is based on the decimal system and consists of
an interconnection of Hollerith’s machines for the calculation of general arithmetic
tasks. At this time, the costs for computer systems were enormous, meaning that
besides IBM also the US Navy helped finance this project; the system was conse-
quently used mainly for calculations of ballistic tasks. Between 1945 and 1952 the
follow-up models Mark II to Mark IV, in which besides the relays already the sig-
nificantly faster electron tubes were applied as switching elements, were developed.

Fig. 2.41 Harvard Mark I. With kind permission of IBM, Corporate Archives, Somers, NY.

Grace Murray Hopper (1906–1992) worked on the programming of Mark I, de-
signing the concept of subroutine and contributing significantly to the development
of the first compiler, which was finished in 1952 as a military invention. Grace
Hopper was alongside Ada Lovelace one of the female pioneers of computer de-
velopment and after 1945 was promoted to admiral to become the highest ranking
woman of the US Army.

Between 1937 and 1942, a binary computer for solving equation systems was de-
veloped by John Vincent Atanasoff (1903–1995) and his doctoral candidate Clifford
Edward Berry (1918–1963) at Iowa State College. The Atanasoff–Berry Computer
(short: ABC) completely abandoned complicated mechanical relay technology in
favor of the new electron tubes and disposed of a dynamic memory as well as inde-
pendent units of calculation.

The ENIAC I, realized by the Moore School of Electrical Engineering at the Uni-
versity of Pennsylvania in cooperation with the US Army, was the prototype of the
modern computer which exclusively consists of electronic components, except for
the periphery devices. This large-capacity computer was developed at the Moore
School under the direction of electronics technician John Presper Eckert (1919–
1995), the physicist John William Mauchly (1907–1980) with the participation of
the mathematician Herman Goldstine from the Army. The ENIAC I was presented

2.15 From Census Collector to Chess World Champion 55

Fig. 2.42 Grace Murray Hopper. Official U.S. Navy Photograph, from the collections of the Naval
Historical Center.

Fig. 2.43 John Presper Eckert and John William Mauchly [4, p. 111].

to the public in 1946, operating until 1955 and constantly undergoing improvement
during its operation time. From 1944 on, the development team of the ENIAC I was
already planning the next computer, the EDVAC (Electronic Delay Storage Auto-
matic Computer). In contrast to the ENIAC I, which is based on the decimal system,
the data representation is binary. Loops and jump commands were possible and later,
based on a concept of John von Neumann (1903–1957), it became possible to store
program commands besides data in the memory.

At this time, Neumann worked under the direction of Robert Oppenheimer
(1904–1967) in the Los Alamos National Laboratory on mathematical problems
for the construction of an atomic bomb. In 1945, he wrote the “First draft of a re-
port on the EDVAC” for the planned computer, in which he presented the concept
of a digital universal computer programmable from memory. This draft also lends
its name to the so-called Von Neumann architecture that will be explained later in
more detail. The EDVAC was finished only in 1952, although the architecture pro-

56 2 Historical Development of Algorithmic Procedures

Fig. 2.44 “ENIAC.” U. S. Army Photo.

posed by Neumann was already implemented by 1945 on the IAS computer of the
Princeton Institute of Advanced Studies, operating until 1960. Different versions of
the IAS computer were built; one of them is the ILLIAC at the University of Illinois,
on which also the first computer generated composition was produced by Lejaren
Hiller and Leonard Isaacson in 1956 (see chapters 3 and 10 for details).

The replacement of the large and fault-prone electron tubes was already in
sight by 1948, when William Bradford Schockley, John Ardeen and Walter Hauser
Brittain filed the patent for the transistor. The first fully transistorized computer
TRADIC was built only six years later by Bell Laboratories. In 1949, Maurice Vin-
cent Wilkes at the University of Cambridge built the EDSAC (Electronic Delay
Storage Automatic Computer), a computer programmable from memory which im-
plemented von Neumann architecture.

At Texas Instruments in 1958, Jack St. Clair Kilby developed the integrated cir-
cuit (IC). Robert N. Noyce of the rival business Fairchild filed a patent for his
version of an IC shortly after Kilby. The lawsuit between Texas Instruments and
Fairchild ended with a settlement. With another employee of Fairchild, Gordon E.
Moore founded the Integrated Electronics (Intel) in 1968, in 1971 developing the
4004, one of the first micro processors. In 1973, Rank Xerox developed the first
personal computer, the Alto. Already by 1974, the Altair 8800, the first assembly
kit of a PC for less than 400 USD, was being offered by MITS (Micro Instrumen-
tation and Telemetry Systems), a one-man company run by electronics engineer
Edward Roberts. The sales exceeded all expectations and the Altair was adapted by
the users in various ways.

The programmer Paul Allen and his friend, the student Bill Gates created a
version of the programming language Basic for the Altair, up to then only pro-
grammable in machine-code, and started their own company Microsoft in 1975. In
1976, Stephen Paul Jobs and Stephen Wozniac built their own computer due to lack

2.15 From Census Collector to Chess World Champion 57

Fig. 2.45 Robert Oppenheimer and John von Neumann at the Institute of Advanced Study. Alan
Richards photographer. Courtesy of the Archives, Institute for Advanced Study. Princeton, NJ,
USA. With kind permission.

of money and finally began to offer their Apple I as a kit for 666 USD. In the fol-
lowing years, other very successful computers for private use were created by the
company Atari (models 400 and 800 in 1979), Commodore (VC 20 in 1980) as well
as from 1980 on IBM PCs with the MS-DOS operation system of Microsoft. But it
was not only the development of micro computers that was advanced enormously.
By 1964, Seymour Roger Cray with the company Control Data Corporation devel-
oped the CDC 6600, a first model of a new generation of “super computers.” Among
these, Deep Blue created by IBM reached great popularity in 1997 by defeating the
World Champion Garry Kasparov in a chess tournament.

The improvements in this field mentioned in this chapter only serve as exam-
ples; in the Soviet Union during the Cold War, computer technology was flourish-
ing with pioneers such as Sergey Alexeyevitch Lebedev (1902–1974) and Viktor
Mikhailovich Glushkov (1923–1982).13

13 For a detailed overview see [15] and [27].

58 2 Historical Development of Algorithmic Procedures

Fig. 2.46 Deep Blue. With kind permission of IBM Corporate Archives, Somers, NY.

2.16 Automata and Computability

For the designing of computers, a number of questions regarding programming and
architecture as well as the potential of automated computing arise from the con-
text of the technical achievements of that time. In 1936, the British mathematician
Alan Mathison Turing (1912–1954) developed a mathematical model of a machine
to solve Gödel’s Incompleteness Theorem. This theorem makes the generality of a
statement dependant on its formal provability. The question of provability depends
on the possibility of compatibility. Turing’s automaton model (Turing machine) de-
fines a class of compatible functions whose way of processing serves as a sugges-
tion for the development of modern imperative programming languages. Alonzo
Church (1903–1995) and Stephen Cole Kleene (1909–1994) invented the lambda
calculus, an equivalent procedure that greatly influenced the development of pro-
gramming languages. In imperative or procedural programming languages, compu-
tations are described as sequences of commands and are generally performed con-
secutively. Functional programming languages conceive computation as the evalu-
ation of mathematical functions and do not use a determined order of computations.
In other words, within a functional environment the input data is processed with
functions in order to receive the output data.

Provided that it is principally computable, any algorithm may be processed also
by the model of a Turing machine. The Turing machine is a special example of an
automaton. The term “automaton” derives etymologically from old Greek as well as
Indo-Germanic, meaning “acting of one’s own will.” An automaton can be defined
as an abstract structure in a specific environment comprising everything but the au-
tomaton itself. The automaton is in a possible state and can move to another state by

2.16 Automata and Computability 59

reacting to environmental stimuli. The kind of state transition depends on the cur-
rent state and the character of the stimulus. The states and stimuli may be thought of
as discrete, clearly distinguishable events, the stimuli occurring in a clocked cycle.
At the beginning, the automaton is in the initial state and moves to another state by
reacting to stimuli from its environment. If within the next unit of time no new input
is presented, this is considered as an input, leading the automaton to transition in
itself. An abstract symbol is set for each stimulus; if the state does not change, the
assumed symbol is a blank field. In order to be able to recognize the symbols, the
automaton is equipped with an abstract sensor or reading head. It is assumed that
the automaton can only react with a finite set of states that it moves to depending on
the different symbols. These symbols for the stimulation of the automaton together
form a conceptually coherent set referred to as the alphabet. A symbol string con-
sisting of elements from the alphabet represents the input of the automaton. In the
same way a state of the automaton is taken as its initial state, another or several other
states are interpreted as accepting or final states. In case its environment may move
the automaton in its initial state anytime, and reaching a final state is taken as an
output, this machine is also referred to as a recognizer. However, if not a final state
but the state transitions of a machine are interpreted as output, this system is known
as a Moore machine. If the automaton is capable of generating an output symbol
based on its current state in combination with an input, this model is referred to as a
Mealy machine. The following applies to all of the mentioned automata:

• A finite alphabet of input symbols.
• A finite set of possible states with one initial state and at least one final state.
• Discrete operation: Only symbols of the alphabet as well as the possible states

are considered, transitions are not taken into consideration.
• Sequential operation: Input, state changes and output happen sequentially with-

out having the possibility of reversing or jumping over operation steps.
• Deterministic operation: Each possible reaction of the automaton is clearly de-

termined by the current input symbol as well as the current state.

In case an automaton meets these criteria, it is referred to as a finite automaton
that may also be applied to formulate rewriting rules in algorithmic composition
(see chapter 4).

A Turing machine consists basically of a tape serving as the interface to the
environment, which is divided into a finite number of cells, any cell of which may
contain a symbol from a finite alphabet. The automaton comprises a device for read-
ing, erasing and writing symbols in the current cell. This abstract unit called head
can also move the tape from the current cell left and right, but only one cell at a
time.

• The automaton is in a particular state, the input symbol is read.
• Input symbol and state determine the argument. The argument determines the

next output symbol that is written on the tape after the input symbol has been
erased.

• The head moves left or right, depending on the instructions of the argument.

60 2 Historical Development of Algorithmic Procedures

• The automaton moves to the next state determined by the argument.

After reaching one of its final states, the automaton halts and indicates this in
some way or another. In case the head moves beyond the end of the tape, another
blank symbol is added in order to make the automaton halt. A common convention
of describing Turing machines is the argument quintuple, its first two entries repre-
senting current state and input symbol and the other three entries the output symbol,
the moving direction of the head and the next state.

The following program (table 2.5)14 enables the identification of palindromes
and uses the following notation: 1. current state, 2. current symbol, 3. new state, 4.
symbol to be written, 5. moving direction. If the input consisting of the symbols “A”
and “B” is identified as a palindrome, the output is to be “YES”; and if this is not
the case, “NO.” In both cases the machine holds after the last output. The “O” is an
optional symbol to mark the beginning of the tape; “ ” indicates a blank field.

(1 2 O R)
(2 A 3 R) (2 B 4 R) (2 7 L)
(3 A 3 A R) (3 B 3 B R) (3 5 L)
(4 A 4 A R) (4 B 4 B R) (4 6 L)
(5 A 11 L) (5 B 12 L) (5 7 L)
(6 A 12 L) (6 B 11 L) (6 7 L)
(7 7 L) (7 O 8 R)
(8 9 Y R)
(9 10 E R)
(10 H S R)
(11 A 11 A L) (11 B 11 B L) (11 2 R)
(12 A 12 L) (12 B 12 L) (12 12 L) (12 O 13 R)
(13 14 N R)
(14 H O R)

Table 2.5 Turing program for the identification of palindromes.

In case the input consists of the symbol string “ABA,” the program lines of the
left column are applied. The current state of the tape can be seen in the right col-
umn, the apostrophe showing the position of the head (table 2.6). The program for
detecting palindromes uses the strategy of repeatedly erasing identical symbols at
the beginning and at the end of the symbol string, whereas the symbols in the middle
are replaced by themselves.

By dividing complex computing processes in basic operations, the Turing ma-
chine is at the same time a model for computation in general. The halting problem
of the Turing machine, which is related to the decision problem and Gödel’s incom-
pleteness theorem, raises the question of whether a general procedure exists that
may decide for any algorithm if it terminates or not. This halting problem is unsolv-
able, so for an arbitrary algorithm it cannot be said from the outset if the Turing
machine will halt in a finite number of steps or not.

14 Taken in a modified form from [6].

2.17 The Model of a Universal Computer 61

(1 2 O R) O A’ B A
(2 A 3 R) O B’ A
(3 B 3 B R) O B A’
(3 A 3 A R) O B A ’
(3 5 L) O B A’
(5 A 11 L) O B’
(11 B 11 B L) O ‘ B
(11 2 R) O B’
(2 B 4 R) O ’
(4 6 L) O ’
(6 7 L) O ’
(7 7 L) O’
(7 O 8 R) ’
(8 9 Y R) Y
(9 10 E R) Y E
(10 H S R) Y E S

Table 2.6 Example transitions of the automaton at a given input.

2.17 The Model of a Universal Computer

The Turing machine developed at this time is an abstract model for computability,
whereas the von Neumann architecture mentioned before provides a concrete con-
struction plan for the creation of computer systems. The concept presented in “First
draft of a report on the EDVAC” comprises the following components: Control unit,
arithmetic unit, memory, as well as input and output devices.

Fig. 2.47 Scheme of a von Neumann computer.

The following basic conditions apply:

• The structure of the computer is universal, independent of the problem to be
solved.

• The memory contains data, program, intermediate and end results.

62 2 Historical Development of Algorithmic Procedures

• The memory is divided in consecutively numbered cells of the same size, the
number of the cell being the address for access from programs, both for retrieval
and change of its content.

• The program consists of a sequence of commands that must be processed se-
quentially; however, a jump command may be used which allows branching.

• Basic commands comprise arithmetic, logical as well as transport commands
controlling the data transfer between input and output, arithmetic unit, memory,
etc.

• The data is encoded in a binary system.

The arithmetic unit consists of the accumulator, a unit for storing binary infor-
mation of particular lengths as well as an arithmetic unit and a sequential control.
Together these units form the arithmetic logic unit (ALU) that computes values as-
signed by the control unit and returns the results. The control unit is responsible for
the sequential control within the computer and controls the data transfer between
the components.

2.18 Programming

The development of computers also requires strategies for the input of data and pro-
grams. Between 1939 und 1945, Konrad Zuse developed the Plankalkül,15 which
allowed for the description of a computer program in an abstract language, as a first
concept of a higher programming language. The Plankalkül represents a formalism
of first-order logic with added imperative constructs. Zuse was challenged by the
idea of investigating its universal applicability. He dealt with the possible imple-
mentation of chess strategies and generated a program in 1945, five years before
Shannon’s works on the same subject. The Plankalkül is designed as a system that
is able to operate with general logical expressions. Every Plankalkül-program may
be represented as a function with variable arguments; these functions can be called
from numerous positions of the program. The Plankalkül as a first example of a
higher programming language shows many parallels to other languages developed
considerably later; however, it was only implemented for the first time in the year
2000 by the Department of Informatics at the Freie Universität Berlin. [19].

A higher programming language (also: third generation programming language)
allows an extensively machine-independent notation of algorithms, whereas ma-
chine languages (also: first generation programming languages) use processor-
specific number codes and assembly languages (also: second generation program-
ming languages) use symbolically encoded number codes for program instructions.
Applicative programming languages (also: fourth generation programming lan-
guages) extend the concept of higher programming languages for solving application-
specific problems. Fifth generation languages, such as Prolog (from 1972 on), which

15 For a description of the basic structure of the Plankalkül and an application for solving chess
problems, see [30, p. 190ff].

2.19 The Computer in Algorithmic Composition 63

is based on the predicate calculus, enable the input of a problem without having to
implement an explicit routine or algorithm to solve it.

The classification of programming languages in generations does not represent
a hierarchical order in today’s understanding. Early languages of third generations
such as Fortran (from 1955 on) and Lisp (from 1958 on) are, in modified forms, still
in use today.16 Depending on the structure, programming languages may be divided
into different concepts. In procedural languages such as Fortran, Basic (from 1964
on) and Pascal” (from 1970 on), instructions are in general processed consecutively.
In functional languages such as Lisp, functions are defined that may be called in-
dependent of their position within the program, also within other functions. Object-
oriented languages such as Smalltalk (from 1972 on) define objects representing
autonomous units of data and algorithms. Objects that share the same internal struc-
ture are said to belong to the same class. The basic characteristics of a class may be
transferred hierarchically to other classes by the concept of heredity. The behaviors
of the objects as well as their mutual relations are described with so-called meth-
ods. Together with machine languages, assembler and rule-based languages such as
Prolog, these paradigms form the basic models of programming languages. Visual
programming environments, in which in addition to the actual code visual objects
may be manipulated on the screen, have been developed for programming languages
of different types. Current programming languages as well as advancements of ex-
isting languages mostly unify different paradigms in their functional range.

2.19 The Computer in Algorithmic Composition

These developments of algorithmic thinking processes as well as physical instru-
ments for their processing are the basis for the processing of algorithms generating
musical structure. The first completely computer-generated composition on a sym-
bolic level was produced by Lejaren Hiller and Leonard Isaacson from 1955 to 1956
with the “Illiac Suite” on the ILLIAC computer at the University of Illinois.17 The
symbolic level refers to the fact that the output of the system represents note values
that must be interpreted by the musician.

Along with the development of higher programming languages, the first com-
puter music systems for algorithmic composition were also generated. Their con-
cepts are based either on general programming languages or have been designed es-
pecially for the particular application. In 1963, Hiller and Robert Baker developed
Musicomp, the first computer-assisted composition environment. Max Mathews’
and Richard F. Moore’s system Groove marked the beginning of the developments
in the 1970s. Midi Lisp, Patch Work and Bol Processor were the new programming
environments of the 1980s. Common Music, Symbolic Composer, Open Music and
many other systems followed at the beginning of the 1990s. A number of these sys-

16 In algorithmic composition, a number of different systems are still applied today that are based
on Lisp or Scheme.
17 For a detailed description of this project see [9].

64 2 Historical Development of Algorithmic Procedures

Fig. 2.48 Lejaren Hiller. c© University Archives, University of Illinois.

tems are still in use today and are constantly being advanced. Computer music lan-
guages that were not primarily designed for algorithmic composition but may well
be used for this purpose, depending on the program architecture, must also be men-
tioned in this context. Beginning with the languages of the MusicN family of Math-
ews from the 1960s on, Barry Vercoe’s Csound (from 1986 on), Bill Schottstaedt’s
Common Lisp Music (from 1991 on) up to current developments such as PureData
(PD) and SuperCollider, there is a wide range of powerful and flexible computer
music systems.

The “Illiac Suite” marked the beginning of computer-assisted algorithmic com-
position whose advancement was influenced by other compositional tendencies as
well as developments in other fields of art. In 1955, Hiller and Isaacson were work-
ing on the “Illiac Suite”; in the same year, “Metastasis” by Iannis Xenakis had its
world premiere at the Donaueschinger Musiktage. This composition is character-
ized by a complex web of glissandi moving at different speeds: “If glissandi are
long and sufficiently interlaced, we obtain sonic spaces of continuous evolution.
It is possible to produce ruled surfaces by drawing the glissandi as straight lines
[...] Several years later, when the architect Le Corbusier, whose collaborator I was,
asked me to suggest a design for the architecture of the Philips Pavilion in Brussels,
my inspiration was pin-pointed by the experiment with Metastasis.” [28, p. 10]. The
Philips Pavilion at the Brussels World’s Fair of 1958 came into being as a synthesis
of different art forms; with Xenakis’ and Le Corbusier’s architectural conception,
Philippe Agostini’s experimental film work, Xenakis’ 2-track composition “Con-

References 65

cret PH” and Edgar Varèse’s seminal “Poème Electronique,” which was realized in
the pavilion with an elaborate multi-channel sound system.18

Fig. 2.49 Iannis Xenakis and his first model of the Philips Pavilion (top); string glissandi, bars
309–14 of Metastasis and the Philips Pavilion at the Brussels World’s Fair (bottom) [28, p. 10, 11,
3 and from the backcover]. Reproduced with kind permission by Pendragon Press.

References

1. Bonner A (ed) (1985) Doctor Illuminatus: a Ramon Llull reader. Princeton University Press,
Princeton, NJ. ISBN 0691000913

2. Borges JL (2000) The library of Babel. David R. Godine Publisher, Boston. ISBN 978-
1567921236

3. Dantzig T (1968) Number: the language of science, 4th edn. Free Press, New York. ISBN
0029069904

18 The “Poème Electronique” has been reconstructed in a virtual acoustic Philips pavilion by the
Institute of Electronic Music and Acoustics (IEM) at the University of Music and Dramatic Arts
Graz, Austria [29], and also by a team from the universities Virtual Reality And Multi Media
Park (Torino, Italy), University of Bath (England), Technische Universität Berlin (Germany), and
Silesian University of Technology (Gliwice, Poland).

66 2 Historical Development of Algorithmic Procedures

4. De Beauclair W (2005) Rechnen mit Maschinen. Eine Bildgeschichte der Rechentechnik.
Springer, Berlin. ISBN 3-540-24179-5

5. Eco U (1995) The search for the perfect language. translated by James Fentress. Blackwell,
Oxford

6. Fachhochschule Wiesbaden – Fachbereich 06 – Informatik (2004) Turing Machine Simulator.
http://wap03.informatik.fh-wiesbaden.de/weber1/turing/ Cited 12 Oct 2004

7. Glaser A (1971) History of binary and other nondecimal numeration. Anton Glaser, South-
hampton. ISBN 0-938228-00-5

8. Glashoff K (2003) Gottfried Wilhelm Leibniz – die Utopie der Denkmaschine.
http://www.logic.glashoff.net/Texte/GottfriedWilhelmLeibniz6.pdf Cited 27 Sep 2004

9. Hiller L, Isaacson L (1958) Musical composition with a high-speed digital computer. Journal
of the Audio Engineering Society, 1958. In: Schwanauer SM, Levitt DA (eds.)(1993) Machine
models of music. The MIT Press, Massachusetts. ISBN 0-262-19319-1

10. Hedges SA (1987) A dice music in the eighteenth century. Music and Letters, 59/2, 1987
11. Heisenberg W (1927) Physical principles of Quantum Theory. Zeitschrift für Physik 43, 1927,

C.Eickort & F.C.Hoyt (Trans), Dover (1930)
12. Hochstetter E, Greve H-J (eds) (1966) Herrn von Leibniz Rechnung mit Null und Einz.

Siemens Aktiengesellschaft, Berlin
13. Kaplan R (1999) The nothing that is. A natural history of zero. Allen Lane, London
14. Lasswitz K (1997) Die Universalbibliothek. Wehrhahn-Verlag, Laatzen. ISBN 3932324994
15. Matis H (2002) Die Wundermaschine: die unendliche Geschichte der Datenverarbeitung; von

der Rechenuhr zum Internet. Ueberreuter, Wien. ISBN 3-8323-0936-5
16. Remnant P, Bennett J (eds) (1996) New essays on human understanding. Cambridge Univer-

sity Press, Cambridge
17. Rojas R (2000) Z1, Z2, Z3 and Z4.

http://www.zib.d e/zuse/index.html Cited 12 Oct 2004
18. Rojas R(2000) Die Architektur der Rechenmaschinen Z1 und Z3.

http://www.zib.de/zuse/Inhalt/Kommentare/Html/0687/0687.html Cited 9 Sep 2004
19. Rojas R, Göktekin C, Friedland G, Krüger M, Scharf L (2000) Konrad Zuses Plankalkül –

Seine Genese und eine moderne Implementierung.
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Genese/Genese.pdf Cited 13 Oct
2004

20. Sadie S (ed) (1995) The New Grove dictionary of music and musicians, 7. Macmillan Pub-
lishers, New York & London. ISBN 1-56159-174-2

21. Schillinger J (1973) Schillinger System of musical composition. Da Capo Press, New York.
ISBN 0306775522

22. Schillinger J (1976) The mathematical basis of the arts. Kluwer Academic/Plenum Publishers,
New York. ISBN 0306707810

23. Seife C (2000) The biography of a dangerous idea. Viking Penguin, New York
24. Walker J (2004) The Analytical Engine. The first computer.

http://www.fourmilab.ch/babbage/ Cited 7 Oct 2004
25. Wiener O, Bonik M, Hödicke R (1998) Eine elementare Einführung in die Theorie der Turing

Maschinen. Springer, Wien New York. ISBN 3-211-82769-2
26. Wilhelm R (1982) I Ging. Das Buch der Wandlungen. Eugen Diederichs Verlag, Köln. ISBN

3424000612
27. Williams M (1985) A history of computing technology. Prentice-Hall, Englewood Cliffs, NJ.

ISBN 0-13-389917-9 01
28. Xenakis I (1992) Formalized music. Thought and mathematics in music, revised edition. Pen-

dragon, Stuyvesant, NY. ISBN 0-945193-24-6
29. Zouhar V, Lorenz R, Musil T, Zmölnig J, Höldrich R (2005) Hearing Varèse’s Poème Elec-

tronique inside a Virtual Philips Pavillion. In: Proceedings of ICAD 05-Eleventh Meeting of
the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

30. Zuse K (1984) Der Computer – Mein Lebenswerk, 2nd edn. Springer, Berlin. ISBN 3-540-
16736-6

Chapter 3

Markov Models

Markov models were introduced by the Russian mathematician Andrey Andreye-
vich Markov (1856–1922). Markov was a student of Pafnuty Chebyshev and worked
amongst others in the field of number theory, analysis, and probability theory. From
1906 on, Markov published his first works on time dependent random variables.

Fig. 3.1 Andrey Andreyevich Markov in 1886. Contemporary engraving.

In the context of urn experiments, observations on time dependent random vari-
ables were already made by Pierre Simon de Laplace and Daniel Bernoulli [2, p.
10ff]. The first application of this method was an extensive text analysis by Markov:
“In 1913 [. . .] Markov had the third edition of his textbook1 published. [. . .] In that
edition he writes, ‘Let us finish the article and the whole book with a good exam-
ple of dependent trials, which can be regarded approximately as a simple chain’. In
what has now become the famous first application of Markov chains, A. A. Markov
studied the sequence of 20,000 letters in A. S. Pushkin’s poem ‘Eugeny Onegin’,
discovering that the stationary vowel probability is p = 0.432, that the probability
of a vowel following a vowel is p1 = 0.128, and that the probability of a vowel
following a consonant is p2 = 0.663 [. . .].” [2, p. 16]. The term “Markov chain” (in

1 Basharin et al. are referring to Markov’s paper “Ischislenie veroyatnostej.”

67

68 3 Markov Models

this work, also referred to as “Markov model”) for this class of stochastic proce-
dures was first used in 1926 in a publication of the Russian mathematician Sergey
Natanovich Bernstein.

3.1 Theoretical Basis

The field of stochastics comprises probability calculus and statistics. Stochastic pro-
cesses are used to describe a sequence of random events dependent on the time pa-
rameter (t). The set of events is called “state space,” while the set of parameters
is known as the “parameter space.” If a stochastic process consists of a countable
number of states, then it may also be referred to as a stochastic chain. In a stochastic
chain, every discrete time t has a random variable X . In a Markov chain, it being a
special kind of stochastic chain, the probability of the future state Xt+1 (the random
variable X at the time t + 1) depends on the current state Xt . For the given times tm
and tm+1, this probability is:

P(Xtm+1 = j | Xtm = i) = pi j(tm, tm+1)

This expression indicates the transition probability of the state Xtm = i at a given
time tm to the state Xtm+1 = j [3, p. 768].

A Markov chain can be represented by a state transition graph, or by a transi-
tion matrix, as can be seen in the example of a weather forecast in figure 3.2. The
description of the edges in figure 3.2a shows the transition probabilities that can be
found in transition matrix P represented as a table (3.2b). The sum of all transition
probabilities in each state must equal 1. Starting from a particular state, the proba-
bilities for a future state can be determined. These probabilities are calculated with
the formula p(t + k) = p(t)∗Pk; p(t) representing the initial state, k the number of
state transitions and P the transition matrix [3, p. 788].

Fig. 3.2 Representations of a first-order Markov chain.

If more than one past event is used in the calculation of the transition proba-
bilities, then this is called a higher-order Markov process, the order indicating the

3.2 Hidden Markov Models 69

number of past events that are relevant to the transition probabilities. Consequently,
in a Markov model based on the tone pitches of a melodic corpus, the output se-
quence will more and more approach the structure of the corpus with increasing
Markov orders.

If a particular sequence of length n does not occur in the corpus, then this
sequence will not appear in the produced musical material in the corresponding
Markov analysis and generation of nth order either. A possible solution to this prob-
lem is offered by so called “smoothed n-grams”2 that use lower-order transition
probabilities for the generation of higher-order transition probabilities. In this pro-
cedure, the missing transition probabilities for insufficient sequences of nth order
can be acquired by interpolation with lower orders n−1, n−2, etc. At a given sym-
bol at the current point, the transition probabilities calculated from the corpus get
different weights for preceding sequences of different length. In general, Markov
models can only occupy a finite number of states and can therefore be represented
by finite automata3 and within a graph representation. This possibility is especially
interesting in cases where not all fields of the transition matrix need to be occupied
[5, 11].

3.2 Hidden Markov Models

In hidden Narkov models (HMM), the sequences of the observable output symbols
of a Markov model are visible, but their internal states and state transitions are not.
In this case, the states of the “hidden” Markov models produce so-called emission
probabilities, generating the musical segments (usually notes with tone pitches and
lengths) as observable outputs. In the following, an HMM is explained through the
example of a weather forecast. A news agency receives its information on political
events in a foreign country from a correspondent at different times of the day. In
his work, this correspondent is, amongst other things, influenced by the weather
situation. So, for example, if the sun is shining, he likes to get up early and therefore
sends his report already before breakfast. If it is raining, on the other hand, he likes
to sleep a bit longer and accordingly does not start his daily routine before he has
had some cups of strong tea. Consequently, depending on the time the report arrives,
the news agency can also make inferences about the weather situation in the foreign
country. But, because this is not the only determining factor for the correspondent’s
working discipline, the time the reports arrive may only suggest a particular weather
situation. So, in analogy to an HMM, the specific times of arrival of the reports can
be seen as the sequences of the observable output symbols of the HMM generated by
the emission probabilities of the hidden states – the underlying probable sequence
of different weather situations.
2 See also [14, p. 6f].
3 See chapter 4, Type-3 Grammar, DFA or NFA.

70 3 Markov Models

Hidden Markov models can deliver continuous as well as discrete distributions
of emission probabilities. In algorithmic composition, however, continuous models
are of little importance as the observed emissions are in most cases note values
with quantized parameters. A hidden Markov model represents a coupled stochastic
process, due to the transition probabilities of the states in the Markov model and
the state-dependent emission probabilities of the observed events. The following
indications and symbols are used for the formal description of an HMM [12, p. 7ff]:

N Number of states in a Markov model
{S1, . . . ,SN} Set of these states
π = {πl , . . . ,πN} Vector of initial probabilities for each state (initial state distribution)
A = {ai j} Transition probabilities in the MM from state to state
M Number of observable output symbols of the HMM
{v1, . . . ,vM} Set of output symbols
B = {b jm} Emission probabilities as probability of output of a symbol in a state
T Length of the output sequence
O = O1 . . .OT Sequence of output symbols with Ot ∈ {v1, . . . ,vM}
Q = q1 . . .qT Sequence of state sequences in the MM at output O with qt ∈ {1, . . .T}

A hidden Markov process with the three states S1, S2, S3 and the three output
symbols V1, V2, V3 can be graphically represented as shown in figure 3.3.

Fig. 3.3 Representation of a hidden Markov model.

In order to answer essential questions within a hidden Markov model, mostly
three algorithms are applied:

• The forward algorithm computes the probabilities for the occurrence of a par-
ticular observable sequence, where the parameters (transition and observation
probabilities as well as the initial state distribution) of the HMM are known.

3.3 Markov Models in Algorithmic Composition 71

• The Viterbi algorithm calculates the most likely sequence of hidden states, called
the Viterbi path, on the basis of a given observable sequence.

• The Baum–Welch algorithm is applied to find the most likely parameters of an
HMM on the basis of a given observable sequence.

3.3 Markov Models in Algorithmic Composition

In algorithmic composition, the transition probabilities of a Markov model are gen-
erated either according to individual structural parameters, or calculated in the pro-
cess of generating style imitations by analyzing a corpus.

Application of Markov processes in musical structure generation was first exam-
ined by Harry F. Olson (1901–1982) around 1950. Olson was an American electri-
cal engineer and physicist who focused on acoustic research. Together with Henry
Belar, he developed the “Electronic Music Synthesizer” in 1955, the first machine
to be called a synthesizer. Olson analyzed eleven melodies by Stephen Foster and
produced Markov models of first and second order in regard to pitches and rhythm
(indicated by Olson as dinote- and trinote probabilities) [13, p. 430 ff]. Figure 3.4
shows results of the statistical analysis in regard to the probabilities of rhythmic
patterns in 4/4 and 3/4 time as well as the occurence of certain pitch classes. Figure
3.5 shows a transition table for pitch classes corresponding to a first order markov
process. For the standardization of the analysis all songs were transposed to the key
of D.

Fig. 3.4 Probability of rhythms (top) [13, p. 433] and relative frequency of the notes (bottom) [13,
p. 431] in eleven Stephen Foster songs. Reproduced with kind permission by Dover Publications.

72 3 Markov Models

Fig. 3.5 Two-note sequences of eleven Stephen Foster songs [13, p. 431]. Reproduced with kind
permission by Dover Publications.

The difference between these two models can be seen in the fact that the produc-
tions of 2nd order Markov models show more harmonious melody creations as well
as better results for the end part of the composition.

From 1955 on, Lejaren Hiller and Leonard Isaacson worked with the ILLIAC
computer at the University of Illinois on a composition for string quartet: The “Illiac
Suite” was performed for the first time in August 1956 and became famous as the
first computer-generated composition.4 Each of the movements, so-called “experi-
ments,” was dedicated to the realization of a special musical concept. In “experiment
four,” Hiller and Isaacson use Markov models of variable order for the generation
of musical structure. Amongst others, these Markov models serve to select notes
under various musical aspects, like the succession of skips and stepwise motions,
the progression from consonant to dissonant intervals or even sound textures, which
can be related to a tonal center in order to establish a distinct tonality.

Iannis Xenakis began to use Markov models for the generation of musical mate-
rial5 in 1958. In “Analogique A,” Markov models are employed to arrange segments
of differing density. Each of these segments, called “screens,” consists of sounds of
different dynamics. Figure 3.6 (top) shows four “screens” in which the lines repre-
sent a dynamic level and the columns a group of instruments. The transition prob-
abilities of the “screens” result from a probability matrix for a 1st order Markov
process as shown in figure 3.6 (bottom).

F.P. Brooks, A.L. Hopkins, P.G. Neumann and W.V. Wright [4] used a corpus of
thirty-seven chorale melodies of similar metric-rhythmic structure for the Markov
analysis and the subsequent generation. All chorales that are used for the genera-
tion model are in 4/4 time, begin on the last beat of the four beat measure, and do
not contain note values shorter than an eighth note, which serves also as the basic
rhythmic unit for the representation. Pitches within a range of four octaves are de-
noted by integers between 2 and 99, where all even numbers stand for a new note

4 Cf. [8, p. 12], for the “Illiac Suite,” also see chapters 2 and 10.
5 Here: “Analogique A,” “Analogique B” (1958) and “Syrmos” (1959).

3.3 Markov Models in Algorithmic Composition 73

Fig. 3.6 Screens A-D and probability matrix in “Analogique A” [16, p. 89, 101]. Reproduced with
kind permission by Pendragon Press.

event and the uneven ones represent a note held over from the previous one. For
the analysis and further generation, the different chorale melodies are transposed to
C major. Markov analyses up to the 8th order are generated for the whole corpus,
as shown in figure 3.7a, for example, the representations called “octograms” can
be seen, for each eighth element with seven same predecessors (character strings
of length n are generally referred to as “n-grams”); the following columns con-
tain amongst others the relative frequency of each eighth element. According to the
mapping, e.g. the number sequence of the first group (* 36 37 26 27 32 33 26 22)
represents the tone pitches GGCCAACD, the notes under the bar indicating a tie.
With a basis of sequences of 64 segments with a duration of each 1/8 per chorale
melody, the result is a total of 2368 constellations for 37 chorales, of which only
1701 are different. In figure 3.7b, top, the number of the different n-grams for the
starting notes GGFFEEDDCC are shown (in the figure, Brooks et al. use m instead
of n). In figure 3.7b, bottom, all different n-grams with struck notes, held notes or
rests as starting values are listed.6

In the generation of musical material, some other conditions are also established,
e.g. on particular metric stresses no pauses are allowed, or melodies have to end at
particular scale degrees [4, p. 33ff]. Figure 3.8 shows some examples of musical

6 Brooks et al. do not explain the meaning of the hyphen.

74 3 Markov Models

Fig. 3.7 Markov analyses and results in Brooks et al. [4, p. 32]. c© 1993 Massachusetts Institute
of Technology. By permission of The MIT Press.

production from 1st to 8th order. Furthermore, this study points out three prob-
lems that may occur in connection with structures generated by Markov models:
Besides the danger of noticeable randomness of an output when applying a lower-
order Markov model and overly restricted choices with higher orders, Brooks et al.
also indicate a problem that may be easily overseen, which deals with the training
corpus of the MM on whose basis the transition probabilities are determined. If the
training data have a very similar structure, analyses of higher order may possibly be
unnecessary, since, for instance, for each different transition probability of nth order
only one possible transition of the order n + 1 may result. Therefore, an analysis of
higher-order models does not contain any relevant information [4, p. 29].

3.3 Markov Models in Algorithmic Composition 75

Fig. 3.8 Production examples of different orders (m) by Brooks et al. [4, p. 38]. c© 1993 Mas-
sachusetts Institute of Technology. By permission of The MIT Press.

3.3.1 Alternative Formalisms

An approach based on a production without previous analysis is described by Kevin
Jones [11]. The author considers different relations that states of a MM may be in
and establishes, based on the existent transition probabilities, “equivalence classes”
of states within the Markov model. According to Jones, one class forms an accu-
mulation of elements that are networked to a large extent, meaning that in their
representation in a graph they can reach each other over the edges. Transitions be-
tween different classes are limited to only a few edges. Moreover, Jones distin-
guishes between “transient” and “recurrent classes” that are characterized by the
fact that through the transition probabilities, states in “transient classes” may lead
to states in other classes including “recurrent classes.” If such a “recurrent class”
is reached from “outside,” it cannot be left any more, because the states within this
class can only lead to states within the same class. Principally, this classification

76 3 Markov Models

is a representation of an incomplete Markov model7 where transition probabilities
p = 0 are not taken into consideration and states which are related by transition
possibilities p > 0 are interconnected by edges within a graph representation (figure
3.9).

Fig. 3.9 Markov models in different equivalence classes (left), and terminals (right) [11, p. 384-
385]. c© 1993 by the Massachusetts Institute of Technology.

Jones’s approach shows that for the states of a Markov model in the context of
algorithmic composition, motivic structures instead of notes can also be used. Figure
3.10 demonstrates an example production of this model.

Fig. 3.10 Example production by the system of Jones.

In the comprehensive approach by Dan Ponsford, Geraint Wiggins and Chris
Mellish [14], harmonic structure is generated by using a corpus of 17th-century
French dance music. Here, Markov models are used to produce chord progressions.
In choosing the corpus, the formal harmonic modeling of different dance forms was
examined, among them music by Louis Couperin, Jean Baptiste Lully and Marin
Marais. The authors finally decided to use the sarabande and selected 84 examples
of this dance form for further examination. The musical material is divided by com-
poser and mode into sub-corpora, while the harmonic progressions are represented

7 See also the differently structured Markov models described by Chai and Vercoe in [5, p. 3].

3.4 Hidden Markov Models in Algorithmic Composition 77

as scale degrees. For further processing, the musical material is simplified in differ-
ent ways, such as by rounding the note lengths or reducing the harmonic structure
to triads in root position, where doublings and resolving dissonances are omitted.8

Responding to the problems occurring in higher-order Markov models, Ponsford
et al. use “smoothed n-grams.” A segmentation [14, p. 18ff] of the musical mate-
rial into phrases and bars conducted for the training of the MM gives better results
in the production. The beginning and the end of the particular pieces as well as
smaller form sequences are identified in the training corpus so as to allow consider-
ation of context dependencies for the generation. For the production, the transition
probabilities are used according to the musical material, depending on the struc-
ture: “Numbering phrases effectively makes the data quite a lot sparser, as n-grams
at phrase boundaries effectively operate over different sub-corpora, depending on
the lengths of the piece they are from.” [14, p. 20]. Therefore, for example, it is
possible to distinguish between identical phrases (and bars) in chorales of differing
length: “However, phrase 6 in a six-phrase piece would not have the same meaning
as phrase 6 in an eight-phrase piece.” [14, p. 20]. A number of compositions are
generated with 3rd and 4th order Markov models, the experiments giving better re-
sults in 4th order MM. For the further improvement of the generated material, the
authors suggest a correction of the applied Markov models by the user.

3.4 Hidden Markov Models in Algorithmic Composition

Martin Hirzel and Daniela Soukup [9] generated jazz improvisations based on small
patterns, which are processed by an HMM. These melodic patterns are entered by
the user, form the repertoire of the system and can be transposed to fit provided
harmonic progressions. The HMM is trained with “Forest Flower (Sunrise)” by
Charles Lloyd and after an input of harmonic progressions serving as the observ-
able sequence, the Viterbi algorithm generates an appropriate succession of melodic
patterns – representing the hidden states – that form the compositional output of the
system.

Mary Farbood and Bernd Schoner [7] applied hidden Markov models to generate
various counterpoints in relation to a given cantus firmus (Latin for “fixed melody”).
In their work, the authors refer to the sixteenth-century counterpoint and in this con-
text to the so-called first species, one framework of voice leading rules established
by the Danish composer and musicologist Knud Jeppesen.9 On the basis of these
voice leading rules, an HMM is created, whose observable sequence is provided by
the cantus firmus, and the Viterbi algorithm calculates the hidden states a succession
of note values, which form the new counterpoints. An interesting approach in this
work is the integration of different rules in one “unifying” transition table: “Each
rule is implemented as a probability table where illegal transitions are described by

8 For an explanation of the different reductions, see [14, p. 14ff].
9 For the various rules, see Jeppesen’s well-known book “Counterpoint: The Polyphonic Vocal
Style of the Sixteenth Century” [10].

78 3 Markov Models

probability zero. The transition probabilities for generating a counterpoint line are
obtained by multiplying the individual values from each table, assuming the rules
are independent.” [7, p. 3]. Figure 3.11 shows an example of the generation of two
independent counterpoints according to a given cantus firmus (bottom).

Fig. 3.11 Example generation by Farbood and Schoner according to a given cantus firmus.

3.4.1 A Hierarchical Model

Moray Allan [1] used Markov models and hidden Markov models for the harmo-
nization of given soprano voices. Bach chorales are divided into training and test
sets. The musical material is represented by means of a hierarchical segmenta-
tion10 through the tone pitches of all voices, distinguishing amongst others between
phrases and bars, the harmonic function also being annotated. The transition proba-
bilities and emission probabilities are determined by frequency analysis of the ref-
erence corpus. In comparison to the HMM, Allan also illustrates the possibilities of
conventional Markov models up to the 8th order that generate the harmonic func-
tion alternatively from the preceding harmonies, the melody tones or a combination
of both. In the HMM considered best for the generation, the soprano voice forms
the observable sequence in the HMM, while the underlying harmony corresponds
to the hidden states. The Viterbi algorithm estimates the underlying state sequence
and may also produce a universally acceptable structure in the range of a whole
chorale. In contrast, here, conventional Markov models mostly fail to perform this
task, because it cannot be estimated how the choice of a particular state transition at
a particular time influences the whole structure.11

The harmonization is divided into three subtasks12 that are solved by applying
different HMMs. First, a harmonic skeleton is built, in which the concrete pitches
and possible doublings are not indicated. The harmonic skeleton represents the hid-
den states, whereas the notes of the given soprano voice denote the observable se-
quence. Secondly, on the basis of the harmonic symbols as the observable sequence,

10 For the representation of the musical material, cf. the scheme in [1, p. 18].
11 See also Nearest Neighbor Heuristic in chapter 10.
12 Cf. “Final harmonization model” in [1, p. 43ff].

3.4 Hidden Markov Models in Algorithmic Composition 79

another HMM generates concrete chords that correspond to the hidden states. Fi-
nally, a third HMM model is responsible for the ornamentation, whereas compound
symbols, indicating the harmonic symbol and the notes of the current and next beat,
denote the observable sequence. Each quaver associated to a harmonic symbol is
represented as four distinct 1/16 notes, which form the hidden states and can – if
partly altered by the HMM – result in various ornamentations. Figure 3.12 shows
different examples of this three-stage generation process.

Fig. 3.12 Part of a three-stage harmonization process by Moray Allan [1, p. 49ff] according to
the first chorale lines of “Dank sei Gott in der Höhe,” BWV 288. With kind permission of Moray
Allan.

80 3 Markov Models

3.4.2 Stylistic Classification

Wei Chai and Barry Vercoe [5] applied hidden Markov models as a means to dis-
tinguish the stylistic differences in music styles of different provenience. Although
this approach is not used for the generation of musical structure, it contains interest-
ing aspects of representation, worth to be mentioned in the context of this chapter.
Chai and Vercoe represent the musical material in four different ways: First, abso-
lute pitch representation within one octave space, starting with c1; secondly, abso-
lute pitch representation with duration, where information on various durations is
provided by eventually repeating each note multiple times; thirdly, interval repre-
sentation, in which the pitches are converted into a sequence of intervals; fourthly,
contour representation – a symbolic representation of the melodic contour, where
the interval changes are denoted with the following symbols: 0 for no change, +/−
for ascending/descending 1 or 2 semitones, + + /−− for ascending/ descending
3 or more semitones. The authors work with 16 different HMM, which are con-
structed out of different numbers of hidden states (2 to 6) in combination with four
basic structures (see figure 3.13): “(a) A strict left-right model, each state can trans-
fer to itself and the next one state. (b) A left-right model, each state can transfer to
itself and any state right to it. (c) Additional to (b), the last state can transfer to the
first state. (d) A fully connected model.” [5, p. 3].

Fig. 3.13 Different types of Markov models by Chai et al. [5, p. 3]. With kind permission of Wei
Chai.

For the analysis, the authors decide to use a corpus of monophonic folk music
melodies from Ireland, Germany and Austria. The different folk melodies are sep-
arated into a training set (70%) and a test set (30%). The parameters of the HMMs
are trained in regard to each country with the Baum–Welch algorithm, whereas the
Viterbi algorithm is used to assign a melody from the test set to a particular HMM,
thus allowing for a stylistic classification. The results point out structural similari-
ties between German and Austrian folk songs and further demonstrate that stylistic
classification may best be performed by HMMs with structure (a) or (b), whereas
the number of states is of less importance.

3.5 Synopsis 81

3.5 Synopsis

Markov models are, like generative grammars, substitution systems, and due to their
structure only allow the description of context dependencies through the transition
probabilities of symbols in direct succession. These formalisms were originally de-
veloped in the context of natural language processing and are best suited to model
one-dimensional symbol sequences. This structural feature of MMs does not cor-
respond to musical information, which mostly adds a vertical dimension through
layers, i.e. interconnected voices. Of course, a model defining all possible vertical
constellations as single states could overcome this restriction, but if the required
number of states is considered, this approach turns out to be a rather theoretical so-
lution. A possible way to frame dependencies within a vertical structure consists in
the application of hidden Markov models as coupled stochastic processes. Within
the HMM, the Viterbi algorithm provides a suitable tool for the generation of an
overall favorable structure, a demand, which can hardly be accomplished by the
conventional formalism, except by approaches using several Markov models in a
hierarchical interconnected structure. Since especially higher orders show a large
size of the transition tables, these are mostly generated by analyzing an underlying
corpus, leading to the fact that Markov models are in the majority of the cases used
in the field of style imitation, with some restrictions: The danger of an obvious ran-
domness with lower-order Markov models and also the frequent occurrence of an
over-generation by models of higher order, meaning that large sections of the corpus
are simply “re-generated.” If the consistency of the corpus restricts the establishment
of a higher-order Markov model, smoothed n-grams can be applied that use lower-
order transitions for the generation of higher-order transition probabilities. An often
overlooked deficiency in higher-order Markov models lies in their inability to in-
dicate information which is provided in lower-order models. So, for example [15,
p. 196–197] the symbol string AFGBBFGCFGDFG#EFG can be exhaustively de-
scribed and therefore regenerated with a 3rd order Markov model, because there are
no equal groups composed of three successive symbols in the corpus. This 3rd order
Markov model provides an accurate description, which can actually be used for a
regeneration of the corpus, but the apparent fact that an F is always followed by a G
cannot – in contrast to a 1st order Markov model – be depicted.

Despite these disadvantages, Markov models are well suited to certain musical
tasks. The type and quality of the output will depend largely on the properties of the
corpus and can also be predicted very well in comparison to other procedures such
as neural networks or cellular automata. Besides for style imitation, composers like
Xenakis use Markov models in an innovative way, demonstrating their applicabil-
ity also for the field of computer assisted composition, where this formalism is in
general employed only rarely.

82 3 Markov Models

References

1. Allan M (2002) Harmonising chorales in the style of Johann Sebastian Bach. Thesis, Univer-
sity of Edinburgh, 2002

2. Basharin GP, Langville AN, Naumov VA (2004) The life and work of A. A. Markov.
http://www.maths.tcd.ie/ nhb/talks/Markov.pdf Cited 24 Jul 2005

3. Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2000) Taschenbuch der Mathematik,
5th edn. Verlag Harri Deutsch, Thun und Frankfurt am Main. ISBN 3-8171-2015-X

4. Brooks FP, Hopkins AL, Neumann PG, Wright WV (1993) An experiment in musical com-
position. In: Schwanauer SM, Levitt DA (eds) Machine models of music. MIT Press, Cam-
bridge, Mass. ISBN 0-262-19319-1

5. Chai W, Vercoe B (2001) Folk music classification using hidden Markov models. In: Pro-
ceedings International Conference on Artificial Intelligence, 2001

6. Dodge C, Jerse TA (1997) Computer music: synthesis, composition, and performance, 2nd
edn. Schirmer Books, New York. ISBN 0-02-864682-7

7. Farbood M, Schoner B (2001) Analysis and synthesis of Palestrina-style counterpoint using
Markov chains. In: Proceedings of International Computer Music Conference. International
Computer Music Association, San Francisco

8. Hiller L, Isaacson L (1993) Musical composition with a high-speed digital computer. In:
Schwanauer SM, Levitt DA (eds) Machine models of music. MIT Press, Cambridge, Mass.
ISBN 0-262-19319-1

9. Hirzel M, Soukup D (2000) Project Writeup for CSCI 5832 natural language processing.
University of Colorado, 2000

10. Jeppesen K (1992) Counterpoint: the polyphonic vocal style of the sixteenth century. Dover
Publications, New York. ISBN 04862736X

11. Jones K (1981) Compositional applications of stochastic processes. Computer Music Journal
5/2, 1981

12. Knab B (2000) Erweiterungen von Hidden-Markov-Modellen zur Analyse ökonomischer
Zeitreihen. Dissertation, Mathematisch-Naturwissenschaftliche Universität Köln

13. Olson H (1967) Music, physics and engineering, 2nd edn. Dover Publications, New York.
ISBN 0-486-21769-8

14. Ponsford D, Wiggins G, Mellish C (1999) Statistical learning of harmonic movement. Journal
of New Music Research, 1999

15. Todd PM, Loy DG (eds) (1991) Music and connectionism. MIT Press, Cambridge, Mass.
ISBN 0-262-20081-3

16. Xenakis I (1992) Formalized music. Thought and mathematics in music. Pendragon,
Stuyvesant, NY. ISBN 0-945193-24-6

Chapter 4

Generative Grammars

Generative grammars are powerful methods for algorithmic composition and mu-
sical analysis. The basic linguistic model [16] developed by Noam Chomsky in
1957, is the initial point for the application of this and other, more extended gen-
erative principles in musical tasks. The works of Roads, Steedman, Sundberg, Ler-
dahl, Jackendoff, and others from the 1970s on have created a strong interest in the
application of generative grammars in the production and analysis of musical struc-
ture. Fields that often use generative grammars are traditional European art music,
jazz, as well as music ethnology. Related formalisms, such as augmented transi-
tion networks, are used for example in David Cope’s1 approaches for automatically
generating compositions conforming with a given musical style.

Fig. 4.1 Noam Chomsky. c© Donna Coveney/MIT.

The formalisms that make up the basis of the abovementioned works refer mostly
to the model of the Chomsky hierarchy. The basic principle for generating construc-

1 See: “Experiments in Musical Intelligence” in chapter 5.

83

84 4 Generative Grammars

tions of a particular context by using rewriting rules was already applied before
Chomsky. Mathematicians such as Axel Thue (1863–1914) or Emil Post (1897–
1957) invented ground-breaking formalisms on the basis of whose principles John
Backus and Peter Naur developed the Backus–Naur form in 1959 which, as a meta-
syntax for context-free grammars led to the development of Algol 60 (short for
algorithmic language), one of the first imperative programming languages.

The rewriting formalism of a generative grammar finds its parallels in differ-
ent types of automata, Lindenmayer systems and Markov models. A specialized
form of generative grammar in the field of linguistics is the categorical grammar
or C-Grammar, a predecessor of the PS-Grammar, created by the Polish logicians
Stanislaw Lesniewski in 1929 and Kasimierz Adjukiewicz in 1935 [21, p. 145ff]. In
algorithmic composition this type of grammar is not very common, but it is used,
for example, by Mark Steedman [42] as a tool for analyzing jazz chord sequences.

4.1 Generative Grammars as a Model of the Theory of Syntax

The theory of syntax as a sub-area of linguistics deals with the formal structure of
compound sentences. This syntax aims to represent the principles and structures
of possible sentence formations in a language. In this context, “language” can be
a “natural” or “artificial” language, with sentences, or more generally, expressions
consisting of symbol strings, whose structure follows certain rules. A particular ex-
pression in the given language is made up of a combination of units; the syntax of
the given language allows for checking whether the given expression conforms to
its rules, i.e., whether it is syntactically correct. When the same syntactic rules are
employed for generative purposes, new and formally correct linguistic constructions
come into being.

An essential criterion regarding sequences within a formal language is their well-
formedness, signifying their correctness in terms of the syntactic rules – this, how-
ever, does not automatically imply that these “sentences” are semantically accurate,
i.e. meaningful. Accordingly, for example, by defining a language as a sequence of
words, a simple possibility to produce new expressions is their arbitrary concatena-
tion. The basic condition here is that these words are part of the language; they form
the alphabet and are subsumed in a finite lexicon. All possible expressions gained
by combination make up the free monoid or Kleene closure. Depending on whether
the alphabet contains an empty word chain, further distinctions are made. So, in the
case of simple concatenation, for an underlying alphabet of e.g. (x,y,z), the result is
symbol strings such as xxy, xxyy, yy, zyx.

If the alphabet is subdivided hierarchically, rules can be formulated that may pro-
duce context-dependent syntactic structures. One such early analytical approach is
shown in the immediate constituent analysis of the American structuralist Leonard
Bloomfield, published in 1933 in his book “Language”: “The principle of immedi-
ate constituents will lead us, for example, to class a form like gentlemanly not as a
compound word, but as a derived secondary word, since the immediate constituents

4.1 Generative Grammars as a Model of the Theory of Syntax 85

are the bound form ly and the underlying form gentleman.”2 Searching for such
immediate constituents as grammatical units, which create complex constructions,
has been a common analysis procedure in American linguistics from the 1930s on
and was above all used in the analysis of different Native American languages. In
linguistics, a constituent is referred to as a word or a group of words functioning as
a single unit within a hierarchical structure. By means of the immediate constituent
analysis, sentences are divided into constituents by continuous segmentation, until
each constituent consists of only a single word or a single meaningful part of a word.
According to this theory, the constituent classes that arise from the analysis provide
information on the structural contexts in the language under examination. Naturally,
through this segmentation, pieces of information of the same semantic content but
different word order cannot be recognized as equivalent expressions. This problem
may also occur with other generative approaches. Chomsky counters this problem
by means of grammatical transformations as well as making the distinction between
deep structure and surface structure of a sentence [17] (see Grammatical Transfor-
mation).

If, however, in contrast to the analytical approach of the constituent analysis a
recursive rule system is given for the definition of a language that is capable of
producing well-formed expressions in a chosen context, one speaks of a generative
grammar; regarding its basic formalism, a generative grammar is by no means con-
fined to linguistic contexts: “Syntax is the study of the principles and processes by
which sentences are constructed in particular languages. Syntactic investigation of
a given language has as its goal the construction of a grammar that can be viewed as
a device of some sort for producing the sentences of the language under analysis.”
[16, p. 11].

The generation of new sequences in a generative grammar occurs by means of
rewriting rules, where symbols on the left-hand side of an expression are rewritten
by symbols on the right-hand side. One must distinguish between symbols that can
be further rewritten (non-terminal symbols) and symbols that cannot (terminal sym-
bols). According to a linguistic context, lexical categories such as nominal phrases
or verbal phrases as well as their units such as nouns, verbs, etc. are used as non-
terminal symbols, whereas concrete words of a particular category form the set of
terminal symbols.

A special form of such rewriting formalisms in the linguistic context is the phrase
structure grammar, where single non-terminal symbols on the left-hand side are re-
placed by one or more non-terminal symbols of the right-hand side of the production
rules. By lexical insertion rules, the resulting non-terminal symbols are replaced by
the appropriate terminal symbols from the lexicon of the language, e.g. the concrete
words of the resulting sentence(s), a process also known as parsing or derivation of
the grammar.

So, the overall process begins with a (non-terminal) starting symbol on the right-
hand side, continues with rewritings of all non-terminal symbols, and ends when the
output symbol string consists entirely of terminal symbols. In the following example

2 [14, p. 209] cited by [21, p. 169].

86 4 Generative Grammars

[19, p. 26–27], the abbreviations in the order of their occurrence are as follows: S
(sentence), NP (nominal phrase), VP (verbal phrase), V (verb), PP (prepositional
phrase), AP (adjective phrase), Adv (adverb), A (adjective), P (preposition), DET
(article; for historic reasons, in generative grammar it is called the determiner), N
(noun) .

S → NP VP
VP → V (NP) (PP)
AP → (Adv) A (PP)
PP → P NP
NP → (DET) (AP) N (PP)

Now, as an example, the following terminal symbols are indicated for the partic-
ular categories:

N → man girl John
DET → a the
V → met saw
A → nice good quick
Adv → very extremely
P → in for to

In the tree diagram of this grammar, one of the possible derivations produces the
following sentence (figure 4.2):

Fig. 4.2 Derivation of a PS-grammar.

One possible notation of a phrase structure grammar is a quadruple of the form
(V, Vt, S, P), where the entries are identified as follows:

4.1 Generative Grammars as a Model of the Theory of Syntax 87

V a finite set of non-terminal symbols
Vt a finite set of terminal symbols
S starting symbol of V without Vt
P a set of rewriting and production rules of the form:

α → β , where α ∈V + and β ∈V ∗
V ∗ Kleene closure over V
V + positive closure or: V ∗ without the neutral element e (the empty

word string)

4.1.1 The Chomsky Hierarchy

Chomsky distinguishes between four types of generative grammars that show dif-
ferent levels of restriction. These four types, starting with an unrestricted type-0
grammar, generate formal languages and correspond to different types of automata
which may check whether a certain symbol string is part of the respective formal
language and can thus be produced by the particular grammar. The higher a gram-
mar’s order is the more restrictive are the conditions for the application of its rules.
The type of grammar is also related to the level of its generative capacity – so, a
grammar’s generative capacity is high, when it is able to generate several expres-
sions and to prevent incorrect productions at the same time. However, a grammar’s
generative capacity is low if the rules only allow limited control over the expressions
to be generated. Consequently, a grammar of lower order has a higher generative
capacity, since in this case there are fewer limitations regarding the formulation of
production rules. The generative capacity of a grammar is also directly related to its
complexity, meaning the maximal effort required for the analysis of the expressions
generated.

4.1.1.1 Type-0 Grammar (unrestricted grammar)

Restrictions: No restrictions; on both sides of the production rules, an arbitrary num-
ber of sequences of terminal or non-terminal symbols is possible.
Respective formal language: Recursively enumerable language or partially decid-
able language.
Respective automaton: Non-deterministic Turing machine. In a non-deterministic
Turing machine, the same inputs can produce different possibilities for resulting
state transitions.
Generative capacity: Very high. (Note that the indications “very high” to “low” only
serve to compare generative capacities between the grammars in the Chomsky hier-
archy.)
Complexity: Undecidable (up to infinite).

In investigating algorithmically whether an expression w is part of a language
(L) generated by a particular grammar (G), this may be determined conclusively

88 4 Generative Grammars

or not in a finite time or a finite number of computational steps. In this context
semi-decidability means that for one combination of an input w, a language L and
a grammar G, the membership of w can be determined beforehand, but in other
cases the calculation may continue indefinitely without coming to a result. In the
case of a Turing machine, this could mean that no final state (output) is reached and
the calculation process continues infinitely. In this (worst) case, the complexity is
therefore infinitely high.

4.1.1.2 Type-1 Grammar (context-sensitive grammar)

Restrictions: On both sides of the production rules, an arbitrary number of sequences
of terminal or non-terminal symbols is possible, but the number of symbols on the
right-hand side must not be smaller than the number on the left-hand side.
Formal language: Context-sensitive language.
Respective automaton: Linear-bounded automaton.
Generative capacity: High.
Complexity: exponential.

During the read/write operations, a linear-bounded automaton, as a restricted
model of a Turing machine, never leaves the part of the tape bounded by the ini-
tial input. In general, context sensitivity refers to the possible comprehension of a
context during rewriting, for example AsT → ArT meaning that the terminal sym-
bol “s” is rewritten by the terminal “r” when embedded between the non-terminal
symbols “A” and “T .” All languages of type 1 and higher are decidable, i.e. for a
given symbol string w it can be determined in a finite number of steps if this string
belongs to L(G). These languages are also referred to as decidable languages.

4.1.1.3 Type-2 grammar (context-free grammar)

Restrictions: The left-hand side of the production rules consists of one single non-
terminal variable, the right-hand side of an arbitrary number of terminal or non-
terminal symbols.
Formal language: Context-free language.
Respective automaton: Pushdown automaton.
Generative capacity: Middle.
Complexity: Polynomial.

A pushdown automaton is a finite automaton that can make use of a stack when
choosing a transition path. Given an input symbol, current state and a stack symbol,
this type of automaton can follow a transition to another state. Additionally, the stack
may optionally be manipulated on top. In the beginning, the stack only consists of a
single symbol indicating the end of the calculations. If, for example, a palindrome
has to be recognized, the input symbols are written on the stack until one symbol is

4.1 Generative Grammars as a Model of the Theory of Syntax 89

repeated. Then, when the input and current stack content are successively identical,
the current symbols in the stack are deleted, until the symbol for the end of the
calculation is reached. In this case, a palindrome can be successfully recognized by
the pushdown automaton. By means of this function principle, context-dependent
structure may be processed; this is not possible with more simple types of automata
due to their lack of “knowledge” about preceding input symbols.

4.1.1.4 Type-3 grammar (regular grammar)

Restrictions: The left-hand side of the production rules consists of only one variable
(non-terminal of V); on the right-hand side there is a terminal, followed by one non-
terminal at most. This form of production rules is also referred to as right-linear. If
there is a terminal on the right-hand side that is preceded by a non-terminal, these
production rules are also called left-linear.
Formal language: Regular language.
Respective automaton: Deterministic finite automaton (DFA) or non-deterministic
finite automaton (NFA).
Generative capacity: Low.
Complexity: Linear.

A DFA is a quintuple (S, Σ , δ , z0, F), consisting of

S a finite set of all states
Σ a finite set called the input alphabet
z0 a starting state
F set of final states (F ∈ S)
δ transition functions (S×S→ S)

Given the following conditions [39, p. 27ff]

S = {z0,z1,z3,z3}
Σ = {a,b} δ (z0,a) = z1 δ (z0,b) = z3 δ (z1,a) = z2 δ (z1,b) = z0
F = z3 δ (z2,a) = z3 δ (z2,b) = z1 δ (z3,a) = z0 δ (z3,b) = z2

this automaton can investigate in symbol strings if these are elements of the Kleene
closure and therefore correct constituents of the respective language. In the recogni-
tion of single symbols, the automaton passes in the transition functions a sequence
of different states z0, z1,. . . zn (the symbols of Σ), z0 meaning the starting state, un-
til it reaches a final state zn ∈ F . Therefore, the DFA will recognize an input of:

90 4 Generative Grammars

aaa as a correct symbol string of the respective language – corresponding to the re-
sulting state transitions δ (z0,a) = z1, δ (z1,a) = z2, δ (z2,a) = z3, in which the final
state is also reached. As another example, the symbol string bb, however, leads from
z0 → z3 → z0, but because z3 is valued as final state, bb will not be recognized as a
valid member of the respective language.

A directed, marked graph (figure 4.3) represents the behavior of the DFA. The
different states are represented by circles. The directed edges indicate the input sym-
bols, for example: In z0, the automaton transfers to z1 at a given state a.

Fig. 4.3 State graph of a DFA.

Given the same input symbol, a non-deterministic automaton can transfer to dif-
ferent states. In the recognition of symbol sequences, the sequence is regarded as
part of the language only if one of the possible final states is reached. For a correct
definition of such an automaton, it is necessary that there exists at least one valid
state sequence ending in a final state. Furthermore, a set of starting states is possible.
In the notation as a quintuple, z0 is substituted by the set of starting states. Type-3
grammars can also be represented by Markov models.

4.1.2 Grammatical Transformation

Chomsky meets the PS-grammatical representation of identical expressions of dif-
ferent word order by means of grammatical transformations that take phrase struc-
ture trees as an input and output them as transformed phrase structure trees. For the
indication of the semantic content of a sentence that may be represented in different
word orders, Chomsky uses the term “deep structure.” Hence, the deep structure is a
semantic basis for all expressions that can be produced by grammatical transforma-
tion and result in various mental representations of linguistic expressions referred to
as “surface structures.”

The formalism of a generative grammar can be employed on a large scale in
applications of algorithmic composition. However, the concept of surface and deep
structure and the semantic content of a syntactic expression cannot be applied to

4.2 Generative Grammars in Algorithmic Composition 91

musical principles offhand. A grammatical transformation carried out for different
word orders of a sentence of the same meaning will, applied to a musical structure,
result in a completely new composition. The semantics of a linguistic expression of
different transformation is reflected in the musical equivalent only by using the same
terminals – a fact that does not allow a mutual criterion of the generated structures
in the sense of “musical semantics” to be derived. A correspondent to linguistic
surface and deep structure can be found most likely in the examination of musical
relations in Heinrich Schenker’s analysis methods and related approaches. Here, for
example, a single underlying harmonic skeleton may serve as a basis for different
forms of musical structures.

When musical analysis is mentioned in the following, it is based on the formalism
of a generative grammar. If a generative model of the musical structure may be
generated by analytical investigation of a corpus, it can also be used for further
generations. In some approaches aiming at the generation of style imitations, the
preceding analysis of style-compliant material is an essential precondition. In some
other works mentioned, the generative aspect is not examined explicitly, but it is
given implicitly by the grammatical model.

4.2 Generative Grammars in Algorithmic Composition

In applications of generative grammars for musical production and analysis, some
prominent tendencies can be distinguished. Music ethnology aims at describing dif-
ferent genuine music styles by grammatical models; in European art music, hierar-
chical grammatical structures are often used in analysis and generation; in jazz, this
formalism is frequently used to create chord progressions on the basis of musical
corpora and rules of jazz harmony.

Concepts that allow a hierarchical division of the musical material and work with
the substitution of symbols can naturally be best formulated by a generative gram-
mar. If explicitly formulated rules are assumed, a knowledge-based approach is in-
volved that is also applied in expert systems and comparable procedures. If a system
automatically generates rewriting rules out of a corpus, it is a non-knowledge-based
approach and can also be referred to as grammatical inference. Here, a comparison
to further procedures may be drawn. For example, the expressiveness of Markov
models equals to type-3 grammars. Due to the fact that they only allow for the treat-
ment of a context of successive symbols, they are inferior to grammars of lower
order. Another disadvantage of Markov models results from their fixed order, which
is set before the model is generated and, in most cases, is not able to describe the
context sufficiently. Artificial neural networks or genetic algorithms may also be
used for the treatment of tasks where no domain-specific knowledge exists.

Systems that can independently find regularities in given data can also be found
in the field of unsupervised learning of AI. These and similar algorithms can repre-
sent useful tools for the analysis and modeling of musical styles, on which there is
insufficient domain-specific knowledge, but which may, however, be performed due

92 4 Generative Grammars

to some kind of implicit rule system. Here, the generation of a terminal alphabet
is necessary for the analysis of a corpus and the further generation of new musical
material. In this case, terminals can be for example chords, harmonic movements,
melodic fragments, rhythmic figures or also playing techniques of a particular in-
strument.

A musical structure generated by a grammar will fulfill by definition the criterion
of being well-formed, but the structure does not necessarily have to comply with
the implicit musical rules in every case. When a grammar produces rewriting rules
on the basis of the state transitions of musical units in the corpus, this does not
guarantee that this procedure does not break any implicit musical rules that can only
be covered by treating a wider context. If, for example, a grammar has encoded a lot
of transitions of musical fragments from the corpus in its rewriting rules, this does
not necessarily mean that each of the generated compositions based on these, has
to be correct according to the underlying style. A concrete example would be the
obligatory use of a major triad independent of the predominant tonality – as final
chord in a composition of a particular music style. Within the grammar, changing
from minor to major could be formulated as a possible rewriting rule. An application
of that rule would, however, only be correct at the end of the musical piece; at every
other position, this nevertheless well-formed expression would break a musical rule
which was not recognized by the grammar. If, to solve this problem, the formalism
delivers a long-range description of the context within the corpus, there is danger
of ‘over-generation’: The grammar simply regenerates large parts of the corpus, a
tendency that can also be detected amongst others in higher-order Markov chains.

A second problem that can occur in the application of generative grammar with-
out domain-specific knowledge may result from the existence of musical rules and
basic conditions that cannot be covered by a grammatical inference at all. If the
corpus consists of a number of correct examples that, however, implicitly represent
different classes of musical material, this fact will not be able to be covered by
the generated grammar. An example would be melodic movements possible within
a particular key that are not felt to be style-compliant in another. A grammatical
model that, for example, disregards keys through an intervallic representation of the
different compositions of the corpus, could not consider these facts per se and would
therefore produce a number of incorrect variations in the respective style. Besides
these factors, extra-musical conditions that may have influence on the selection and
composition of the musical material can also be considered. Particularly in the field
of music ethnology, a great number of sociological, cause-conditional and ritual fac-
tors may greatly influence the musical performance and can hardly be encoded by a
generative grammar, an aspect which is particularly emphasized in the work of John
Blacking.3

If a grammar is produced on the basis of a corpus, an examination of the gen-
erated material is recommended. This evaluation is of particular importance for all
non-knowledge-based systems of algorithmic composition, be that a human fitness

3 See section “Music Ethnology.”

4.2 Generative Grammars in Algorithmic Composition 93

rater, the different forms of feedback within supervised learning or an algorithmic
evaluation of the output.

4.2.1 Musical Analysis by Generative Models

One important predecessor of generative grammar for application in music is
Heinrich Schenker’s (1868–1935) musical analysis methods [38]. According to
Schenker, the components of a tonal structure may be referred to as an imaginary
fundamental pattern he calls the “Ursatz,” whose further structuring creates the dif-
ferent levels of a composition. Consecutively, Stephen Smoliar, James Meehan and
Célestin Delige deal with an informatic treatment of Schenker’s analysis methods.
Inspired by Heinrich Schenker’s ideas, in “A Generative Theory of Tonal Music,”
[27] Fred Lerdahl and Ray Jackendoff described an exhaustive model for the rep-
resentation of tonal music by a generative formalism. An examination of musical
representation by generative grammars including extended formalisms is also pro-
vided by Curtis Roads [36, 37].

According to Schenker’s analysis, the “Ursatz” is an abstract two-voice structure,
consisting of the “Urlinie” or fundamental descent, and the “Bassbrechung” or bass
arpeggiation. The “Urlinie” is a linear movement within a harmonic progression,
from a “Kopfnote” or “head-note” to the root of a target chord. The possible “head-
notes” for a piece of music are third, fifth and octave of a triad. The “Bassbrechung”
indicates the basic tones of the harmonic progression.

Fig. 4.4 “Ursatz” consisting of “Bassbrechung” (bottom) and “Urlinie” (top).

This “Ursatz,” forming the musical “Hintergrund” (“background”) of a piece of
music is further structured by the “Ausfaltung” or “unfolding.” The levels that result
from this process are the “Mittelgrund” (“middleground”) and finally the “Vorder-
grund” (“foreground”) of the musical form, nearly corresponding to the actual no-
tated score. The “Ausfaltung” is made by a process of “Auskomponierung” or “com-
posing out” that occurs in a similar fashion to the different possibilities of setting
voices according to a given cantus firmus.4 The basic techniques are complete or
incomplete arpeggiation, the connection in steps of tones belonging to a chord, as

4 For a well-known work on counterpoint referring to the style of Giovanni Pierluigi Palestrina (ca.
1514–1594), see [23].

94 4 Generative Grammars

well as the insertion of upper and lower neighboring notes. These “diminutions” are
also applied multiple times and finally produce the musical “foreground.”

Stephen Smoliar [40] developed a comprehensive framework for automated anal-
ysis according to Schenker’s method. This system enables, amongst other things,
transformations of tree structures that represent different appearances of musical
“deep structures” and facilitates the application of various techniques of unfolding
of the musical material.

As Schenker’s analysis method is controversial, some aspects of this approach
are subject to a critical review, as shown in the work of Meehan [30] and Deliège
[20]. The criticism concentrates especially on the construction of the “Ursatz” that
according to Meehan is rather a theoretical construct of little musical significance.
Deliège even reduces the meaning of the “Ursatz” to a solely symbolical value,
similar to the starting symbol “S” of a generative grammar.

Lerdahl and Jackendoff made an analytic approach for examining music which
can be described in a context of harmonic functions.5 In comparison to Schenker, the
hierarchical structure is divided more finely and it is of form-producing importance
on all levels. For the purpose of an analysis, the musical material is treated under
the following aspects: The “grouping structure” divides the piece into units such
as motives, phrases and sections. The “metrical structure” controls the sequence of
stressed and unstressed beats on different hierarchical levels. The “time-span reduc-
tion” assigns a structural importance to the pitches in the “grouping structure” and
“metrical structure.” The “prolongation reduction” ascribes the tone pitches a hier-
archical importance in terms of their “tension,” “relaxation” or “duration.” “Well-
formed rules” describe all well-formed expressions, while “preference rules” rep-
resent the structural selection criteria of an “experienced listener”: “We have found
that a generative music theory, unlike a generative linguistic theory, must not only
assign structural descriptions to a piece, but must also differentiate them along a
scale of coherence, weighting them as more or less “preferred” interpretations. [. . .]
The preference rules, which do the major portion of the work, of developing anal-
yses within our theory, have no counterpart in linguistic theory; their presence is
a prominent difference between the forms of the two theories.” [27, p. 9]. With
the introduction of their preference model, Lerdahl and Jackendoff have created an
interesting method for examining the musical generations of generative grammars
beyond their aspect of well-formedness. As an example of a “time-span reduction,”
figure 4.5 shows a segmentation of the beginning of Beethoven’s Sonata Op. 31, Nr.
2.

If structural generation is performed in the framework of an automated process
on an existing musical corpus, the analysis and segmentation of the material must be
made in advance. On these terms, David Temperley and Daniel Sleator developed an
approach [45] for automated musical analysis, based on Lerdahl’s and Jackendoff’s
ideas.

A procedure for automated segmentation of tonal music is described by Bryan
Pardo and William Birmingham [33]. Their system “HarmAn” recognizes the un-

5 For an introduction to this concept, see [28]; for a comparison of some of the mentioned ap-
proaches dealing with the “Urlinie,” see [29].

4.2 Generative Grammars in Algorithmic Composition 95

Fig. 4.5 “Time-span reduction” in Beethoven’s Sonata Op. 31, Nr. 2 [27, p. 256]. c© 1993 Mas-
sachusetts Institute of Technology. By permission of The MIT Press.

96 4 Generative Grammars

derlying harmonic function of a passage of tonal music by comparing patterns of
preferred interval constellations.

Although music analysis is not in the scope of this book, the works that are treated
as examples enable interesting possibilities in algorithmic composition, especially
in the field of generative grammars, where a valid analysis model can also mostly
be used for the generation of musical material. Other aspects in this regard can also
be found in computationally based models of music cognition.6

4.2.2 Folk Music and European Art Music

An early approach joining harmonic and melodic aspects in the modeling of a mu-
sical genre is treated by Gary Rader [35]. He used generative grammars for the pro-
duction of circle rounds, which are perpetual canons that return to their beginning
and can be repeated infinitely. Additionally, this approach uses weighted probabili-
ties in the application of the production rules. A weighting may, for example, prefer
a step in a melodic progression, while a superordinated rule guarantees that within
the movements no parallel fifths are produced. The system goes through a two-level
process where first a harmonic structure is generated, out of which then the melodic
material is developed.

The scale degrees I, II, III, IV, V and VI serve as a basis for the harmonic skeleton
and succeed each other according to the probabilities A% to Z%, as can be seen
in a graph in figure 4.6. The rules in the generation of the harmonic progressions
constitute conditions such as a limited range of particular starting and end chords or
harmonic functions on stressed beats. The harmonic skeleton is built up of chords in
root position, whereas inversions are later applied for the construction of the melodic
structure.

The generation of the melody occurs within a frame interval of two octaves and
rhythmic values consist of eights notes or their multiples. A number of rules that
can be paraphrased with general principles of counterpoint, structure the progres-
sion of durations and pitches. For the formal representation of the system, Rader
uses a stochastic generative grammar which processes information on the already
generated units and whose rules can be weighted. Figure 4.7 shows examples for
generations of three-part rounds. The entry of the second and third voice is indi-
cated with the beginning of a separate line.

Johan Sundberg and Björn Lindblom used generative grammars in the production
of Swedish children’s songs and, in another experiment, generated further variations
of already existing versions of a folk song [43]. For their first experiment, eight-bar
children’s songs of the 19th century are analyzed in order to generate a grammar
for the production of the songs. Figure 4.8 shows the results of the analysis in an
eight-bar time line, where the distributions of musical elements are represented as
hatched fields.
6 See as an interesting example the comprehensive work of Sven Ahlbäck on the cognition of
surface structures of monophonic melodies [1].

4.2 Generative Grammars in Algorithmic Composition 97

Fig. 4.6 Possible chord progressions for the generation of rounds [35, p. 249]. c© 1993 Mas-
sachusetts Institute of Technology. By permission of The MIT Press.

Fig. 4.7 Example productions of three-part rounds by Rader.

According to Sundberg and Lindblom, “introductory chords” designate the ton-
ics, “target chords” are chords that are preceded by their dominants, and “anticipa-
tory chords” are dominants followed by the associated tonic. “Suspensions” are a
special case of non-chord tones and always occur at temporal positions of short du-
ration. A segmentation of the eight-bar structure into units hierarchically belonging
together up to phrases, bars, and single notes, is brought into agreement with the
results of the analysis. So, for the particular units, weightings referred to as “promi-

98 4 Generative Grammars

Fig. 4.8 Analysis of distribution of musical structure [43, p. 267]. c© 1993 Massachusetts Institute
of Technology. By permission of The MIT Press.

nence ranks” result which determine the application of different production rules.
After the generation of concrete durations, the system creates harmonic structure on
the bar level. The combination of rhythm and harmony finally allows, based on the
analyzed data and further rules, the generation of the melodic line.

In another experiment, Sundberg and Lindblom used a similar procedure to gen-
erate further variations of a Swedish folk song that already existed in eight variations
[43]:“[. . .] our rule system should generate only those melodies that are felt to be
melodically similar to the versions given.” [43, p. 279]. Although the “feeling for
the similarity of variations” is a fuzzy quality criterion, the fact that the system pro-
duces variations that meet this task, proves the applicability of generative grammar
in musical domains with little or no domain-specific knowledge. Figure 4.9 shows
some original variations of the folk song, figure 4.10 four variations generated by
Sundberg and Lindblom.7

In their different projects, Mario Baroni, Rosella Brunetti, Laura Callegari and
Carlo Jacoboni [2] dealt with the generation of musical structure in different styles.

In the project MELOS 2, Lutheran chorale melodies are taken into consideration
for the generation by a generative grammar, where two classes of rules are applied.
Based on a frame interval, “micro formal rules” create melodic phrases in a multi-
stage rewriting process. Then, “macro formal rules” are applied to put these phrases
together to a chorale. What is noticeable in “MELOS 2” is its conceptual closeness
to Schenker’s concepts such as the “Urlinie” or the different techniques of “unfold-
ing.”

In their project CHANSON, similar principles and further possibilities are con-
sidered using a corpus of French dance music of the 18th century for the structuring
of the melodies.

As an extension of MELOS 2, the project HARMONY generates a harmoniza-
tion and a bass voice for a given chorale melody. The starting point for the gen-
eration of this grammatical model is the analysis of non-modulating segments of

7 In [44], Sundberg and Lindblom compare their formalism to similar works such as [27], [2],
[15] in the field of generative grammars; particular attention is paid to their hierarchical system of
“prominence ranks.”

4.2 Generative Grammars in Algorithmic Composition 99

Fig. 4.9 Some variations of a Swedish folk song.

Fig. 4.10 Variations additionally generated with generative grammar.

Lutheran chorales from J.S. Bach. The model is initialized with a starting chord and
a final chord, determines positions for the tonics and further applies rewriting rules
of possible chord substitutions, as shown in figure 4.11.

Finally, a bass line is produced that is designed according to similar principles as
melody generation in MELOS 2.

An approach similar to MELOS 2 which is also characterized by starting and
final chords as well as the further application of rewriting rules, is described by
Lelio Camillieri [15]. The corpus consists of initial phrases in major keys from the
Lieder cycles op. 25, op. 23/3 and op. 89 of Franz Schubert. According to Camillieri,
generation, verification and correction of the grammar allow for the production of
similar style-compliant phrases, but for modeling beyond this, this approach is not
taken into consideration.

4.2.3 Music Ethnology

David W. Hughes [22] compared the generative capacity of a grammar developed by
A. Becker et al. with one of his own approaches for the domain of Central Javanese

100 4 Generative Grammars

Fig. 4.11 Harmonic substitution in HARMONY [2, p. 212]. With kind permission of Casa Editrice
Leo S. Olschki.

Gamelan music. As further examples, he gave an overview of different applications
of generative grammars in music ethnology, comprising amongst others North In-
dian tabla music, rhythmic structures in Afghan lute music, South African vocal and
instrumental music as well as a special type of Inuit song.

With Gamelan music, Judith and Alton Becker 8 created a grammar based on nine
rules for a “Balungan,” a “core melody” acting as a melodic skeleton that is further
elaborated by the instruments of the Javanese Gamelan orchestra, in the context of a
particular musical style. The problem with this grammar is that Becker comes from
a corpus of only nine such core melodies meaning that this corpus is hardly suitable
for representing the style sufficiently. However, in the variations of the Swedish
folk songs mentioned before, this problem does not exist, since the musical range is
limited by making variations of only one particular song.

David Hughes bases his grammar on a set of rules that he divides into five cate-
gories. “Base rules” control basic decision processes such as the choice of the style,
the number of “gongans” or the choice of distinct scale tones. A “gongan” is a mu-
sical unit of a particular number of “gatras,” end-weighted groups of four musical
events that roughly correspond to bars in occidental music tradition. “Contour as-
signment rules” assign particular melody contours to the gatras. “Restriction rules”
are limitations in the application of “transformation rules” that specify the melody
contours by means of concrete note values. “Derivation rules” regulate form-specific

8 [4], treated in [22, p. 333ff].

4.2 Generative Grammars in Algorithmic Composition 101

processes within each style. In Becker’s and Hughes’s works, the knowledge-based
approach is of primary importance; in these cases, the generative grammar is more
a formalism for the representation of the rules.

John Baily9 developed a grammar for examining aspects of various plucking
techniques of the Afghan lute. This approach also points to the works of Kippen
and Bel, who created, on the basis of playing techniques of the North Indian tabla,
grammars for the generation of pieces of a particular repertoire of this instrument
(see next section).

In a number of works,10 John Blacking dealt with vocal and instrumental melodies
of the Venda, a genuine ethnic group in the South African Transvaal. Blacking de-
velops rules such as for the creation of new metrical patterns or the preference of
particular chords depending on their use in instrumental or vocal music, and also
formulates characteristics of a musical deep structure, like relations of melodic and
harmonic form. Blacking makes the interesting point that analysis and modeling
should consider a number of aspects which do not directly shape musical structures,
but are nonetheless essential for the exhaustive description of a distinct style. These
aspects include, for example, the sociological and social context or conditions of the
performance, which may have an influence on the realization of the musical style
[13, p. 366ff].

Ramòn Pelinski [34] described a generative grammar for the “A ja jait” of the
Inuit of the Hudson Bay. The “A ja jait” is a special song genre that recalls special
moments in the life of a person and is in a spiritual sense strongly connected to the
performer. Pelinski provides the following restrictions to his grammar: The gram-
mar only treats the rhythmic and melodic structure of the genre. Different singing
techniques as well as formal principles regarding volume and timbre are not taken
into account. Furthermore, the context of the performance, as well as the relation
between text and melody, is not treated in the grammatical analysis and generation.
The song genre is divided hierarchically in formal units corresponding to introduc-
tion formulae, ending formulae and other parts of a similar formal significance.
Rhythmic patterns, as well as allowed intervals and ornamentations, form the termi-
nal alphabet of the grammar. The songs are divided into different classes, character-
ized by formal and modal aspects. A representation of the modes with the permitted
melodic movements is shown with a graph in figure 4.12.

4.2.4 Bol Processor

In their investigations of North Indian tabla drum music in the 1980s, Bernard Bel
and Jim Kippen developed an interesting approach to the application of generative
grammars in the field of music ethnology. For the analysis of musical input and
also for the generation of new improvisations, Bel designed the Bol Processor (BP)

9 Cf. [3], treated in [22, p. 350ff].
10 [12] and [13], treated in [22, p. 350ff].

102 4 Generative Grammars

Fig. 4.12 Graph for interval classes of an Inuit song [34, p. 281]. With kind permission of Casa
Editrice Leo S. Olschki.

computer system. Initially, this software consisted of a simple word processor for
the notation of rhythmic patterns and was further developed over the years into an
effective system of algorithmic composition based on generative grammars.11

Tabla music is bound to a number of rules and restrictions that are not explic-
itly formulated. The repertoire is not noted in writing but is represented in an oral
notation system; however, rhythmic phrases may be denoted using onomatopoetic
syllables. These syllables are called bols12 (for example “dha,” “thi,” “trkt,” etc.),
each referring to a particular stroke or phrase on the instrument and consequently
forming the basic repertoire of the traditional playing technique. The investigations
of Bel and Kippen are based on a style of Indian tabla drumming known as qa’ida,
which is a formal model that works with themes and variations. Table 4.1 shows
11 For the works of Kippen and Bel as well as for the range of functions of the BP, see [5], [6], [7],
[8], [9], [10], [11]; free software available at: http://bolprocessor.sourcefourge.net/.
12 From the Urdu/Hindi “bolna” meaning “to speak”; cf. [7, p. 2].

4.2 Generative Grammars in Algorithmic Composition 103

dha tr kt dha tr kt dha ge dha ti dha ge dhee na ge na
dha tr kt dha tr kt dha dha dha ti dha ge dhee na ge na
dha ti dha tr kt dha tr kt dha ti dha ge dhee na ge na
dha ti kt dha ti-dha ti dha ti dha ge dhee na ge na
dha ti kt dha ti dha tr kt dha ti dha ge dhee na ge na
ti-dha ti dha dha tr kt dha ti dha ge dhee na ge na
ti dha tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
tr kt tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha tr dha dha tr kt dha ti dha ge dhee na ge na

Table 4.1 First lines of variations of a qa’ida.

the first ten lines of variations of a qa’ida that is always read line-by-line from left
to right. A variation consists of sixteen bols of the same length. In a concrete in-
terpretation, the duration of a variation lies between eight and twelve seconds. For
the notation of the musicians’ interpretations in real-time, Bel developed an appli-
cation which enables one to type stenographic notes of bols on the keyboard of an
Apple II. An additional extension of this word processor in terms of search and
substitution strategies finally leads to the implementation of an inference module
(named QAVAID) for the processing of generative grammars. In order to generalize
this model from the musicians’ improvisations, finite automata are produced whose
terminals comprise of either single bols or a number of them. Figure 4.13 illustrates
an example of such a finite automaton; the symbols marked with X(x) indicate the
nodes of the graph that may branch into different formal segments. A hyphen in-
dicates a pause in the length of a bol; in this specific case, however, the duration
of the precedent bol is doubled. Figure 4.14 shows an alternative notation within a
two-layer model in which the respective bols and their combinations on the edges
are marked as terminal symbols T(x); the number after the corresponding indication
of the edges refers to the amount of rhythmic units.

Fig. 4.13 Finite automaton for the representation of bol sequences. With kind permission of
Bernard Bel.

The major difficulty with this system lies in the generation of a musical terminal
alphabet, i.e. the coherent segmentation of the bol sequences into “words” in order
to produce an implied rhythmic “vocabulary” of the tabla improvisations. Although
the finite automaton shown above is indeed able to generate some correct examples,

104 4 Generative Grammars

Fig. 4.14 Two-layer model of the finite automaton from figure 4.13. With kind permission of
Bernard Bel.

the segmentation of bol sequences is, however, unsatisfactory in some cases: ”[. . .]
chunks like trkt, dhatrkt, and dhatidhagedheenagena may be called ‘words’ or ‘se-
quences of words’ in the sense that they represent blocks that can be substituted or
permuted. However, a unit like kt is never used as a separate block but is always
preceded by tr [. . .].” [5, p. 10]. In order to resolve this problem and consequently
to improve the ability of the software to generalize, QAVAID is extended to an adap-
tive system whose output is evaluated by a user and improved using backtracking
mechanisms in case the solutions are insufficient. Tables 4.2 and 4.3 show a type-3
grammar produced by QAVAID which, due to the preceding learning process, also
exhibits a considerably better segmentation of the bol sequences (the numbers after
the variables S(x) and the terminals T(x) denote the amount of the contained bols).

Regardless of its analytical potential, the Bol Processor represents at present a
powerful tool for working with generative grammars in the field of algorithmic com-
position. The software enables the processing of both note values and sound objects
as terminal symbols. In the BP, a number of functions considerably extend the range
of possible applications within a traditional generative grammar. In this context, for
instance, rewriting rules may process wild cards13 or also involve a broader context,
meaning strings of symbols on any position before or after the actual substitution.
Additionally, in the selection of rewriting rules, different probabilities may be de-
termined for their application and preferences for the order of their processing may
be defined.

A particular aspect of the Bol Processor can be found in the representation of
musical time structure. In the representation of time, fragments of musical structure
are related to one another. Two principle operators determine whether the musical
fragments are played simultaneously or sequentially. As an example, three musical
structures, A, B and C are established that consist, respectively, of one, two or three
notes of equal duration initially. When an operator for equal relation of duration is
set between the three units, all three structures receive, in relation to one another,

13 Here: Placeholder for arbitrary terminal or non-terminal symbols.

4.2 Generative Grammars in Algorithmic Composition 105

GRAM#1

S → TA3 SA13
SA13 → TA3 SA10
SA10 → TC2 SA8
SA8 → TD2 SA6
SA6 → TA6
SA10 → TA2 SA8
SA13 → TC5 SA8
SA13 → TD2 SB11
SB11 → TA3 SA8
S → TB2 SA14
SA14 → TD2 SA12
SA12 → TA2 SB10
SB10 → TB2 SA8
S → TE2 SA14
S → TF2 SB14
SB14 → TB2 SA12
S → TB2 SB14
. . .
S → TB2 SC14
SC14 → TA3 SA11
SA11 → TB3 SA8
S → TD2 SD14
SD14 → TA3 SB11

Table 4.2 Type-3 grammar generated by QAVAID, part 1.

GRAM#2

TB3 → dhagena
TF2 → tidha
TE2 → ti-
TC5 → dhati-dhati
TA6 → dhagedheenagena
TD2 → dhati
TC2 → dhage
TA3 → dhatrkt
TB2 → trkt
TA2 → dhadha

Table 4.3 Type-3 grammar generated by QAVAID, part 2.

the same duration like, for example, a quarter (A), two eighth notes (B) and eighth
triplets (C). Now, if, for example, an operator indicating simultaneity is set after
A, one voice plays A, the second voice plays B and C successively, where B and
C together have the same duration as A, e.g. a half note (A), two eighth notes (B)
and eighth triplets (C). This syntax enables an approach to metric concepts of non-

106 4 Generative Grammars

Western musical traditions that are hardly realizable through traditional notation
systems.14

Furthermore, the Bol Processor is able to integrate “performance rules” that en-
able a differentiated time structure for the playback of the composition: “When deal-
ing with notes of discrete sound-objects in computer music, the traditional approach
was to produce a representation of the musical work whose timings could be mapped
to Western staff notation. To play the work, a human would follow instructions writ-
ten on top of the score: rallentando, rubato, etc., and a machine would need inter-
pretation rules generally stochastic and restricted to local variations of the tempo.
In BP the ‘score’ is not the final musical work. It does not contain the timings of
all phrases, but rather a hierarchy of rhythmic patterns that may be as complex as
required by the composition. This information is further processed to produce the
final timings. The difference is striking as the performance may sound very smooth
even though no stochastic rules have been used. The advantage of this approach is
that the mechanical performance retains a consistency that only skilled human in-
terpreters would be able to render.”15 One of the advantages of using systems of
algorithmic composition that allow for the application of generative grammars can
be found, furthermore, in the possibility of producing complex structures before be-
ginning the information processing: “I think that the development of more and more
visual stuff curtails the possibility of ‘thinking in your chair.’ Sometimes I develop
grammars, not at the computer, but sitting with pencil and paper. With programs
[other than BP2] this is not possible: you must sit in front of the computer. The dif-
ference lies in the type of attention that each software environment demands on the
part of the composer, and indeed reflects on the way s/he thinks about music.”16

4.2.5 Jazz

Mark Steedman [41] described a grammar for the generation of jazz chord se-
quences. The output of the system consists of twelve-bar blues progressions that
are generated by rewriting rules from a simple initial phrase (rule 0):

The expressions in brackets on the left side of the production rule are alternative
forms of the chords that must be substituted in the same way on the right side of
the rule (figure 4.15). A subscript non-terminal (x) denotes the chord on which the
actual harmonic function is applied. A “w” stands for the chord that is subject to
substitution that for example in rule 3b becomes a dominant seventh chord of the
successor and the round brackets in rule 6 indicate alternative chords. Figure 4.16

14 For pulse and quantization in “non-Western” music, see [10].
15 Comment by Bel in an E-mail to the author.
16 Composer Harm Visser on his motivation to use the BP, cf. [11, p. 10].

4.2 Generative Grammars in Algorithmic Composition 107

Fig. 4.15 Rewriting rules for the generation of twelve-bar phrases [41, p. 68]. With kind permis-
sion of Mark Steedman.

shows a successive application of the rules 1 to 6 resulting in a particular chord
progression.17

Fig. 4.16 Chord sequences by rewriting rules [41, p. 71]. With kind permission of Mark Steedman.

Philip N. Johnson-Laird [24] dealt with structural aspects of jazz improvisations,
also by applying generative grammars, which establish simple constructive princi-
ples for rhythmic structures, chord progressions and bass lines. In regard to rhythm,
a regular grammar produces two-bar phrases, as can be seen in figure 4.17.

Based on the investigation of blues progressions, a number of context-free rules
that are divided into hierarchical classes [24, p. 311–312] generate eight-bar tonal
chord sequences (figure 4.18).

17 In his work, Mark Chemellier describes some interesting extensions to Steedman’s model which
amongst other things allow for a variable setting of the depth of the substitution process as well as
influencing the choice of the various chord substitutions, cf. [18].

108 4 Generative Grammars

Fig. 4.17 Regular grammar for two-bar rhythmic models [24, p. 303]. With kind permission of
Philip Johnson-Laird.

Fig. 4.18 Context-free grammar for eight-bar chord sequences and example generation [24, p.
310]. With kind permission of Philip Johnson-Laird.

The bass lines are generated by a twofold process, where first a melodic contour
is produced by a regular grammar to which the concrete pitches from the previously
generated chord progressions are assigned. Here, 1st, 3rd and 7th chord notes are
preferred and passing notes are avoided for the beginning of a new chord and on
the first beat of the bar. Figure 4.19 shows a graph of the grammar for the melodic
contour and one resulting bass line (“f” here means the starting note of each bar, “d”
indicates a repetition of the preceding note, “s” is a second progression, and “i” is
every interval higher than a second).

Further parameters such as timbre, volume and articulation are not taken into
consideration for the grammatical modeling, which is intended to provide a skeletal
structure out of which, similar to a Lead sheet, the actual musical structure has to be
developed.

François Pachet [32] used different approaches for the description of musical
structure, an essential aspect of his work being the examination of musical surprise:
“Most of the works in music cognition relate surprise to the phenomenon of musical

4.2 Generative Grammars in Algorithmic Composition 109

Fig. 4.19 Melodic contour and possible bass line [24, p. 316–317]. With kind permission of Philip
Johnson-Laird.

expectation. [. . .] In this paper, we emphasize the importance of the rich algebraic
structure underlying Jazz chord sequences, and suggest that harmonic surprise may
not only be related to unexpected structures, but also to ‘calculus’, i.e. to an ability
to deduce a sequence from a set of combinatorial rules.” [32, p. 1]. By means of a
data compression method, chord sequences are analyzed and represented. This leads
to their classification into expected and surprising harmonic progressions. Further-
more, stochastic procedures are applied to deduce rewriting rules from the given
corpus. Chord progressions, as shown in table 4.4, are used as a basis for further ex-
aminations. By means of the analysis of frequently recurring harmonic movements,

Blues For Alice
F | E halfDim7 / A7 | D min / G7 | Cmin / F7 | Bb7 |
Bbmin / Eb7 | Amin | Ab min / Db7 | Gmin7 | C7 | F7 | Gmin / C7 |

Marmaduke
Gmin | Gmin | Gmin | Gmin / C7 | F | Gmin / C7 |
F | Amin / D7 | Gmin | Gmin | Gmin | Gmin / C7 | F |
Gmin/ C7 | F | F |Cmin | F7 | Bb | Bb | G7 | G7 |Gmin |
C7 | Gmin | Gmin | Gmin | Gim / C7 | F |
Gmin / C7 | F | Amin / D7 |

Nows The Time
F7 | F7 | F7 | F7 | Bb7 | Bb7 | F7 | D7 |
Gmin | C7 | F7 | C7 |

Ornithology
G | G | Gmin | C7 | F | F | Fmin | Bb7 | Eb7 |
A halfDim7 / D7 | Gmin | D7aug9 | Bmin | E7 |
Amin | D7 | G | G | Gmin | C7 | F | F | Fmin |
Bb7 | Eb7 | AhalfDim7 / D7 | G | G | Bmin / E7 |
Amin / D7 | G / E7 | Amin / D7 |

Table 4.4 Chord sequences used by Pachet.

110 4 Generative Grammars

such as II-V-I or I-VI-II-V cadences, as well as further rules of jazz harmony, nine
classes of rewriting rules are formulated:

1. Repetition: C→ C / C (C and C→ C take the same amount of time; “/” separates
second and third counting time)

2. Enrichment of chords: C7→ C79 (for all additionally possible chord notes)
3. Relative minor: C→ A min
4. Tritone Substitution: C7→ F#7
5. Preparation: C→ G7/C
6. Preparation by Minor Seventh: C7→ Gmin7/C7
7. Transition to Fourth: C7→C7/F
8. Back propagation of Seventh: XXC7Y→XC7YY (At the same time substitution

of the free position by the subsequent chord)
9. Left deletion: XC7 → XX (The deletion of chords forms a class of rewriting

rules whose concrete application must be decided according to the respective
harmonic context)

Table 4.5 shows an example of a successive application of the rewriting rules on
the C7 chord in the fourth bar: Preparation by Minor Seventh (6), Tritone Substitu-
tion (4), Preparation (5), Back Propagation of the former chord (8) and deletion (9).
Pachet is not only interested in “well-formed,” rule-compliant chord sequences, but

C | F | C | C7 | F ...
C | F | C | Gmin7 / C7 | F ...
C | F | C | Gmin7 / F#7 | F ...
C | F | C | D7 / Gmin7 / F#7 | F
C | F | C / D7 | Gmin7 / F#7 | F
C | F | D7 | Gmin7 / F#7 | F ...

Table 4.5 Stepwise chord substitution in a simple cadence.

also aims at establishing a criterion for “surprise” and “expectation.” For this pur-
pose, he represents the chord in the context of a data compression procedure [46].
The representation of the data referred to as the Lempel–Ziv tree (LZ-tree) always
only encodes the shortest symbol strings that have not yet been identified. Represen-
tation is made within a directed graph. As an example (figure 4.20), a symbol string
abcabacabbbbbba is encoded in segments indicating the sequences of symbols as
paths from the root. This procedure deconstructs the symbol string in the segments
a b c ab ac abb bb bba and builds up an appropriate tree structure.

Before the Lempel–Ziv encoding, the chord sequences are represented by the
chord structure and the interval relation between the roots. For the Lempel–Ziv en-
coding, the chord progressions are simplified by indicating every chord transition
from C, as shown in table 4.6 by means of a short cadence.

The representation within the Lempel–Ziv tree shows the frequency of partic-
ular chord progressions. Those movements that occur very rarely are considered
“surprising.” A progression, represented by a particular node, occurs in the encoded

4.2 Generative Grammars in Algorithmic Composition 111

Fig. 4.20 Lempel–Ziv tree representing a symbol string.

E | Amaj7 | F#min7 | B7
| (C : Fmaj7) | (Cmaj7 : Amin7) | (Cmin7 : F7)

Table 4.6 Transition of a chord sequence.

corpus more rarely the fewer children it has. As an example, figure 4.21 shows a
segment of the LZ–tree built from the corpus. If the preceding sequence Cmin - F7
- Bb is encoded as (Cmin) - (F7=C7) - (F=C), the most surprising succeeding chord
is (Emin=Cmin), presented as a framed node.

Fig. 4.21 Segment of the Lempel-Ziv tree of the chord sequences used by Pachet.

By means of this procedure, Pachet demonstrates a method of encoding musi-
cal tasks with generative models. The two examined aspects in this case, “expecta-
tion” and “surprise,” are examples of an interesting “measuring” of stylistic features

112 4 Generative Grammars

by the extension of traditional methods of generative grammars. Another approach
in Pachet’s work treats the automatic derivation from a given corpus by statistical
methods, as described in the following chapter.

4.2.6 Grammatical Inference

Pachet’s method allows for the automatic recognition of style-compliant chord sub-
stitutions due to a given comprehensive corpus. The underlying principle first gen-
erates the set of all possible rewriting rules and consequently comprehends both
common as well as unusual chord substitutions. In a further step, each of these rules
is examined for style compliance by applying them to the corpus and comparing
the distribution of neighbors before and after the substitution. To do this, sequences
of each three consecutive chords are compared, the second chord of the sequence
representing the beginning of the next group and so forth. For a sequence T S T S
D7 etc., the following groups of three would result: T S T, S T S, T S D7, etc. This
principle allows each chord to be comprehended with its context in both corpora.
A good chord sequence is characterized by the fact that “chord new” – before ap-
plying the substitution – stands in the same contexts as “chord old” that in a next
step is substituted by “chord new.” If, for example, a dominant seventh chord (D7)
is substituted by a seventh and ninth chord (D7/9), in a corpus of sufficient size, the
D7/9 can already be found before the substitution in contexts, where the D7 also
appears. So, the similarity of the distribution of neighbors in the corpus before and
after a particular chord substitution turns out to be an interesting indicator for its
style compliance.

Craig Nevill-Manning and Ian Witten [31] described the automated generation
of rewriting rules based on an input of symbol strings that were produced by a
Lindenmayer system; furthermore, the authors broaden their approach in regard to
linguistic constructs of a larger extent and chorale melodies composed by J.S. Bach.
An entered symbol string is examined for repeated combinations of symbols, for
which then a non-terminal symbol is set. In order to guarantee an efficient procedure,
two conditions are introduced: Each pair of adjacent symbols appears only once in
a production rule (“digram uniqueness”) and in the generation of the symbol string,
every production rule is used more than once. This ensures that the rule is useful as
a structure-determining procedure in contrast to a literal depiction of every similar
symbol string which occurs multiple times (“rule utility”). In order to illustrate this
principle, figure 4.22 shows the generation of production rules by Nevill-Manning
and Witten’s software SEQUITUR, on the basis of a given symbol string.

In the sequential input of new symbols, the system permanently runs through
a multi-stage process. New terminals are added to the right side of the production
rules until repetition occurs. In this case, the respective symbol string is replaced
by a non-terminal symbol. When the software is applied for the analysis of large
text passages, good results can be achieved regarding the segmentation of units be-
longing syntactically together. In the analysis of soprano voices in Bach chorales,

4.2 Generative Grammars in Algorithmic Composition 113

Fig. 4.22 Grammatical inference in SEQUITUR [31, p. 70]. With kind permission of Craig Nevill-
Manning.

SEQUITUR correctly identifies repeated melodic phrases as well as final cadences
[31, p. 72–73].

Teuvo Kohonen [25] presented an interesting algorithm of grammatical infer-
ence. As a Self-Learning Musical Grammar, [26] his algorithm enables the recogni-
tion of a context of variable length within a musical corpus and generates a context-
free grammar for the production of new melodic material.

The production rules of a generative grammar should be able to clearly describe
and regenerate a corpus. In order to achieve this, each successor must be defined
uniquely by its preceding context; the context depth necessary for uniqueness may
be different for different symbols. If, for example [26], on the basis of a symbol
string ABCDEFG . . . IKFH . . . LEFJ . . . a concrete successor of F should be de-
duced, different possibilities of applying the production rules result depending on
the respective context level. In context level 1, the successors are G, H and J; there-
fore, it is not possible to determine an exact successor solely on the basis of F. If
the context level is now extended to two symbols (EF, KF, EF), then KF is uniquely
followed by H and EF has the alternative successors G and J. Only at context level
3 (DEF, LEF) may the definite successors G (context: DEF) and J (context: LEF)
be detected. This example shows that for the production of different successor sym-
bols in a corpus, different context levels are required – this is a condition that, for
example, cannot be modeled by a Markov model due to the previously set order, i.e.
context level. Kohonen’s approach represents a sort of Markov model of variable
order which formulates, for each symbol of the input, the required context levels
– the number of preceding symbols in the form of production rules that are able
to describe exhaustively the order of symbols in the corpus. The algorithm reads
the symbols of the input successively and produces rules of the type predecessor
→ successor. If a preceding symbol is again available as an input and determines
another successor, the rule generated before is provided with a so-called “conflict
bit” and the context is extended until no conflict occurs any longer in the application
of the rules, e.g. KF → H, DEF → G, and LEF → J. The generated rules may also
be represented by a tree structure, as shown in figure 4.23.

114 4 Generative Grammars

Fig. 4.23 Tree with variable context levels.

For the generation of new material, a “depth parameter” can be set which deter-
mines how many nodes are subtracted from the “optimal” context of each symbol.
So, rules are applied that previously had been provided with a conflict bit – in the
above case, for example, given a depth parameter of 1, symbol sequences of the
form DEF → J or LEF → G may also be generated that are not contained in the
sequence of symbols of the input. As an expansion of this coherent model, Kohonen
described different encoding strategies for harmonic information as well as possible
extensions of the system [26, p. 4].

As another possibility of processing a variable context, I have designed a simple
algorithm which is very easy to implement and provides another possibility to build
a structure based on the different context depths within a corpus. In contrast to
Kohonen’s Self-Learning Musical Grammar, no rewriting rules are produced here,
but the algorithm passes through regions of examples of a given corpus, where the
trace is forming the final output at the same time. This algorithm is initialized with a
symbol or a sequence of symbols as a predecessor and detects the possible successor
symbols in the corpus. In the next step, one of these successors is randomly selected
and added to the predecessor to form a new predecessor, and the process repeats until
only a single possible successor is left. Through this, the context depth is extended
as long as there is only one possible successor left. By means of backtracking, the
context depth is now decreased until again alternative possibilities for continuing the
process become available. The scheme below illustrates how the algorithm works.
In this example, the symbols denote musical terminals, which can encode a single
or a number of parameters. The musical examples of the corpus may be copied one
after the other in a list; herein, it is recommended to mark the terminals that are
positioned at the beginning and the end of each example. The indication of the end
of each example enables the algorithm to stop the generation and to output the result.
While marking the beginning symbols is not strictly necessary, it allows for starting
with a predecessor which is actually used as the beginning symbol of an example of
the corpus.

1. Set a predecessor (P) at which the search should start; P becomes the first ele-
ment of the list “Result” (R).

2. Produce an empty list “Alternatives” (A).
3. Determine all successors (S) of P from the corpus.

Every P+S becomes a new P.

4.2 Generative Grammars in Algorithmic Composition 115

Every P becomes an element of A.
If number of elements in A = 1, continue with point 4.
If number of elements in A > 1, continue with point 3.

4. Choose a P from A randomly and pass the last symbol of this P to R. If last
symbol of P = symbol for the end of a segment, continue with point 5. Otherwise:
Continue with point 2.

5. If last symbol of P = symbol for the end of a segment, pass this symbol to R,
continue with point 5. Otherwise: Delete first symbol of P and continue with
point 2.

6. Output R / END.

Since this algorithm behaves similarly to a snake which devours more and more
material, but insists – in proper gourmet style – on a selection of at least two alter-
native bits, this procedure may well be called a “Context Snake.”18 As an extension
of this model, a “backtracking parameter” is applied which represents a kind of
lower bound for a particular context depth. The parameter determines the minimal
necessary number of symbols of the predecessor. In case the number is below that,
alternative branches are selected recurrently until – except, of course, at the begin-
ning – each transition of the new generation shows the minimal necessary context
depth. This ”backtracking parameter” allows for precisely adjusting to which extent
the new generations reflect the contextual characteristics of the corpus.

Experiments with this algorithm yielded good results in regard to the genera-
tion of chorale melodies. For the corpus, Dorian melodies were used that conform
to rules according to Knud Jeppesen. In his study book of classic vocal polyphony
[23], this Danish composer and musicologist described methods for the “compo-
sition” of contrapuntal movements with regard to the style of Pierluigi Palestrina
(around 1525–1594). Jeppesen divides contrapuntal material into rhythmic variants
as well as movements of different numbers of voices and determines precise con-
ditions and rules for a style-compliant generation of each of these variants. Here,
monophonic melodies of the first “species” describe note sequences of equal rhyth-
mic duration that may form the basis, known as cantus firmus, of a polyphonic
movement. Because Jeppesen’s rules are well suited to examine the melodic mate-
rial for its style conformity, reasonably objective evaluations of generations of this
non-knowledge-based system are possible. Figure 4.24 shows an example for the
passing of the “Context Snake” through a corpus of Dorian melodies: The light
grey areas indicate the processed context depths and the darker grey areas indicate
the trace resulting in the output, as shown in the last two staves. A value of 3 was
set for the “backtracking parameter” which results in a generation comparable to a
“variable” markov model of third and higher order.

Constraints prove to be reasonable extensions for the examination of the gener-
ated material in terms of length, forbidden frame intervals and inappropriate repeti-
tions. In a small corpus, it is also possible to re-generate original examples, because

18 The “Context Snake” has been realized as a pattern for the language SuperCollider by Alberto
de Campo. It is availabe as an extension package at http: supercollider.sf.net.

116 4 Generative Grammars

Fig. 4.24 Context Snake passing through a corpus of Dorian melodies.

here the algorithm repeatedly selects branches by chance that may finally produce
an example of the corpus.

Despite these restrictions, interesting musical results are also generated within
musical styles other than chorale melodies. Furthermore, it proves to be advanta-
geous that the output reflects the distribution of the transition probabilities in the
corpus, since predecessors occurring frequently are selected with a higher probabil-
ity. However, as for each new generation in most cases an exhaustive backtracking
is applied, this algorithm requires longer calculation periods.

An exhaustive analysis model that, for the generation of a grammar, also deter-
mines the semantic meaning of musical terminals on different hierarchical levels is
described by David Cope, who produces style imitations of musical genres with his
system EMI (see chapter 5).

4.3 Synopsis 117

4.3 Synopsis

Generative grammars are an essential class of formalisms of musical analysis in
algorithmic composition which allow for a context-related and hierarchical organi-
zation of musical material. However, a significant restriction which this formalism
shares with other methods coming from linguistics is their basic orientation on a
sequential model that must neglect simultaneously occurring structure – a feature
which is naturally of the utmost importance in polyphonic music.

As in Markov models, transition networks or Lindenmayer systems, extended
strategies for the structural treatment of coexisting musical layers must be devel-
oped. Due to this difficulty, generative grammars are often used for the modeling of
musical styles that lend themselves to a sequential treatment of the material, such as
for monodic melodies or chord progressions of different stylistic provenience.

The possibility of the grammatical transformation of linguistic expressions, as
it is used by Chomsky for the representation of different word orders of the same
semantic content, referred to as “deep structure,” is hardly applicable to a musical
context. Where different positions of constituents in a linguistic expression may,
however, show the same semantic meaning, the reorganization of musical segments
generally leads to new musical information. In addition, the term “semantics” can
hardly be applied to music in general, because in this case the “meaning” cannot be
distinguished from the correct appearance of the musical structure. However, within
Schenker’s approach and similar methods, the term “deep structure” is often used to
refer to a skeleton of musical structure that rather represents a construction principle
and is incomplete regarding its musical appearance.

A decisive aspect of generative grammar lies in its high generative capacity and
the possibility of generating a complex musical structure by using only a compar-
atively small number of rewriting rules. In the area of style imitation, some ap-
proaches of grammatical inference offer a great advantage through the possibility
of processing a variable context depth, but nevertheless it should not be overlooked
that the “well-formedness” of a generated expression does not present a guaran-
tee of a satisfying musical structure. Moreover, a number of musically determining
factors are often ignored in the generation of grammatical models and also simplifi-
cations are often made, leading in the worst case to the arbitrariness of the generated
structure.

In contrast to, for example, genetic algorithms or cellular automata where a per-
manent flow of musical material is produced, musical structure in a generative gram-
mar does not result until the end of parsing is reached, where the preceding substi-
tution processes cannot be used for an actual musical output due to the residual
non-terminal symbols. This aspect of generative grammar, however, turns out to be
a disadvantage only for concepts that deliberately intend to work with a process-like
character. On the whole, due to the wide spectrum of possible applications, genera-
tive grammars represent a very useful and versatile class of algorithms for musical
analysis, style imitation and genuine composition.

118 4 Generative Grammars

References

1. Ahlbäck S (2004) Melody beyond notes: a study of melody cognition. Skrifter från Institutio-
nen för Musikvetenskap, 77. Göteborgs Universitet, Göteborg. ISBN 91 8597473-0

2. Baroni M, Brunetti R, Callegari L, Jacoboni C (1982) A grammar for melody. Relationships
between melody and harmony. In: Baroni M, Callegari L (eds) Musical grammars and com-
puter analysis. Casa Editrice Leo S. Olschki, Florence. ISBN 2147483647

3. Baily J (1989) Principles of rhythmic improvisation for the Afghan rubâb. Intl. Council for
Traditional Music UK Chapter Bulletin, 1989

4. Becker A, Becker JO (1979) A Grammar of the musical genre Srepegan. Journal of Music
Theory, 23, 1979

5. Bel B, Kippen Jim (1989) The identification and modelling of a percussion “language,” and
the emergence of musical concepts in a machine-learning experimental setup. Computers and
the Humanities, 23/3, 1989

6. Bel B, Kippen J (1992) Bol Processor Grammars. In: Balaban M, Ebcioglu K, Laske O (eds)
Understanding music with AI. AAAI Press/MIT, Cambridge, Mass. ISBN 0262-52170-9

7. Bel B, Kippen J (1992) Modeling music with grammars. In: Marsden A, Pople A (eds) Com-
puter representations and models in music. Academic Press, London. ISBN 0-12-473545-2

8. Bel B (1992) Symbolic and sonic representations of sound-object structures. In: Balaban
M, Ebcioglu K, Laske O (eds) Understanding music with AI. AAAI Press/MIT, Cambridge,
Mass. ISBN 0262-52170-9

9. Bel B (1996) A flexible environment for music composition in non-European contexts.
Journées d’Informatique Musicale 1996, Caen (France)

10. Bel B (1996) A symbolic-numeric approach to quantization in music. 3rd Symposium on
Computer Music, Recife (Brazil), 1996

11. Bel B (1998) Migrating musical concepts – an overwiew of the Bol Processor. Computer
Music Journal, 22/2, 1998

12. Blacking J (1970) Tonal organisation in the music of two Venda initiation schools. Ethnomu-
sicology, 14, 1970

13. Blacking J (1982) What languages do musical grammars describe? In: Baroni M, Callegari
L (eds) Musical grammars and computer analysis. Casa Editrice Leo S. Olschki, Florence.
ISBN 2147483647

14. Bloomfield L (1933) Language. Rinehart and Winston, New York. Reprinted by University
of Chicago Press, 1984. ISBN 0226060675

15. Camillieri L (1982) A grammar of the melodies of Schuberts Lieder. In: Baroni M, Callegari
L (eds) Musical grammars and computer analysis. Casa Editrice Leo S. Olschki, Florence.
ISBN 2147483647

16. Chomsky N (1957) Syntactic structures. Mouton, Den Haag. Reprinted by Walter de Gruyter,
Berlin, New York, 1989. ISBN 9027933855

17. Chomsky N (1965) Aspects of the theory of syntax. MIT Press, Cambridge, Mass. ISBN
0262530074

18. Chemellier M (2001) Improvising jazz chord sequences by means of formal grammars.
http://recherche.ircam.fr/equipes/repmus/marc/publi/jim2001/icmc2001.pdf Cited 1 Feb
2005

19. Fanselow G, Felix SW (1993) Sprachtheorie. Eine Einführung in die generative Grammatik,
2: Die Rektions- und Bindungstheorie, 3rd edn. Francke, Tübingen. ISBN 3-7720-1732-0

20. Deliège C (1982) Some unsolved problems in Schenkerian theory. In: Baroni M, Callegari
L (eds) Musical grammars and computer analysis. Casa Editrice Leo S. Olschki, Florence.
ISBN 2147483647

21. Hausser R (2000) Grundlagen der Computerlinguistik. Springer, Berlin, Heidelberg. ISBN
3-540-67187-0

22. Hughes DW (1991) Grammars of non-Western music. In: Howell P, West R, Cross I (eds)
Representing musical structure. Academic Press, London. ISBN 0-12-337171-5

References 119

23. Jeppesen K (1992) Counterpoint: the polyphonic vocal style of the sixteenth century. Dover
Publications, New York. ISBN 04862736X

24. Johnson-Laird PN (1991) Jazz Improvisation: a theory at the computational level. In: Howell
P, West R, Cross I (eds) Representing musical structure. Academic Press, London. ISBN 0-
12-337171-5

25. Kohonen T (1987) Self-learning inference rules by dynamically expanding context. In: Pro-
ceedings of the IEEE First Annual International Conference on Neural Networks, San Diego,
1987

26. Kohonen T (1989) A self-learning musical grammar, or “Associative memory of the second
kind.” In: Proceedings of the International Joint Conference on Neural Networks, New York,
1989

27. Lerdahl F, Jackendoff R (1983) A generative theory of tonal music. MIT Press, Cambridge,
Mass. ISBN 0-262-62107-X

28. Lerdahl F, Jackendoff R (1983) An overview of hierarchical structure in music. In:
Schwanauer SM, Levitt DA (eds) Machine models of music. MIT Press, Cambridge, Mass.
ISBN 0-262-19319-1

29. Lerdahl F (1991) Underlying musical schemata. In: Howell P, West R, Cross I (eds) Repre-
senting musical structure. Academic Press, London, pp 273–290. ISBN 0-12-337171-5

30. Meehan JR (1979) An artificial intelligence approach to tonal music theory. In: Martin AL,
Elshoff JL (eds) Proceedings of the 1979 annual conference. Association for Computing Ma-
chinery, New York, pp 116–120

31. Nevill-Manning CG, Witten IH (1997) Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research, 7, 1997. pp 67–82

32. Pachet F (1999) Surprising harmonies. International Journal of Computing Anticipatory Sys-
tems, 1999

33. Pardo B, Birmingham WP (2000) Automated partitioning of tonal music. In: Etheredge JN,
Manaris (eds) Proceedings of the Thirteenth International Florida Artificial Intelligence Re-
search Society Conference. AAAI Press, Menlo Park, Calif, pp 23–27

34. Pelinski R (1982) A generative grammar of personal Eskimo songs. In: Baroni M, Callegari
L (eds) Musical grammars and computer analysis. Casa Editrice Leo S. Olschki, Florence.
ISBN 2147483647

35. Rader GM (1974) A method for composing simple traditional music by computer. In:
Schwanauer SM, Levitt DA (eds) Machine models of music. MIT Press, Cambridge, Mass.
ISBN 0-262-19319-1

36. Roads C (1985) Grammars as representations for music. In: Roads C, Strawn J (eds) Founda-
tions of computer music. MIT Press, Cambridge, Mass. ISBN 0-262-18114-2

37. Roads C (1982) An overview of music representations. In: Baroni M, Callegari L (eds)
Musical grammars and computer analysis. Casa Editrice Leo S. Olschki, Florence. ISBN
2147483647

38. Schenker H (1935) Der freie Satz, 2nd edn. Neue musikalische Theorien und Phantasien, 3.
Universal-Edition, Vienna. ISBN B0000BN9B5

39. Schöning U (2003) Theoretische Informatik – kurzgefasst, 4th edn. Spektrum Akademischer
Verlag, Heidelberg, Berlin. ISBN 3-8274-1099-1

40. Smoliar SW (1979) A computer aid for Schenkerian analysis. In: Martin AL, Elshoff JL
(eds) Proceedings of the 1979 annual conference. Association for Computing Machinery,
New York, pp 110–115

41. Steedman M (1984) A generative grammar for jazz chord sequences. Music Perception 2,
1984

42. Steedman M (2003) Formal grammars for computational musical analysis. INFORMS At-
lanta October 2003

43. Sundberg J, Lindblom B (1976) Generative theories in language and music descriptions. In:
Schwanauer SM, Levitt DA (eds) Machine models of music. MIT Press, Cambridge, Mass.
ISBN 0-262-19319-1

120 4 Generative Grammars

44. Sundberg J, Lindblom B (1991) Generative theories for describing musical structure. In:
Howell P, West R, Cross I (eds) Representing musical structure. Academic Press, London.
ISBN 0-12-337171-5

45. Temperley D, Sleator D (1999) Modeling meter and harmony: a preference-rule approach.
Computer Music Journal 23/1, 1999

46. Ziv J, Lempel A (1978) Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24/5, September, 1978

Chapter 5

Transition Networks

Transition networks (TN) are made up of a set of finite automata and represented
within a graph system. The edges indicate transitions and the nodes the states of
the single automata. Each automaton stands for a non-terminal symbol and is rep-
resented by its own network. The edges of each single network are denoted by non-
terminal or terminal symbols and thus refer to other networks or final states. If the
structure of a transition network also allows for recursive processes, for example,
in the substitution of an object by another object belonging to a higher hierarchy
level (e.g. a verb becomes a verbal phrase), this type of network is known as a re-
cursive transition network. A path traversing the transition network starts at a first
network and, beginning at the starting node, passes along the single edges. When it
encounters a non-terminal symbol, the system branches like a sub-program to the
corresponding network until finally all non-terminal symbols have been substituted.
If different substitution possibilities are available, several paths between starting
state and final state of the respective finite automaton exist. Figure 5.1 shows a tran-
sition network for expressions in natural language which may generate expressions
such as “conductor likes singer,” “a singer hates the conductor,” “a singer likes a
conductor hates the singer”.

Fig. 5.1 A transition network for natural language expressions.

121

122 5 Transition Networks

In an augmented transition network (ATN), the TN is extended in a way that
allows specific instructions, conditional jumps or also whole sub-programs to be as-
signed to the edges. Augmented transition networks which were developed in the
1960s [11], are equivalent to type-0 grammars in terms of their generative capac-
ity. Figure 5.2 illustrates an example of a simple ATN for the generation of melodic
phrases. As an additional condition, the command “jump” is introduced here, induc-
ing the omission of the current node. The upper and lower half of the graph enable
generations in differing meters; a possible bass accompaniment is indicated below
by means of some segments.

Fig. 5.2 Simple ATN for the production of musical segments [2, p. 64–65]. Reproduced with kind
permission by A-R editions.

5.1 Experiments in Musical Intelligence

David Cope’s Experiments in Musical Intelligence (EMI) is a well-known system
of algorithmic composition which generates compositions conforming to a given
musical style. Since its creation in 1981, Cope has continuously advanced EMI and
described it in great detail in a number of publications.1 EMI joins a series of dif-
ferent approaches to musical structure genesis and is also often mentioned in the
context of artificial intelligence – Cope himself presents his system amongst oth-

1 E.g. articles [1], [3]; book publications [2], [4], [5], [6].

5.1 Experiments in Musical Intelligence 123

ers in the framework of a “musical Turing test.”2 In view of the efficiency of EMI,
Douglas Hofstadter revised some of his assumptions regarding the musical-creative
potential of computer programs.3 First experiments with a rule-based system for the
generation of four-part movements Cope found unsatisfactory; as a consequence,
he developed the approach of musical “recombinancy”: In analogy to the histori-
cal model of the musical dice game, musical components are arranged to form a
new composition, but with the essential difference being that EMI detects the com-
ponents autonomously by means of the complex analysis of a corpus, transforms
them partly and recombines them in an extensive process. For Cope, this princi-
ple also represents the implementation of a personal musical credo: “This program
thus parallels what I believe takes place at some level in composers minds, whether
consciously or subconsciously. The genius of great composers, I believe, lies not
in inventing previously unimagined music but in their ability to effectively reorder
and refine what already exists.” [4, p. 93ff]. Since Cope implements the complex
strategies of recombination within an augmented transition network, descriptions of
basic functions of EMI are covered in this chapter.

Fig. 5.3 David Cope and Douglas Hofstadter. With kind permission of David Cope and Douglas
Hofstadter.

In initial experiments, Cope divides up Bach chorales into single harmonic seg-
ments and recombines them by considering the correct voice leading, using only
the transitions of harmonic segments which also occur in the original chorales. To
provide sufficient material for new generations, the chorales of the corpus are trans-
posed to a single key before analysis; the key for new compositions is chosen with
regard to occurring voice ranges and the like. Although this simple principle of
combination creates correct chorale progressions in either case, an acceptable struc-
turing of a whole composition cannot be achieved. Due to this, additional strategies
are applied that treat the musical material under numerous aspects for analysis and
generation. In order to obtain a universally acceptable structure, a chorale of the

2 See chapter 10; for Cope’s test, cf. section “The Game” in [6, p. 33ff].
3 Hofstadter refers here to his own prognoses in his book “Gödel, Escher, Bach: an Eternal Golden
Braid” [8], cf. Hofstadter’s essay “Staring Emmy Straight in the Eye ...,” in [6, p. 33ff].

124 5 Transition Networks

corpus may serve as a model for the sequence of phrases, cadence progressions, and
the like. This model of chorale, however, only represents a meta-structure which
is assigned with concrete musical segments from the EMI database. This database
contains the complete material of the corpus, divided up into musical segments of
different meaning. For the extension of the database and consequently also to in-
crease the generalization power of EMI, coherent musical variations may be gen-
erated from segments of the corpus.4 In order to be able to analyze, represent and
process musical information in terms of different aspects, the following compo-
nents and strategies are applied: SPEAC, an analysis model that analyzes the formal
meaning of musical segments of different length on different hierarchical levels and
makes them accessible for resynthesis; recognition and indication of characteristic
and form-determining movements for their application in original or modified form
in the new generations; implementation of the recombination strategies within an
augmented transition network.

The musical units are recombined to form compositions in the relevant style in
accordance with syntactic and “semantic” criteria. Here, the syntax describes al-
lowed combinations of the terminals, whereas “semantics” guarantee that these also
fulfil reasonable formal functions on their positions. Syntactic correctness in the
combination of musical units can be seen through melodic components, for exam-
ple in the transitions between the single parts. If, for example, a particular phrase
in the corpus passes to another phrase through a major second movement, then this
voice leading will also be retained in the recombination. This means that, in this
case, only melodic segments are used as successors that may be reached from the
last note of the previous phrase through a major second step. The syntactic correct-
ness of a structure generated this way may be compared with the well-formedness
of an expression generated by a generative grammar. Irrespective of that, the prob-
lem of “semantically” coherent meaning must be solved. If a generated expression
is musically meaningful in the sense of musical semantics, it is defined in Cope’s
work by a sequence of musical components that due to their respective positions ful-
fil coherent forming and structuring functions. In functional harmony, for example,
cadences that are characterized by dominant-tonic progressions would follow the
“semantic” scheme of tension and relaxation. The imprecise terms “tension” and
“relaxation” are used here according to Cope’s classification system, which uses
a general terminology to allow description of musical aspects on different formal
levels. The semantic classification of the material is carried out by a system called
SPEAC which is an acronym of the terms “statement,” “preparation,” “extension,”
“antecedents” and “consequent.” These elements are used to indicate the musical
units and denote relations that these may have to each other. “Statements” repre-
sent units that do not exist as the result of a particular process, but are included in
a context in the course of the processing. “Preparations” are introductory gestures
that stand ahead of other components and modify their meaning. “Extensions” fol-
low other units (other than “preparations” or “extensions”) and extend the preceding
musical material. “Antecedents” prepare a concrete musical situation and demand

4 Such as e.g. diatonic transposition which may represent a musical segment in the framework of
different interval constellations; cf. [6, p. 102ff].

5.1 Experiments in Musical Intelligence 125

“consequents” as a solution. Figure 5.4 shows the different categories of SPEAC by
means of a harmonic progression.

Fig. 5.4 Example of a harmonic parsing by SPEAC [2, p. 34]. Reproduced with kind permission
by A-R editions.

The tonic parallel (h minor) is, for example, considered as the extension of the
tonic due to its third relationship with D major. In this structure, the dominant sev-
enth chord A7 in measure three is the “preparation” and the tonic “consequent.”
Here, the abstractions of SPEAC are assigned to the musical units on the basis of
the intervallic constellation, the metric position and the duration of the single events.
The order of the components of SPEAC is restricted by the following rules that in-
dicate the possible successors of a component:
S→ P, E, A
A→ E, C
P→ S, A, C
C→ S, P, E, A
E→ S, P, A, C

The SPEAC system is inspired by the analysis methods developed by Heinrich
Schenker (see chapter 4) and allows for the interpretation of musical segments on
different hierarchical levels. The dominant seventh chord in figure 5.4, for example,
represents in the context of the two adjacent chords the function “antecedent” after
“preparation” and ahead of “consequent.” On a higher hierarchical level, these three

126 5 Transition Networks

chords represent an “antecedent” after a “statement” (measure 2) and before the fi-
nal cadence which acts as a “consequent.” This segmentation continuously involves
increasing context dependencies in the examination, until finally a complete compo-
sition of the corpus is indicated as a first “statement,” similar to the starting symbol
“S” in a generative grammar. If during recombination a musical terminal5 should be
placed at a particular position, it is selected from the corpus according to syntactic
conditions as well as the semantic context. In case, for example, the musical termi-
nal should fulfil the function “PASC”6 at this specific position, it is precisely these
terminals chosen from the corpus that are designated with the classification “PASC”
by EMI. If this selection turns out to be unsatisfactory, terminals with same proper-
ties but on a lower formal hierarchical level are searched, namely musical segments
that fulfil the function “PAS,” etc. If the formal context of the musical units in the
corpus corresponds to that in the recombination, it must also be considered that, in
order to achieve innovative solutions, the order of the terminals selected for new
generations does not correspond to longer segments of the corpus.

To increase style conformity, EMI, during the analysis and recombination, also
processes musical material which is of specific structuring meaning. “Signatures,”
“earmarks” and “unifications” are constellations that are prominent characteristics
of a particular musical style. Furthermore, they may indicate distinctive changes in
the musical sequence or serve for the internal structuring of a composition. “Signa-
tures” are musical phrases that usually consist of characteristic melodic, harmonic
and rhythmic components and often occur several times in a composition, usually
in a modified form. EMI reveals “signatures” in the corpus using variably config-
urable pattern-matching processes, transforms them, if necessary, and also applies
them in the process of generation in suitable positions within the composition. Since
“signatures” may occur in different concrete musical shapes, EMI allows for their
recognition and treatment within certain tolerances, meaning that, for example, a
particular musical constellation on different scale steps or also in different rhythmic
form may still be recognized as a consistent motif. A way to control the parameters
of the pattern matching algorithms is given by the search for a particular number of
“signatures” as it is typical of a composition of the respective style. The tolerance
limits for identifying a signature are in this case extended until the desired num-
ber of “signatures” has been found. Furthermore, EMI allows for a corresponding
manipulation of existing “signatures” of the corpus in the form of voice exchanges,
different possibilities of pitch transposition, rhythmic refiguring and the like during
the process of generation. “Earmarks” are characteristic movements that indicate
the end or the beginning of a new formal segment of a composition. The consistent
use of “earmarks” in recombination allows for a style-compliant segmentation of
the material by means of musical signals such as particular cadence movements or
trills. “Unifications,” finally, are musical configurations whose structure is impor-
tant for the internal structuring of a composition and therefore relate only to formal

5 Meaning an expression which cannot be substituted anymore, cf. chapter 4.
6 For “preparation,” “antecedent,” “statement,” “consequent” as a path in the direction of the root
of the graph which shows the formal functions of the musical terminal on different hierarchical
levels.

5.2 Petri Nets 127

elements of a single work. These patterns enable, for example, the favorable placing
of a significant formal segment.

These characteristic movements are treated separately by EMI in the recombina-
tion process in order to maintain their structural integrity. Because different struc-
tural variants of, for example, motifs are recognized by EMI by means of pattern
matching algorithms, they may for the application in recombination also be sub-
jected to adequate transformations: “As the second movement started, I heard a
very striking chromatically descending eight-note motive in midrange, then mo-
ments later heard the same motive way up high on the keyboard, then once again
a few notes lower, [. . .] These widely spread entries gave an amazing feeling of
coherence to the music [. . .] Astonished, I asked Dave what was going on and he
replied, ‘Well, somewhere in one of the input movements on which this movement is
drawing, there must be some motive – totally different from this motive, of course!
– that occurs four times in rapid succession with exactly these same timing dis-
placements and pitch displacements’ [. . .]”.7 Figure 5.5 shows shows the beginning
of a fugue generated by EMI based on the corpus of the fugues from J. S. Bach’s
“Well-Tempered Clavier.”

5.2 Petri Nets

Petri nets8 are a special type of transition network that is used for the simulation
of event-controlled processes and are represented by bipartite graphs. Nodes may
consist of data, conditions and states (places) or actions (transitions). Transitions
process data from places and store it in new places. The structure of the net results
from the flow relation which relates particular places (generally represented by cir-
cles) and transitions (generally represented by rectangles) to each other by means
of directed edges. The current state of the system is indicated by tokens that are
distributed at specific places. After the net has been initialized through the marking
of particular places, transitions may start to act by a process referred to as firing.
When a transition fires, it takes the tokens from its input places and puts them on
its output places; in other words, information is taken from places, processed and
placed at other places. Figure 5.6 (top) shows the scheme of a calculation process
by means of a simple Petri net and the chronological order of the markings (figure
5.6, bottom).

7 Douglas Hofstadter in a conversation with David Cope; in [6, p. 50].
8 In an originally simple form also called condition nets or event nets; developed as a mathematical
representation of distributed systems in the 1960s by Carl Adam Petri and first introduced in his
doctoral thesis; cf. [10].

128 5 Transition Networks

Fig. 5.5 Beginning of a fugue generated by EMI. Example kindly provided by David Cope.

5.2.1 Petri Nets in Algorithmic Composition

Goffredo Haus and Alberto Sametti [7] developed ScoreSynth, a system of algorith-
mic composition that enables the processing of musical information with Petri nets.
By means of interconnecting “music objects” (the places) with some transforming
functions (the transitions), ScoreSynth can generate and manipulate control data in
the form of MIDI values in different ways. The “music objects” consist of sequences
of notes with associated information on pitch, duration, velocity and MIDI channel;
the transitions enable manipulation of them by crescendo, decrescendo, crab, differ-
ent possibilities of transition and the like. Because in a traditional Petri net a tempo-
ral structuring of sequences is not encoded (since the transitions fire in the moment
they are connected with a marked place on the input side), the places are equipped
with a counter which enables access to the information of the respective “music
object” only after a certain period of time. For the programming of ScoreSynth, a
special syntax is developed; furthermore, the possible application possibilities of

5.3 Synopsis 129

Fig. 5.6 Simple Petri net for arithmetic operations.

the software are extended by considering subnets and recursive net connections that
may be restricted by a parameter controlling the number of recursions.

An interesting application of Petri nets in algorithmic composition is described
by Douglas Lyon [9] who uses this formalism for modeling Markov chains of dif-
ferent order. The transition matrix of a Markov model is represented in a Petri net by
different probabilities of weighted edges – an advantage of this approach shows in
the fact that in the Petri net only transition probabilities pn �= 0 need to be processed
[9, p. 19ff].

5.3 Synopsis

For the advantages and disadvantages of transition networks regarding tasks of al-
gorithmic composition, in general the same principles apply as for generative gram-
mars. The augmented transition network, for example, equals the type-0 grammar
in terms of its expressive power. In contrast to genetic algorithms or cellular au-
tomata, for example, whose strong points become apparent in the realization of very
specific compositional concepts, transition networks may be used in a broad field
of musical structure genesis. It is exactly this aspect of the “universal” applicability
of systems like these that makes them especially suitable for the development of
algorithmic composition systems which enable the formulation of different compo-
sitional strategies in the sense of a programming language or the realization of a
complex system design, as in EMI. An essential difference between a TN and gen-
erative grammars, and also Lindenmayer systems, may be seen in the representation
of musical information within a graph. This difference also shows in the design of

130 5 Transition Networks

the user interface of computer music systems where– in contrast to a compact for-
mulation of instructions within a text-based system – visual objects are manipulated.
The graph representation of transition networks finds its parallels in computer music
systems such as MAX,9 PureData10 or OpenMusic11 that enable the manipulation
of the musical information within a graphically interconnected structure.

References

1. Cope D (1987) An expert system for computer-assisted composition. Computer Music Jour-
nal 11/4

2. Cope D (1991) Computers and musical style. Oxford University Press, Oxford. ISBN 0-19-
816274-X

3. Cope D (1992) On algorithmic representation of musical style. In: Balaban M, Ebcioglu K,
Laske O (eds) (1992) Understanding music with AI. AAAI Press/MIT, Cambridge, Mass.
ISBN 0262-52170-9

4. Cope D (1996) Experiments in musical intelligence. A-R Editions, Madison, Wis. ISBN 0-
89579-314-8

5. Cope D (2000) The algorithmic composer. AR-Editions, Madison, Wis. ISBN 0-89579-454-3
6. Cope D (2001) Virtual music: computer synthesis of musical style. MIT Press, Cambridge,

Mass. ISBN 0-262-03283-X
7. Haus G, Sametti A (1991) SCORESYNTH: a system for the synthesis of music scores based

on Petri nets and a music algebra. IEEE Computer, 24/7, July, 1991
8. Hofstadter D (1979) Goedel, Escher, Bach: an eternal golden braid. Basic Books, New York.

ISBN 0465026850
9. Lyon D (1995) Using stochastic Petri nets for realtime nth-order stochastic composition. In:

Computer Music Journal 19/4, 1995
10. Petri CA (1962) Kommunikation mit Automaten. Schriften des Instituts für angewandte

Mathematik, Bonn
11. Woods WA (1970) Transition network grammars for natural language analysis. Communica-

tions of the ACM, October 1970

9 See: http://www.cycling74.com/.
10 See: http://puredata.info/.
11 A software specialized in algorithmic composition, developed by IRCAM: http://ircam.fr/; also
see chapter 10.

Chapter 6

Chaos and Self-Similarity

Chaos theory became extremely popular in the 1980s due to a wide adoption of
some aspects in the works of Edward N. Lorenz1 and Benoit Mandelbrot2 – the so-
called “butterfly effect,” self-similarity or the graphically fascinating illustrations of
different fractals became the subjects of a broad non-scientific discussion as well.
Regardless of whether the shape of coastlines, the branches of blood vessels or the
complex behavior of dynamic systems are represented, chaos theory is occasionally
given the significance of a “deus ex machina” – a universal explanation model for
complex “natural” structures and processes. The euphoria for this discipline is also
reflected by the title of James Gleick’s book “Chaos: Making a New Science,” [6]
where the author predicted a paradigm shift in physics evoked by chaos theory.

Essential parts of chaos theory include the behavior of complex systems, their
attractors as well as different forms of self-similar structures, above all of fractals.
Self-similar structures may very well be modeled by Lindenmayer systems (LS).
These were originally developed as a formal language for the description of the
growth process of plants and present a powerful tool for the generation of musical
structure in the field of algorithmic composition.

6.1 Chaos Theory

The term “chaos” derives from Greek and originally meant “space” or “abyss”;
today, the word is colloquially used in the sense of “disorder,” a meaning the term
obtained in the course of the 17th century. In a mathematical and physical context,
particular states of a system that are difficult to predict are called “chaotic.” Chaos
theory in a narrower sense is also referred to as theory of non-linear dynamics.
In 1975, the term “chaos” was introduced in the field of mathematics through a
publication of the mathematicians Tien-Yien Li and James Yorke [26].

1 American meteorologist (1917–2008).
2 French mathematician of Polish origin, born 1924.

131

132 6 Chaos and Self-Similarity

The fact that even small modifications on the initial conditions may cause an
unforeseeable behavior of a system was already shown by Jules Henri Poincaré3

with his works on celestial mechanics.

Fig. 6.1 Jules Henri Poincaré. akg-images.

In his work “Science et méthode,” Poincaré writes: “A very small cause which
escapes our notice determines a considerable effect that we cannot fail to see, and
then we say that the effect is due to chance. If we knew exactly the laws of nature
and the situation of the universe at the initial moment, we could predict exactly the
situation of that same universe at a succeeding moment. But even if it were the case
that the natural laws had no longer any secret for us, we could still only know the
initial situation approximately. If that enabled us to predict the situation with the
same approximation, that is all we require, and we should say that the phenomenon
had been predicted, that is governed by laws. But it is not always so; it may happen
that small differences in the initial conditions produce very great ones in the final
phenomena.” [18, p. 67–68].

Another example for unpredictable chaotic behavior of a system can already be
found in 1837 in Pierre-François Verhulst’s4 logistic equation. Verhulst introduced
this equation as a demographic model which represents the temporal development
of a population under the influence of different determining factors. If sufficient
food is available, a particular population grows to a size at which food resources run
short and a part of the population dies of starvation. For the diminished population,
there is now again enough food available and it starts to increase again. Verhulst
denotes this recurrent cycle within an equation representing the population size x at
time t +1 in dependence on the population size x at time t. The threshold value for
the limitation of x by the food supply is set at 1, and r is a constant – a product from
an intrinsic growth rate and a value which presents a measure for the decimation of
the population through starvation. The following equation results:

3 French mathematician, physicist, and philosopher (1854–1912).
4 Belgian mathematician (1804–1849).

6.1 Chaos Theory 133

xn +1 = rxn(1− xn).

This equation represents a simple model of an ecosystem whose development is
determined by a recurrent process. If the population is low, the factor (1− xn) lies
near 1, which enables an almost exponential growth. Accordingly, with a larger pop-
ulation, the factor (1− xn) will approximate 0 – consequently, the population starts
to decrease. The behavior of this system may be illustrated by means of a Feigen-
baum diagram5 (figure 6.2) showing the different limiting values of the population
sizes dependent on r. Starting at a value of r > 3, duplications of accumulation points
are increasingly produced, until finally with values for r between 3.57 and 4, chaotic
behavior begins.

Fig. 6.2 Feigenbaum diagram of the logistic equation.

The best-known example of complex system behavior goes back to Lorenz who
in 1963 developed a system of three coupled non-linear differential equations as
a simplified model for atmospheric flow. Small changes performed on the values
of the variables lead to completely different results, i.e. temporal developments of
the system. This high sensitivity of these so-called deterministic chaotic systems in
regard to smallest modifications in the initial conditions, are illustrated by Lorenz
with the “butterfly effect”: One flap of the wings of a butterfly causes a minimal
turbulence which, however, in the course of the deterministic chaotic development
of the system, may lead to completely unforeseeable meteorological consequences
also in very distant places.

5 Named after the American physicist Mitchell Jay Feigenbaum (born 1948).

134 6 Chaos and Self-Similarity

Fig. 6.3 Edward Lorenz. With kind permission of Edward Lorenz.

6.2 Strange Attractors

When observing the long-term behavior of dynamical systems, the states of the sys-
tem approach particular possible solutions. In other words, the phase space of the
system evolves to a comparatively small region, which is indicated by the attrac-
tor. Geometrically, simple attractors may be fixed points, such as in a pendulum,
for example, which evolves towards its resting state in the lowest point of the track.
Another form would be the limit cycle in which the solution space is a sequence of
values that are run through periodically. These simple attractors have in common
that they have an integer dimension (see below) in the phase space. The structure
of so-called strange attractors reflects the behavior of chaotic systems – they can-
not be described with a closed geometrical form and therefore, since they have a
non-integer dimension, are fractals (see below). Well-known examples of strange
attractors as a representation for the limiting values of non-linear equation systems
are the Hénon attractor, the Rössler attractor and the Lorenz attractor (figure 6.4),
whose form resembles a butterfly.

6.3 Fractals 135

Fig. 6.4 Lorenz attractor.

6.3 Fractals

Fractals are geometric shapes that show a high degree of self-similarity (also: scale
invariance), meaning that particular graphic patterns reoccur in identical or very
similar shapes on several different orders of magnitude. Fractal structures can be
found in processes such as crystallization, the shape of coastlines or also in numer-
ous manifestations of plant growth, e.g. in the form of ferns or particular variants of
cauliflower. An interesting treatment of self-similar structures in the field of paint-
ing can be found in the work of the Dutch painter Maurits Cornelis Escher (1889–
1972). The term “fractal” was introduced by Benoit Mandelbrot: “I coined fractal
from the Latin adjective fractus. The corresponding Latin verb frangere means to
“break”: to create irregular fragments. It is therefore sensible – and how appropriate
for our needs! – that, in addition to “fragmented” (as in fraction or refraction), frac-
tus should also mean irregular, both meanings being preserved in fragment.” [14, p.
4].

In the 1980s, it was above all the fascinating graphic representations of fractals,
especially of the Mandelbrot set, that aroused strong interest in these structures.
Self-similar shapes in the field of mathematics were, however, already developed
a long time before Mandelbrot. The Cantor set6 (figure 6.6) is a closed subset of
real numbers and is in its graphic representation a fractal with a simple generation
instruction: Delete the middle third from a set of line segments and perform this
iteration step on each resulting new line segment.

6 Introduced by and named after the German mathematician Georg Cantor.

136 6 Chaos and Self-Similarity

Fig. 6.5 Benoit Mandelbrot. With kind permission of Benoit Mandelbrot.

Fig. 6.6 Iteration steps of a Cantor set.

Another example of a fractal is the snowflake curve which was developed by the
Swedish mathematician Helge von Koch (1870–1924) already in 1906.7

A common aspect of all fractals is their broken dimension.8 In mathematics, the
term dimension refers in general to the degrees of freedom of a movement in a space.
Accordingly, a line is one-dimensional, whereas an area has two dimensions. A
fractal line pattern, however, may in the course of the iteration process become more
and more like a plane; therefore, the fractal dimension of this shape lies between 1
and 2.

Regardless of the variety of fractal shapes, it is nevertheless the Mandelbrot set
which enfolds an extreme complexity in its graphic representation and due to a
number of aesthetically appealing realizations is considered the “prototype” of a
fractal. Mandelbrot developed with the set named after him, which often is also
referred to as “Apple Man,” a possibility to classify Julia sets9 that represent subsets
of the complex numbers. The iterative construction rule10 of this set with the initial
condition z0 = 0 and representing c as a complex number, is as follows:

7 See section “Lindenmayer Systems.”
8 For a detailed description of fractal dimension, see [14, p. 14ff].
9 Named after the French mathematician Gaston Maurice Julia (1893–1978).
10 When a system consists of several iterative equations, it is also referred to as iterated function
system or IFS.

6.4 Lindenmayer Systems 137

zn+1 = zn2 + c.

The Mandelbrot set is a dynamic calculation based on the iteration of complex
numbers. For each position or number, a value for a particular amount of iterations
is determined. All positions, whose values remain finite also after a large number
of iterations, make up the Mandelbrot set and may, for example, be pictured by
black points. Depending on the number of iterations that yield a value for zn which
is higher than a defined limiting value, the respective positions may also be repre-
sented by different colors or shades of grey. According to the segment of the number
level, sections of the Mandelbrot set may be “scaled up,” this “zooming” (figure 6.7)
making continuously new self-similar structures visible.11

Fig. 6.7 A zoom into the Mandelbrot-set.

6.4 Lindenmayer Systems

Lindenmayer systems (LS) or L-systems are named after the botanist Aristid Lin-
denmayer (1925–1989) who developed a formal language to represent the growth

11 Very appealing graphic representations of Mandelbrot sets and other fractals can be found in
[17].

138 6 Chaos and Self-Similarity

of algae in 1968 [11]. In 1974, Paulien Hogeweg and Ben Hesper extended this

Fig. 6.8 Aristid Lindenmayer [21].

system by introducing a graphic representation system [8]. Beginning in 1984, L-
systems have been used by Alvy Ray Smith for representing the growth processes of
plant structures [23]. Other works in the field of growth simulation with L-systems
were produced by the mathematician Grzegorz Rozenberg and the computer scien-
tist Przemyslaw Prusinkiewicz.12

Similar to the grammars of the Chomsky hierarchy, L-systems (also: Parallel
Rewriting Systems) work with rewriting rules. Based on a starting element, produc-
tion rules are applied whose output is usually represented graphically. In contrast
to the implementation of grammars, L-systems do not distinguish between terminal
and non-terminal symbols; furthermore, all production rules and rewriting rules are
applied simultaneously. In a Lindenmayer system symbols are for the most part re-
placed by symbol strings that in turn again contain these symbols. As a consequence,
in comparison to a generative grammar, the number of symbols to be processed in-
creases enormously. Due to these basic characteristics, Lindenmayer systems are
also well suited to model self-similar structures. and may most simply be repre-
sented as a triplet (v,ω,P), see table 6.1.

The application of a derivation is based on an axiom. The production rules are
applied by substituting the single preceding symbols with their successors. If a par-
ticular predecessor does not have a successor, then α → α applies, meaning that the
predecessor is replaced by itself.

12 A good introduction in the theory of Lindenmayer systems can be found in the work of
Prusinkiewicz and Lindenmayer “The Algorithmic Beauty of Plants” [21].

6.4 Lindenmayer Systems 139

v the alphabet: a finite set of symbols, most commonly noted in
lower-case letters, such as: v = {a,b,c,d}

v∗ the set of all possible symbol strings from V , such as: aabc aab aba
acccc, etc.

v+ the set of all possible symbol strings without the empty set v∗\{ /0}
ω the axiom or the initiator; it is applied where ω ∈ v+

P a finite set of production rules or generators

The production rules are mostly represented by α → χ with a pre-
decessor α ∈ v and a successor χ ∈ v∗

Table 6.1 Definitions for a Lindenmayer system.

6.4.1 Forms of Lindenmayer Systems

Some basic types of L-systems can be distinguished:

• Context-free and context-sensitive L-systems
• Deterministic and stochastic L-systems
• Parametric and non-parametric L- systems

In order to graphically represent13 L-systems, symbols that mark out the motions
of a turtle by using line graphics are for the most part used. This visual representa-
tion style is called turtle graphics, originally written in the programming language
LOGO. In its simplest form, the turtle has the following commands (table 6.2):

F Move forward one step. A line segment is drawn

ϕ Angle for the turning of the turtle

+ Turn left by angle ϕ
− Turn right by angle ϕ
[Save current values for position and angle

] Restore the saved values

I Iteration depth

Table 6.2 Turtle commands.

13 All graphics in the following examples have been designed with the program “Virtual Labora-
tory,” [22] which in contrast to most other programming environments also enables the generation
of stochastic and parametric L-systems. The code for the various L-systems is taken in modified
form from [15].

140 6 Chaos and Self-Similarity

6.4.1.1 Context-Free and Context-Sensitive L-Systems

A Lindenmayer system is called a context-free L-system (also: 0L-system) if the
substitution is carried out independently of its environment. Together with a deter-
ministic structure for the production rules, these simple L-systems form the class of
deterministic 0L-systems (D0L-systems). In a context-sensitive L-system, the appli-
cation of a particular χ depends on the environment of the α that is to be substituted.
A possible notation of context-dependent production rules could be as follows:

P1 = a > b→ aba
P2 = a < b→ bab
P3 = a < b > a→ baa

P1: b is replaced by aba, when it is positioned before an a.
P2: b is replaced by bab, when it is positioned after an a.
P3: b is replaced by baa, when it is positioned before and after an a.

Often context-sensitive L-systems are also referred to as IL-systems. Within the
class of IL-systems, 1L-systems consider one and 2L-systems two symbols that
neighbor.14 (k, l)-systems refer to production rules in which the left context of α
consists of k, the right context of l symbols.

Figure 6.9 shows examples of a Koch curve15 generated by a D0L-system, with
different iteration depths and the following rules:

ϕ = 60◦
axiom = F
P : F → F +F−−F +F

Fig. 6.9 Koch curves; recursion depths: 1, 2, 10.

If the set of rules is extended by a symbol f , which covers a distance without
drawing a line, structures that are delimited from one another can be generated, as
shown in figure 6.10.

ϕ = 90◦
axiom : F +F +F +F

14 Example: P1 and P2 for 1L, and P3 for 2L-systems.
15 Developed by the Swedish mathematician Helge von Koch around 1906.

6.4 Lindenmayer Systems 141

P1 : F → F + f −FF +F +FF +F f +FF− f +FF−F−FF−F f −FFF
P2 : f → f f f f f f

Fig. 6.10 Structure with recursion depths 1 and 2.

An example of a D0L-system is provided by the graphic representation of the
dragon curve16 which in this case can be generated by rewriting rules for two dis-
tances “F” und “G” of the same length and the following rules:

ϕ = 45◦
0 axiom : F
P1 : F →−F ++G
P2 : G→ F−−G+

Due to the parallel substitutions, the derivations of recursion depths 1 to 3 in the
dragon curve are (the brackets indicate the replaced expressions):

RT1 :−F ++G
RT2 :−(−F ++G)++(F−−G+)
RT3 :−(−(−F ++G)++(F−−G+))++((−F ++G)−−(F−−G+))

Figure 6.11 shows the dragon curves with recursion depths 1, 2, 3, 5, 13.

16 Also called Harter-Heighway Dragon, developed in the 1960s by the physicians John Heighway,
Bruce Banks and William Harter.

142 6 Chaos and Self-Similarity

Fig. 6.11 Dragon curves with different recursion depths.

6.4.1.2 Deterministic and Stochastic L-Systems

In a deterministic L-system, there is only one χ ∈ V ∗ for each α ∈ V . If χ may be
chosen with a certain degree of freedom, the system is referred to as stochastic L-
system, notated as quadruple {V,ω,P,π}. The function π maps the corresponding
predecessor (α) on probabilities of the successor (χ). The total of all probabilities
of χ that are assigned to a particular α , must equal 1. The rewriting rules may be
notated as follows:

P1 = a→2 aba
P2 = a→3 bab
P3 = a→5 abb

Accordingly, a substitution of a is carried out for example with a probability of
20% by P1, with a probability of 30% by P2, and a probability of 50% by P3.

Figure 6.12 illustrates an example of different structures of a stochastic L-system
based on the following rules17:

ϕ = 45◦
axiom : F
P1 : F → F [+FF]F [−F]F : 1/3
P2 : F → F [+F]F : 1/3
P3 : F → F [−FF]F : 1/3

6.4.1.3 Parametric and Non-Parametric L-Systems

In a parametric L-system (also: parameterized L-system), the application of rewrit-
ing rules may be made subject to particular conditions. In this system, a production
rule consists of a predecessor, a condition, and a successor. The symbols may change
their values during the substitution processes, causing different production rules to

17 The fractions after the colons indicate the probabilities for the selection of the production rule.

6.4 Lindenmayer Systems 143

Fig. 6.12 Different generations of a stochastic L-system of recursion depth 7.

be chosen. The values that succeeding symbols assume can be made dependant on
one another by a parametric L-system. In a musical context, these possibilities en-
able the formulation of rules such as, for example, “Transpose the preceding note
one semitone” or “If the note is reached by a large interval step, only allow a second
progression.”

Figure 6.13 illustrates an example of a parametric L-system. Here, variables are
indicated, a starting value for F is given and an abort condition is formulated.18

a = 86; p = 0.3; q = (1− p); h = ((p∗q)0.5); Axiom : F(0.8)
F(x) : x > 0.03→ F(x∗ p)+(a)F(x∗h)− (a+a)F(x∗h)+(a)F(x∗q)

Fig. 6.13 Example generation of a parametric L-system.

L-systems may also be applied to manipulate symbol strings so that the number
of symbols does not necessarily need to increase in each substitution process.

18 The syntax of “Virtual Laboratory” is represented here in a simplified form.

144 6 Chaos and Self-Similarity

In this sense, for example, the following set of rules makes the letter a “travel
through” a symbol string.

Axiom : aXXXX
P1 : a < X : X → a
P2 : a→ X
(If X is positioned after an a, replace this X by a, replace a by X)

Results: aXXXX ; XaXXX ; XXaXX ; XXXaX ; XXXXa; XXXXX

6.5 Chaos and Self-Similarity in Algorithmic Composition

In the context of the heterogeneous field of chaos theory, different approaches are
often assigned to algorithmic composition that deal with the musical realization of
fractional noise, the mapping of fractals and attractors as well as different aspects
of self-similarity. Not considering chaos theory in general, self-similar structures
may in the field of algorithmic composition very well be modeled by Lindenmayer
systems that, similarly to a generative grammar, enable the realization of complex
compositional concepts.

6.5.1 Fractional Noise

A frequently applied form of musical structure generation from the field of chaos
theory uses various shapes of what is known as fractional noise.19 The term de-
scribes different forms of noise that are distinguished in regard to their spectral
density, expressing the distribution of noise power with frequency. White noise (fig-
ure 6.14, top) is here characterized by the relation 1/ f 0 and describes a stochas-
tic process of uncorrelated random values. As with a repeatedly thrown dice, the
numbers on the dice sides are not associated with each other in any way. A highly
correlated variant, meaning that the values in a sequence strongly depend on each
other is brownian noise (figure 6.14, middle), showing a spectral density of 1/ f 2.
Here, for example, only adjacent number values may succeed each other. The most
interesting form in regard to musical structure genesis is pink noise, also referred
to as 1/f noise (figure 6.14, bottom), whose behavior lies somewhere between the
abovementioned extremes.
19 The term “fractional noise” was coined by Mandelbrot and the mathematician John W. Van Ness
in 1968, cf. [12]. “Fractional noise” is often also referred to as “fractal noise.”

6.5 Chaos and Self-Similarity in Algorithmic Composition 145

Fig. 6.14 The characteristics of white, brownian and pink noise.

In a musical mapping on, e.g. pitches, the characteristics of pink noise show as a
progression in which stepwise movement and melodic jumps are in a well-balanced
relation.

Richard F. Voss and John Clarke described characteristics of spectral density in
recordings of different musical genres and showed their parallels to the peculiarities
of 1/ f noise: “The observations on music suggest that 1/ f noise is a good choice
for stochastic composition. Compositions in which the frequency and duration of
each note were determined by 1/ f noise sources sounded pleasing. Those gener-
ated by white noise sources sounded too random, while those generated by 1/ f 2

noise sounded too correlated.” [25]. Voss and Clarke extended their 1-dimensional
model to a two-voice structure, which is partly correlated and whose rhythmic shape
may be also designed applying 1/ f noise.20 Based on the works of Voss and Clarke,
Charles Dodge and Thomas A. Jerse [4, p. 368ff] described the generation of 1/ f se-
quences and produced examples of musical mappings of these different noise forms.

Dodge [3] described a musical structure consisting of three melodic lines (voices)
on the basis of 1/ f noise. For each line, a particular number of different pitch classes
is determined that must be produced by the output of the 1/ f noise. This means that
new pitch classes are produced as long as the desired number of different values has
been reached. After the first line has been generated this way, the program creates
a second line using the same procedure: For each note in the first line, a succession
of notes is produced for the second line, until all notes of the second line have been
generated. This process is also performed for the generation of the third line by pro-
ducing a sequence of third line notes for every note in the second line. The result is
a three-voice structure of increasing density. For determining the current durations,
a fourth line is created whose notes, however, are not included in the score, but de-
termine a rhythmic length for every note of the third line. If, for example, for the
first note of the third line four notes of the fourth line would be assigned, and for

20 For the musical implications of 1/ f noise, also see [14, p. 374–375], for extensions of the
approach of Voss and Clarke regarding possibilities of intervention, cf. [2].

146 6 Chaos and Self-Similarity

the second note eight notes, then the result is the double note duration of the second
note, etc. This process is consequently continued to the first voice, until all rhythmic
values have been obtained. The result is a self-similar structure, whose rhythmic fine
segmentation is created depending on achieving a particular “tonal diversity.”21

6.5.2 Chaotic Systems

Jeff Pressing [19] mapped the orbit22 of non-linear equation systems (also referred
to as non-linear maps) on musical parameters. The map output is used to control
pitch, duration, envelope attack time, dynamics, textural density and the time be-
tween notes of single events of synthesized sounds. So, for example, the population
size (the output) of the logistic equation is converted to an appropriate pitch range
through F = 2(cx+d), where the constant c equals the range in octaves and 2d the
lowest pitch produced (in hertz). Since the value of the population size lies in the
range between 0 and 1, it is also directly used for the time between notes. Other pa-
rameters such as dynamics and envelope attack also yield from the resulting value
of the equation by subjecting them to different arithmetic operations. In order to
receive different but nevertheless correlated values for musical parameters, com-
plex mapping strategies for equation systems with up to four dimensions are given.
Figure 6.15 shows a musical structure resulting from a four-dimensional map.

Rick Bidlack [1] also mapped the orbit of 2-, 3- and 4-dimensional equation
systems on musical parameters. The musical textures that, for example, may be ob-
tained by means of a Hénon equation through the mapping of dimensions in phase
space on musical parameters (e.g. pitch, duration, dynamics, etc.), however, for Bid-
lack do not present definitive musical results23: “Rather than viewing the output of
chaotic systems as music in its own right, however, it is probably best to consider
such output as raw material of a certain inherent and potentially useful musicality.
Clearly there will be as many ways to apply chaos to musical decision as there are
composers interested in doing so.” [1, p. 2]. This interpretation of data of a structure-
producing algorithm enables – not only in applications of chaos theory – creative
approaches to the realization of individual compositional concepts.

Another interesting approach made by Jeremy Leach and John Fitch [10] derives
a tree structure from the orbit of a chaotic system. The design of the tree structure
being inspired by the works of Lerdahl and Jackendoff (see chapter 4), consists of
a hierarchical arrangement of scales and note values and results from the interpreta-
tion of the values of the orbit as hierarchic positions of nodes, as illustrated in figure
6.16a. Concrete note values are produced by interpreting nodes of higher hierarchic

21 An exhaustive approach regarding self-similar reductions of interval constellations can be found
in a theoretic work by composer Bernhard Lang, cf. [9].
22 Also called trajectory, the sequence of values that forms the result for a particular variable of an
iterative equation system. These values mostly approach an attractor of a certain shape.
23 In this context, also see the work of Michael Gogins, who interprets the representations of IFS
as musical scores, cf. [7].

6.5 Chaos and Self-Similarity in Algorithmic Composition 147

Fig. 6.15 Musical mapping of a 4-dimensional equation system by Pressing [19, p. 43]. c© 1988
by the Massachusetts Institute of Technology.

order as pitches that structure a melodic progression. These pitches serve as turn-
ing points of the resulting melodic movement and also indicate, depending on their
distance to the next segment (i.e. sub-tree), a different size for an interval segment
(figure 6.16b).

Fig. 6.16 Chaotic sequence with corresponding tree structure (a); melodic progression in a subtree
(b) [10, p. 31, 29]. c© 1995 by the Massachusetts Institute of Technology.

148 6 Chaos and Self-Similarity

6.6 Lindenmayer Systems in Algorithmic Composition

In an early work, Przemyslaw Prusinkiewicz [20] described the simple mapping of
the generation of note values from a turtle interpretation of Lindenmayer systems.
Prusinkiewicz gives an example by means of a Hilbert curve. In the graphic, notes
are represented by successive horizontal line segments; the lengths of the segments
are interpreted as tone durations. The pitches result from the vertical position of the
segments and are mapped on the steps of a C major scale (figure 6.17).24

Fig. 6.17 Mapping of a Hilbert curve on scale tones.

John McCormack [16] compared stochastic approaches, Markov models, dif-
ferent variants of generative grammar, and Lindenmayer systems in terms of their
suitability for musical production. In an extendable system design, McCormack in-
troduces a program architecture for algorithmic composition. The system allows for
the application of context-free and parametric L-systems; the involvement of hier-
archically structured grammars allows for variable possibilities of musical structure
genesis.

Hierarchical grammars are built up like D0L-systems; however, entire grammars
may be used for single symbols of the successor. Although each of the different
grammars expands independently, it is possible to establish structural relations be-
tween the single rewriting systems by means of parameterization. McCormack’s
system uses the notion of “virtual players,” modules responsible for a voice or an in-
strument, and which are controlled each by their own rewriting system. The process-
ing scheme is represented in figure 6.18: Reading and parsing, putting the current
symbol string on the value of the axiom, recursive application of the substitutions
on the current symbol string, and finally the output of the results as MIDI values.

In this system, the parameters tone pitch, duration, timbre, and different con-
trollers may be controlled within a polyphonic structure. In order to do that, addi-

24 This, however, actually only represents a musical mapping of a graphic interpretation of an
L-system.

6.6 Lindenmayer Systems in Algorithmic Composition 149

Fig. 6.18 Stages of processing in McCormack’s system.

tional symbols are defined within the rewriting rules that, depending on the position,
may express music-specific context dependencies. In this sense, for example, the
expression “(CE) | (GC)→ D(CE)” means: If the current harmony consists of the
notes G and C played simultaneously and they were preceded by C and E played
simultaneously, then play D for the current duration followed by C and E played
simultaneously.

6.6.1 Mapping Strategies of Different Lindenmayer Systems

In his dissertation, Roger Luke DuBois [5] described different possibilities of map-
ping Lindenmayer systems on musical parameters and consequently developed a
real-time application in which a musician provides live data input. DuBois differ-
entiates his approach from mapping strategies which are based on a realization of
turtle graphics. In his system, turtle graphics serve only for visualizing the struc-
ture of the L-system; the L-systems are mapped on musical parameters by means of
mapping symbols of an LS on musical units. An example for such a representation
is shown by the following rewriting system in which a number of concrete musical
events may be assigned to each single symbol of the LS.

Axiom : X
Iteration depth : 5
P1 : X → F− [[X]+ cX]+F [+FcX]−X
P2 : F → FF

The following section shows a symbol string resulting in the fifth iteration step:

FFFFFFFFFFFFFFFF− [[FFFFFFFF− [[FFFF− [[FF− [[F− [[X]+cX]+
F [+FcX]− X] + cF − [[X] + cX] + F [+FcX]− X] + FF [+FFcF − [[X] + cX] +
F [+FcX]−X]−F−[[X]+cX]+F [+FcX]−X]+cFF−[[F−[[X]+cX]+F [+FcX]−
X]+cF− [[X]+cX]+F [+FcX]−X]+FF [+FFcF− [[X]+cX]+F [+FcX]−X]−
F [[X]+ cX]+F [+FcX]X]+FFFF [+FFFFcFF− [[F− [[X]+ cX]+F [+FcX]−
X]+cF− [[X]+cX]+F [+FcX]−X]+FF [+FFcF− [[X]+cX]+F [+FcX]−X]−
F− [[X]+ cX]+F [+FcX]−X] . . .]

150 6 Chaos and Self-Similarity

The successor of rewriting rule p1 is prominently represented in the derivated
symbol string; for this reason, DuBois applies a changing mapping which in dif-
ferent formal segments of a composition produces different characteristic pitch se-
quences, as shown in table 6.3. Figure 6.19 illustrates the musical mapping of the

Pitch Class A B C D E F G H I
C0 F [[- (P) F c [
C#/Db1]]
D2] + +] [+
D#/Eb3 (P) F] (P) F
E4 - - (P) F -
F5 + - + [+ - [
F#/Gb6 +] +
G7 - (P) F c - + c
G#/Ab8 (P) F [
A9 c c (P) F c - (P) F
A#/Bb10 [c] c] [c]
B11

Table 6.3 Pitch mapping of Lindenmayer symbols.

string: F− [[X]+cX]+F [+FcX]−X]+; “X” is interpreted as a rest in the segments
A and F (figure 6.19, top) as well as B and H (figure 6.19, bottom). Even though
due to these different representations a consistent musical interpretation of the Lin-
denmayer system is abandoned, characteristic symbol strings may, however, be well
recognized in different musical segments through similar melodic contours.

Fig. 6.19 Mapping on tone pitches and rests in different segments.

Another form of symbolic mapping for the generation of a polyphonic structure
is illustrated by DuBois in the following example by means of a context-sensitive
Lindenmayer system.
Axiom : bab
P1 : A < B > B→ BA
P2 : A < A > B→ AB
P3 : A < B > B→ B
P4 : B < A >→ AA

6.6 Lindenmayer Systems in Algorithmic Composition 151

The following symbol strings result for the first substitutions:

BAB(axiom)
BAAB
BAAABB
BAABABBAB
BAAABBAABABAAB
BAABABBABAAABBAABAAABB

DuBois interprets each symbol as a successive semitone step over an underlying root
tone; only for the letter B is a note set, A functions as a chromatic “gap,” leaving out
the respective note on that position (figure 6.20).

Fig. 6.20 Mapping for a polyphone structure.

The generated chords may be mapped melodically on a monophonic rhythmic
structure (figure 6.21), while B determines a 1/16 note and A indicates a 1/16 hold,
for example, BA from the axiom BAB becomes a 1/16 note with a 1/16 hold, as can
be seen in the illustration, where the first note c gets the duration of 1/8.

Fig. 6.21 Mapping of chords on a monophonic melody.

For another form of musical representation, a context-sensitive L-system that
produces symbol strings of the same length in all generations is applied:

Axiom : 39∗W,B,40∗W
P1 : B < B > B→W
P2 : B < B > W →W
P3 : B < W > B→W
P4 : B < W > W → B
P5 : W < B > B→W
P6 : W < B > W →W
P7 : W < W > B→ B
P8 : W < W > W →W

152 6 Chaos and Self-Similarity

It is apparent that this structure may also be represented by a cellular automaton
of the form:

states 111 110 101 100 011 010 001 000
following states 1 0 1 1 0 1 1 1

This is why an LS of this type may equal a 1-dimensional cellular automaton.
These production rules generate the form of a “Sierpinski triangle.”25 In DuBois’
system, the mapping is performed by the representation of the LS in a grid; tone
pitches ascending from right to left in semitone steps are assigned to the cells of the
x-axis. Figure 6.22 illustrates an extract of the musical result.

Fig. 6.22 Mapping of a “Sierpinski triangle” on polyphone structures.

For the mapping of parametric Lindenmayer systems, DuBois puts the succeed-
ing substitutions in the context of the precedent musical events. The symbols of
the rewriting rules are mapped relatively on the precedent event, so that, e.g. rules
such as “Transpose the next note by a third” or “Decrease the current duration by
a particular value” may be applied. The representation of pitches may be based on
pitch classes or interval steps. The duration of each musical event is a relative value
which may be proportionally shortened or lengthened by applying particular rules.
This means that, for example, by having a current value of a quarter, after a par-
ticular symbol, all following events will have the duration of a dotted eighth note.
Because, consequently, musical parameters such as pitch or duration will always be
determined in dependence to the precedent events, same symbols of the LS will also
create different musical results in the course of time.

DuBois indicates the following LS as an interesting example for the processing
of tone pitches that in the course of the substitutions are reduced to some tonal cen-
ters:

P1 : 0→ 0 P4 : 3→ 3 P7 : 6→ 3 P10 : 9→ 2
P2 : 1→ 0 P5 : 4→ 7 P8 : 7→ 3 P11 : 10→ 11
P3 : 2→ 8 P6 : 5→ 5 P9 : 8→ 11 P12 : 11→ 5

25 A triangle which is divided into four other triangles by means of recursive segmentation of a
preceding triangle. This self-similar structure may also be generated by a 1-dimensional cellular
automaton of rule 90, cf. chapter 8.

6.7 Synopsis 153

Applied to a chromatic scale, the number of tone pitches is reduced to five values
after the third substitution process, as illustrated in figure 6.23.

Fig. 6.23 L-system producing tonal centers.

6.7 Synopsis

Structures that may be assigned to the field of chaos theory are in most cases repre-
sented musically by means of a mapping of trajectories of a phase space on musical
parameters. Since the behavior of chaotic systems is difficult to foresee and reacts
highly sensitive to changes made on the initial conditions, accordingly, the musical
mapping may provide a wide range of results. A basic problem for the realization
of individual compositional intentions by means of chaotic systems results from
the lack of possibilities of intervention and structuring – as soon as the underlying
equation system has been chosen and the initial values have been set, the system
continuously produces new events whose progression cannot be further controlled.
Naturally, this principle can also be found in most of the other procedures of al-
gorithmic composition that generate a particular musical structure on the basis of
a rule system of any kind. The formulation of such rules, as e.g. in the framework
of a rewriting system, however, enables a high predictability of the musical results
and therefore also a realization of specific musical concepts. But it is exactly this
complex behavior of deterministic chaotic systems which may present a high in-
centive to apply them to tasks of algorithmic composition: “The great attraction of
non-linear dynamical systems for compositional use is their natural affinity to the
behaviors of phenomena in the real world, coupled with the mechanical efficiency
of their computation and control. Chaotic systems offer a means of generating a
variety of raw materials within a nonetheless globally consistent context. Chaotic
sequences embody a process of transformation, the internal coherence of which is
ensured by the rules encoded in the equations.” [1].

Lindenmayer systems are rewriting systems like generative grammars and gen-
erate symbol strings by applying production rules; originally, they were developed
for the simulation of growth processes. In contrast to generative grammars where, in
general, the desired output is only produced after all substitutions have been carried
out, in a traditional L-system single terminals are replaced by a larger number of ter-
minals. Therefore, after every substitution process symbols are available for musical
mapping. As a consequence, on the one hand, the number of produced symbols typ-

154 6 Chaos and Self-Similarity

ically increases considerably in every generation26; on the other hand, the L-system
is also subject to a temporal development and may therefore also reflect process-like
compositional approaches. Due to this basic trait, a Lindenmayer system is also very
well suited to representing self-similar structures and enables the effective mapping
of fractal concepts on musical parameters.

The representation of the musical interpretation of the results of an LS is of major
significance. Strategies that are based on a musical interpretation of turtle graphics,
i.e. using an already performed mapping as the starting point for a further mapping,
are, however, in general not able to fully reflect the specific behavior of an LS in
the musical mapping. The work of DuBois shows a number of alternative strategies
in which different formalisms of LS are used for musical mapping. It is exactly this
diversity of possible Lindenmayer system forms that opens up a wide field of mu-
sical structure genesis to algorithmic composition. The possible applications of the
generation of musical structure may range from the simple musical representation
of self-similarity to the production of complex musical structures in the framework
of contemporary musical creation.27

For most of the abovementioned approaches the notion of scale is an important
aspect of musical structure generation. This term gets an interesting new dimension
by Mandelbrot, who distinguishes between scaling and scalebound structures [13].
Scalebound structures, whether they are artificial or natural, are characterized by
a few dominating elements of scale, whereas scaling structures consist of a large
amount of different scales, without any dominating elements being capable of char-
acterizing the whole structure. This distinction could also be helpful for the clas-
sification of musical structure, which can be created by some dominating formal
principles, such as a strict self-similar principle (in analogy to a scalebound object),
or arises from various decisions, stochastic principles and the like (in analogy to a
scaling object). Often, the character of a composition changes during the various
stages of creation: Starting as a “scalebound object” by a formal principle, the re-
sulting structure will be altered according to personal aesthetical preferences and
by this transforms little by little into a “scaling object.” Besides the various struc-
turing elements of a composition, a “successful” piece of music will always show
the phenomenon of emergence28 and therefore seems to overcome the restrictions
of its formal principles, or, as Mandelbrot states with an example from the visual
arts: “Incidentally, while the maximum size of a painting is that of the whole can-
vas, many painters succeed in giving the impression that it contains depicted objects
of larger sizes. Similarly, a brush stroke determines the minimum size, but many
portrait jewels seem to include detail that is known to be physically impossible to
depict at the scale depicted.” [13, p. 46, 47].

26 This property may easily be modified by appropriate rewriting rules, cf. the LS presented by
DuBois, which produces symbol strings of the same length in every generation and equals a 1-
dimensional cellular automaton.
27 So, e.g. the contemporary composer Hanspeter Kyburz developed complex formalisms of LS
for musical structure genesis, cf. [24].
28 Cf. the section “Agents” in chapter 10.

References 155

References

1. Bidlack R (1992) Chaotic systems as simple (but complex) compositional algorithms. Com-
puter Music Journal, 16/3, 1992

2. Bolognesi T (1983) Automatic composition: experiments with self-similar music. Computer
Music Journal, 7/1, 1983

3. Dodge C (1988) Profile: a musical fractal. Computer Music Journal, 12/3, 1988
4. Dodge C, Jerse TA (1997) Computer music: synthesis, composition, and performance, 2nd

edn. Schirmer Books, New York. ISBN 0-02-864682-7
5. DuBois RL (2003) Applications of generative string-substitution systems in computer music.

Dissertation. Columbia University, 2003
6. Gleick J (1987) Chaos: making a new science. Penguin Books, New York. ISBN 0-14-00

9250-1
7. Gogins M (1991) Iterated functions systems music. Computer Music Journal, 15/1, 1991
8. Hogeweg P, Hesper B (1974) A model study on biomorphological description. Pattern Recog-

nition, 6, 1974
9. Lang B (1996) Diminuendo. Über selbstähnliche Verkleinerungen. In: Beiträge zur Elektro-

nischen Musik, 7. Institut für Elektronische Musik (IEM) an der Universität für Musik und
darstellende Kunst in Graz, Graz.

10. Leach J, Fitch J (1995) Nature, music, and algorithmic composition. Computer Music Journal,
19/2, 1995

11. Lindenmayer A (1968) Mathematical models for cellular interaction in development. Journal
of Theoretical Biology, 18, 1968

12. Mandelbrot B, Van Ness J (1968) Fractional brownian motions, fractional noises and appli-
cations. SIAM Review, 10/4

13. Mandelbrot B (1981) Scalebound or scaling shapes: A useful distinction in the visual arts and
in the natural sciences. Leonardo, 14, 1981

14. Mandelbrot B (1982) The fractal geometry of nature. W. H. Freeman and Company, New
York. ISBN 0-7167-1168-9

15. Mech R (2004) CPFG Version 4.0 User’s Manual based on the CPFG Version 2.7 User’s Man-
ual by Mark James, Mark Hammel, Jim Hanan, Radomir Mech, Przemyslaw Prusinkiewicz
with contributions by Radoslaw Karwowski.
http://algorithmicbotany.org/lstudio/CPFGman.pdf Cited 11 Nov 2004

16. McCormack J (1996) Grammar based music composition. In: Stocker R, Jelinek H, Durnota
B, Bossomaier T (eds) (1996) Complex systems 96: From local interactions to global phe-
nomena. ISO Press, Amsterdam. ISBN 9-05-199284-X

17. Peitgen HO, Richter PH (2001) The beauty of fractals. Images of complex dynamical systems.
Springer, Berlin. ISBN 978-3540158516

18. Poincaré H (1952) Science and method. Dover Publications, New York. ISBN 10 0486602214
19. Pressing J (1988) Nonlinear maps as generators of musical design. Computer Music Journal,

12/2, 1988
20. Prusinkiewicz P (1986) Score generation with L-systems. In: Proceedings of the 1986 Inter-

national Computer Music Conference. International Computer Music Association, San Fran-
cisco

21. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants (The Virtual Labo-
ratory). Springer, New York. ASIN 0387972978

22. Prusinkiewicz P (2004) Algorithmic Botany.
http://algorithmicbotany.org/ Cited 8 Nov 2004

23. Smith AR (1984) Plants, fractals, and formal languages. Computer Graphics, 18, 3 July, 1984
24. Supper M (2001) A few remarks on algorithmic composition. Computer Music Journal 25/1,

pages 48–53, 2001
25. Voss RF, Clarke J (1978) “1/f noise” in music: Music from 1/f noise. Journal of the Acoustical

Society of America, 63/1, 1978
26. Yorke JA, Li TY (1975) Period three implies chaos. The American Mathematical Monthly,

82/10, 1975

Chapter 7

Genetic Algorithms

Genetic algorithms as a particular class of evolutionary algorithms, i.e. strategies
modeled on natural systems, are stochastic search techniques. The basic models
were inspired by Darwin’s theory of evolution. Problem solving strategies result
from the application of quasi-biological procedures in evolutionary processes. The
terminology of genetic algorithms including “selection,” “mutation,” “survival of
the fittest,” etc. illustrates the principles of these algorithms as well as their concep-
tual proximity to biological selection processes.

In the initial stages of their development, these principles took shape in two dif-
ferent models: From the 1960s on, Ingo Rechenberg and Hans-Paul Schwefel in-
troduced the evolution strategies1 at the Technical University of Berlin, and in the
1970s, the Americans John H. Holland2 and David E. Goldberg3 developed genetic
algorithms. Rechenberg and Schwefel’s models are based upon a graphic notation4

and were modeled on biological procedures for the development of technical opti-
mization techniques. Holland and Goldberg’s genetic algorithms use the principles
of coding and transmission of data in biological systems for modeling search strate-
gies. These two approaches developed, to a great extent, separately from each other.
For application in music, the problem solving strategies of the “American school”
are applied, and for this reason, Rechenberg’s model will not be explained here in
detail.

7.1 The Biological Model

DNA in a cell consists of chromosomes that are made up of genes. Genes describe
amino acid sequences of proteins and are responsible for the development of dif-

1 “Optimierung technischer Systeme nach Prinzipien der biologischen Evolution” [36].
2 “Adaption in Natural and Artificial Systems” [17].
3 “Genetic Algorithms in Search, Optimization, and Machine Learning” [16].
4 An illustration of the graphic symbols and an introductory overview can be found in [38].

157

158 7 Genetic Algorithms

Fig. 7.1 John Holland and David Goldberg. With kind permission of John Holland and David
Goldberg.

ferent traits that become manifest in different ways by transferring genetic informa-
tion. The total complement of genes is referred to as a genome. The entirety of an
individual’s hereditary information is known by the term genotype and the specific
manifestation of his or her features called a phenotype. Genetic variability is en-
sured by a population with differing genetic characteristics as well as a continuous
adaptation to changing environmental conditions. Genetic variations are caused by
a process called meiosis, by which the hereditary disposition of the parents is allo-
cated differently to the cells off the offspring, as well as by mutation of the genes,
chromosomes or the whole genome. According to Darwin’s theory of evolution,5

the competing behavior of living organisms promotes the passing on of the genetic
information of the fittest, meaning those organisms best able to survive in a particu-
lar environment. Consequently, this leads to the survival of the fittest, a term which
can also be found in the terminology of genetic algorithms as the fitness function.

7.2 Genetic Algorithms as Stochastic Search Techniques

Genetic algorithms, which model the evolutionary processes in computer simula-
tion, are methods that are used to solve search and optimization problems. For the
application of a genetic algorithm, domain-specific knowledge of the problem to be
solved is not necessary. Therefore, this class of algorithms is especially suitable for
tasks that are difficult to model mathematically or for problem domains that do not
have an explicit superior rule system.

By analogy to the biological model, the respective computer program serves as
the habitat that provides particular conditions for surviving and heredity. In this arti-
ficial living space, populations of individuals, or chromosomes, are produced whose
adaptation to an objective, referred to as objective score, is examined by means of

5 “On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races
in the Struggle for Life” [8].

7.2 Genetic Algorithms as Stochastic Search Techniques 159

a fitness function. The fitness function may represent a mathematical function, a
comparison set, or a rule-based system that examines the ability of a chromosome
to fulfill the objective score. In algorithmic compositions, human fitness-raters are
also frequently used; this approach, however, is subject to some restrictions (see
below). In a simulation, binary coded symbol strings are generally applied to repre-
sent an individual. New populations are produced with the principles of crossover
and mutation of chromosomes. In crossover, which may happen in several different
ways, corresponding bits of the parent strings are swapped to produce new chromo-
somes. In order to guarantee the genetic diversity of a new population, in addition
to crossover, mutation is applied which modifies elements of the symbol strings in
various ways by using stochastic procedures. Consequently, in a binary representa-
tion, an arbitrary piece of the string could be changed from 0 to 1 or from 1 to 0. The
fittest individuals are selected in each new run for crossover and mutation or passed
on without being modified. This whole process continues until a chromosome is
generated that best matches the objective score. In this context, artificial molecules
may serve as an example in which new combinations are generated by swapping
components; in every new generation, these new molecules are examined for their
adequacy to an objective score, such as, for example, strength.

In principle, the scheme of a genetic algorithm is structured as follows:

1. Generate random starting population of n chromosomes
2. Calculate the fitness of each chromosome If good enough, dump the result, END

Else:
3. The fittest chromosomes are transferred unmodified or undergo crossover or mu-

tation
4. Select a number of fittest chromosomes as starting individuals
5. Create next generation and repeat from step 2

In “Genetic Algorithms in Search, Optimization and Machine Learning” [16],
David Goldberg describes an example [16, p. 7–19] of a simple application of a
genetic algorithm. Consider a black box system which produces a numeric output
for different positions of its switches (figure 7.2). When the switches are represented
as binary symbol sequences (chromosomes), numerical values result in particular
positions that may also be used to determine a simple fitness function: The higher a
chromosome’s numeric value, the better its fitness.

Fig. 7.2 Black box, output and fitness values (rightmost is % of sum of total fitness) [16, p. 8, 11].
c© 1989 Pearson Education Inc. Reproduced by permission.

160 7 Genetic Algorithms

Now, every chromosome’s fitness is allotted (according to Goldberg) to the seg-
ments of a so-called “roulette wheel” (figure 7.3) in order to select chromosomes
that may be used for crossover by creating weighted probabilities:

Fig. 7.3 Probabilities for the selection of chromosomes in crossover [16, p. 11]. c© 1989 Pearson
Education Inc. Reproduced by permission.

Because the search space is restricted by binary symbol strings to a value between
0 0 0 0 0 and 1 1 1 1 1, each chromosome x has a possible value between 0 and
31. The function underlying the black box is assumed to be f (x) = x2. Suppose a
population consists of four chromosomes (strings) whose initial configuration may
be acquired by flipping a coin twenty times. In the following example, the values of
the black box are applied. After generating the initial population, values as given in
figure 7.4 result; the columns 3 to 6 indicate the following:

• x : Value of the binary string in decimal notation.
• f (x) = x2 : Value of the chromosome in regards to the fitness function.
• fi

∑ f : Relation of the single values to the total sum.

• fi
f
: Relation of the single chromosome values to the average of all chromosomes.

• Actual count from Roulette Wheel: The results of the roulette wheel with regard
to the selection of the chromosomes used for crossover.

The production of a new population starts with the selection of chromosomes,
to which crossover will be applied. In this example (figure 7.4), chromosome 1 and
chromosome 4 are selected once, chromosome 2 is selected twice, and chromosome
3 is not selected at all. These chromosomes (first column in figure 7.5) are now
crossed-over with randomly selected chromosomes (second column in figure 7.5) at
a randomly chosen crossover point and result in new chromosomes; this process is
referred to as one-point crossover. As a result of this crossover, the sum, the average,
and the highest achieved value of single chromosomes have increased in regard
to the fitness function. Dispensing with mutation, this example shows some basic
operations of genetic algorithms that, however, may be expanded upon in different
ways.

7.3 Genetic Programming 161

Fig. 7.4 Chromosome values regarding fitness and selection for crossover [16, p. 16]. c© 1989
Pearson Education Inc. Reproduced by permission.

Fig. 7.5 New population after one crossover [16, p. 17]. c© 1989 Pearson Education Inc. Repro-
duced by permission.

7.3 Genetic Programming

An approach that applies functions instead of symbol strings and therefore does
not generate values, but rather programs as a result of the genetic operations, is
described by John Koza in “Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection” [24] published in 1992. In this application of
genetic principles to the development of computer programs, the gene pool’s point
of origin generates a number of domain-specific functions and variables. In the gen-
eration of populations, function calls or variables (or terminals representing a single
fixed value) are either randomly arranged in a tree structure or functions and vari-
ables are randomly assigned to a tree of a particular depth (figure 7.6). Once the
position of the variables and functions enables the processing of the program, an
output is produced that is examined by means of a fitness function. The root of the

162 7 Genetic Algorithms

graph is usually assigned with a function; crossover occurs with two chromosomes
by randomly switching nodes and their children, as shown in figure 7.7.

Fig. 7.6 Tree structure made up of functions and variables.

Fig. 7.7 Crossover in genetic programming.

Mutation replaces functions or variables of a random position by randomly gen-
erating a tree structure, a single function or a variable. As an example of a more
complex application of genetic programming, Koza described genetic programming
as used in the simulation of a multiplexer. A multiplexer is a combinatorial circuit
with multiple inputs and one output. On the input side there are n control signals,
also called address bits, and 2n inputs. The address bits determine which of the input
signals goes to the output. Koza used a multiplexer with three address bits (A0–A2)
and eight input signals accordingly (D0–D7), as shown in figure 7.8. Genetic pro-
gramming is, in this case, intended to generate a program that is able to correctly
simulate the operation mode of the multiplexer with logical functions and terminals.
However, it is assumed that the operation mode of the multiplexer is unknown; so a
program structure is generated without domain-specific knowledge. This task is es-
pecially suitable for genetic programming, because in this example, a blind search
is hardly feasible as a problem solving procedure due to the enormous search space
of all possible combinations of the functions and terminals.

Koza used the functions AND, OR, NOT, IF dividing IF into IF, THEN, ELSE,
and the terminal alphabet consisting of A0, A1, A2, D0, D1, D2, D3, D4, D5, D6,

7.3 Genetic Programming 163

Fig. 7.8 Scheme of a multiplexer.

D7. The program is built up with a nested list structure of functions and terminals in
Lisp syntax.6 The fitness function results from the total of all correct circuits of the
multiplexer that may be indicated on the input side by combining the terminals with
211 possible circuits. The number of the valid solutions (2048) is taken as fitness for
the generated programs. For the size of the population a value of 4000 is assumed
and at most, 51 generations are produced. In generation 0, for example, the follow-
ing programs with attributed fitness are generated:

(IF (IF (IF D2 D2 D2) D2 D2) D2 D2): no output making sense
(OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3))): 768 from 2048 possible
solutions

In generations 4 and 5, 1664 correct solutions can already be found. One of these
functions of generation 5 is:
(IF A0 (IF A2 D7 D3) (IF A2 D4 (IF A1 D2 (IF A2 D7 D0))))

In order to represent the problem solving capacity of the programs, a graphic
illustration is used that shows all possible circuits on the input side of the multiplexer
as squares. The state of these squares indicates whether the correct bit goes to the
output (full = correct, empty = false output signal). Figure 7.9 compares examples
of best-of functions of the generations 0 and 4.

Finally, in generation 9 the function:

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0))
(IF A0 (IF A1 (IF A2 D7 D3) D1) D0))
(IF A2 (IF A1 D6 D4)
(IF A1 D2 (IF A2 D7 D0)))))

6 At the beginning of the brackets is the function, followed by arguments, e.g. (/(+ 1 2 3 (* 2 3))2)
equivalent: 1+2+3+(2∗3)

2 . This notation is also called prefix notation.

164 7 Genetic Algorithms

Fig. 7.9 Best-of function of the generations 0 (top) and 4 (bottom) [24, p. 175, 178]. c© 1993
Massachusetts Institute of Technology. By permission of The MIT Press.

detects 2048 correct solutions. A simplified form of the program may be transferred
to the following form either manually or with an editing function:

(IF A0 (IF A2 (IF A1 D7 D5) (IF A1 D3 D1))
(IF A2 (IF A1 D6 D4) (IF A1 D2 D0)))

7.4 Genetic Algorithms in Algorithmic Composition

As one of the first applications of genetic processes in algorithmic composition, An-
drew Horner and David Goldberg [18] described the generation of melodic material
by means of “thematic bridging.” This technique modifies a start pattern using a
number of functions and compares the results with another pattern as fitness func-
tion. For the generation of a composition, Horner and Goldberg used six such cycles
in order to produce melodic material that is then further structured by a five-voice
canonical layering. The functions that in this case undertake the tasks of crossover

7.4 Genetic Algorithms in Algorithmic Composition 165

and mutation are, for example, with an initial pattern of Gb, Bb, F, Ab, Db and a
reference pattern of F, Ab, Eb, as follows:

1. Start pattern: Gb Bb F Ab Db
2. Deletion of the last element: Gb Bb F Ab
3. Random swapping of the elements: Bb F Ab Gb
4. Deletion of the last element: Bb F Ab
5. Modification of the first element: Eb F Ab
6. Random swapping of the elements: F Ab Eb

Output: Gb Bb F Ab Bb F Ab Gb Bb F Ab Eb F Ab F Ab Eb.
In a two-stage process, the fitness function compares the conformity of the tone

pitches of the output with the pitches in the reference pattern, as well as the length
of the output with a desired objective. Although Horner and Goldberg’s procedu-
ral method is very simple in this example, it describes the possibility of arbitrarily
adjusting the principles of crossover, mutation and fitness evaluation with regard to
the structuring of musical material.

7.4.1 Analogies to the Process of Composition

In their applications of genetic algorithms to the generation of musical structure,
Bruce L. Jacob [20, 21] and Andrew Gartland-Jones [11, 12], with Peter Copley
[13] emphasized this procedure’s similarity to a traditional compositional process.
Jacob outlines the objective of Variations, his algorithmic composition system: “The
system was designed to reproduce very closely the creative process that this author
uses when composing music [. . .],” [21, p. 2] and Gartland-Jones refers to the gen-
eral function principle of a genetic algorithm as follows: “A commonly used com-
positional process may be described as taking an existing musical idea and changing
it in some way. Musicians in various styles and genres may follow the process dif-
ferently, some through improvisation, others through pencil and paper, but what is
most often practiced is taking an existing idea and mutating it to provide a new
idea. In fact, mutation is closely related to notions of development, which lie at the
heart of western musical concepts of form and structure. It may even be possible to
see development as directed mutation. [. . .] With the core elements of GA’s being
mutation (including cross-over) and fitness assessment, there appears to be a strong
correlation with at least some aspects of the human process of generating musical
material.” [11, p. 2–3].

According to Gartland-Jones, populations of phrases of two bars obtain their
fitness after the application of structure-modifying operations by a simple compar-
ison with phrases of a given corpus. This principle finds further application in the
generation of obbligatos, interactive installations and a software system. Distinctive
parameters for notes are pitch, duration and velocity; the populations are gener-
ated considering both the key and mode of the reference patterns. Ten functions are

166 7 Genetic Algorithms

selected to serve as genetic operations that, among other things, mirror, invert, rear-
range and mutate the material. The comparison of the patterns is applied on every
note: If a note corresponds to a note of the reference pattern, it obtains fitness “1.”
Consequently, the fitness of a pattern is the total of the fitness of all single notes,
whereas the position of the notes in the pattern is not taken into account. For the
application of this principle in an installation [11, p. 9–10] the space is divided into
sixteen sectors that are assigned four cycles with different fitness. Sensors capture
the spatial position of the visitors and display the corresponding patterns with speak-
ers. Obbligatos are generated in another application of this principle in relation to a
user’s input. Here, each of the last four bars of incoming MIDI data are subject to
different genetic operations and made audible simultaneously. Implementations of
this principle within a software program7 make use of virtual building blocks that
interact musically. Each of these blocks has its own musical pattern, and is able to
send this pattern to other blocks and also receive patterns from these. When a pat-
tern is passed to another block, it serves as a reference pattern for the pattern of the
receiving block. The latter generates a new musical pattern based on its own music
and the music it has just been passed, which again may be sent.

In his software project Variations, Jacob used three program modules for the
generation of musical structure by means of genetic algorithms. The basic compo-
nents of his software are the modules “Composer,” “Ear” and “Arranger.” In the
“Composer,” variations of existing motifs are produced with the help of different
techniques. The “Ear” evaluates the correctness of the motifs by permitted interval
combinations and produces musical phrases that are assembled by the “Arranger”
into larger units, which will be finally evaluated by a user. At the beginning, the user
initializes the “Composer” with a number of motifs to which the module adds fur-
ther motifs through transposition or rhythmic changes, for example. The evaluation
of the motifs in the “Ear” is performed automatically by applying a simple com-
parison of patterns in order to examine whether all newly generated motifs show
the same intervallic relations as the entered motifs. Because a motif in this system
may be composed of both single notes and chords, in the evaluation the horizontal
as well as the vertical intervallic relations are equally important. A valid new motif
is at least a subset of the intervallic relations of the entered motifs; similarly, the
doubling of chord components is allowed, as is the transposition of valid new gener-
ations or their rhythmic changes. Figure 7.10 illustrates this principle: In the upper
part, there is an entered motif; in the lower left part, there are some new generations
evaluated as valid; in the lower right part, some evaluated as invalid.

The “Ear” arranges all valid motifs into phrases that are composed by the “Ar-
ranger” by means of combination to larger musical units which are finally rated by
the user.
7 MusicBox [12]; in a further development with Peter Copley: IndagoSonus [13].

7.4 Genetic Algorithms in Algorithmic Composition 167

Fig. 7.10 Motif (top) and correct (bottom left) and incorrect (bottom right) new generation.

7.4.2 Varieties of Genetic Operations and Fitness Ratings

George Papadopoulos and Geraint Wiggins [29] described the generation of melodies
of variable length and rhythmic structure over given chord sequences. Domain-
specific genetic operations work with symbolically encoded symbol strings that
must undergo an algorithmic fitness evaluation. A fitness evaluation done by a sub-
ject, also referred to as human fitness function, is not considered in this approach
as a listener’s preferences may change over time and the large number of evalua-
tions brings about symptoms of fatigue as well. The need to evaluate all generations
of a genetic algorithm – also known as fitness-bottleneck – is a basic problem oc-
curring in evaluations performed exclusively by a user. Alternative strategies may
either keep the number of populations low or, as in Jacob’s example, make use of
multi-stage fitness evaluations applying either algorithmic or human evaluations for
the respective tasks.

Papadopoulos et al. encoded tone pitches in relation to an underlying chord,
whereas a second entry determines the duration. Instead of the pitch, a symbol for
a pause may also be placed. As a frame, 21 pitches are taken into account based on
seven and eight note scales. The initial populations are chosen randomly, whereas
a pause is placed instead of a pitch with a 12.5 % probability. In the application
of genetic operations, classes of functions are used: “Local mutations” operate on a
fragment of a chromosome of variable length by means of transpositions, inversions,
ascending and descending arrangement of the elements etc. “Copy and operate mu-
tations” copy or swap randomly chosen fragments of the chromosome. “Restricted
copy and operate mutations” also swap and copy segments of the symbol strings but
operate on downbeats in order to establish motivic structures at easily recognizable
fragments. Within the automatic fitness evaluation, eight categories of criteria are
applied that examine the chromosomes for interval sizes within the melodic pro-
gressions, correct functional harmonic context and permitted notes on downbeats,
among other things. In addition, another class of functions produces a comparison of
patterns based exclusively on tone pitches with a musical reference corpus. Figure
7.11 shows a production of Papadopoulos and Wiggins’s system.

One application of genetic algorithms as used for the harmonization of given
melodies is realized by Ryan Mc Intyre with his “Bach in a Box” system [26]. As a
restriction, only progressions in C major are produced; secondary dominants, pivot
chords and key changes are ignored. The progressions are represented in a num-
ber sequence in which four values are assigned to a chord (1st value: soprano, 2nd
value: alto, 3rd value: tenor, 4th value: bass). A starting population is generated by

168 7 Genetic Algorithms

Fig. 7.11 A melody generated by the system of Papadopoulos and Wiggins.

randomly choosing number values from 0 to 28 for every second to fourth position
(alto to bass) so that the result is the voices from alto to bass lying in a diatonic range
of four octaves. Crossover is applied in the usual way; in the mutation, randomly se-
lected segments of the symbol string are swapped. Fitness is evaluated for every
single note in regard to musical parameters whose fulfillment is rated with differ-
ent weightings. These rules describe some rudimentary principles for a style typical
four-voice chorale movement, such as permitted vocal ranges and possible chord
tone doublings. Fitness is rated in a three-stage model in which a certain percentage
of fitness of a particular category must always be reached in order to be consid-
ered for the next level. So, for example, a chromosome must receive at least 85%
of its possible fitness from the criteria “good chords,” “good ranges,” “good Start-
Stop” (suitable input and output chord) as well as “harmonic interest” (the harmonic
variability) before it can receive fitness from a final fitness evaluation. It becomes
evident that the three-stage model is better, but is nevertheless not able to achieve
optimal fitness even in a very large number of generations.

An interesting aspect in the work of Michael Towsey, Andrew Brown, Susan
Wright, and Joachim Diederich [43] is the application of genetic algorithms to al-
ready existing melodic material by means of a multi-dimensional fitness function.
Furthermore, these authors made use of a number of statistical studies on the gen-
eration of a comprehensive fitness function. The starting material consists of 28
melodies of composers from the Renaissance to the Classical period as well as a
number of children’s songs and popular music themes. Towsey et al. attempted to
establish an objective standard for a good melody by means of a number of statis-
tical features. Each melody is examined for 21 criteria including used dissonances,
pitch variety and numerous others. The results make it possible for the authors to
generate a multi-dimensional fitness function which may also be used to classify
the starting melodies. For each melody, every fitness dimension results in a value

7.4 Genetic Algorithms in Algorithmic Composition 169

between 0 and 1, the number of occurrences of a particular feature being related to
its possible number of occurrences. According to this, a melody with ten notes, of
which five tone pitches are different, for example, receives a fitness measure of 0.5
with regard to the criterion “pitch variety.” For all melodies, criteria that show the
smallest deviations regarding an average value – meaning the melodies are similar
to each other in this one aspect – seem to represent general quality criteria and are
respectively rated higher in terms of fitness. The following fitness dimensions show
the lowest deviations:

1. Pitch variety: ∑distinct tone pitches
∑tone pitches

2. Dissonant intervals: ∑interval dissonances
∑intervals

The authors indicate the following “dissonance ratings:”

Interval Dissonance rating
0 1 2 3 4 5 7 8 9 12 0.0
10 0.5
6 11 13 1.0

3. Contour direction: ∑rising intervals
∑intervals

4. Contour stability: ∑rising intervals moving in same direction
∑intervals - 1

5. Rhythmic variety: ∑distinct rhythmic values
16

(The denominator is the same for each melody because the corpus only consists
of sixteen different rhythmic values.)

6. Rhythmic range: ∑(max note duration) - (min note duration)
16

The means and standard deviations of these features are as shown below:

Category Mean Standard deviation +, –

1. Pitch Variety 0.27 0.11
2. Dissonant Intervals 0.01 0.02
3. Contour Direction 0.49 0.06
4. Contour Stability 0.40 0.11
5. Rhythmic Variety 0.24 0.07
6. Rhythmic Range 0.32 0.11

This multi-stage fitness evaluation also allows for a classification of the corpus
within the three classes “Classical,” “Early” and “Nursery.” The results of the anal-

170 7 Genetic Algorithms

ysis also prove true through a principal component analysis8 applied comparatively
as well as a following clustering9 that shows, for example, all melodies of the mu-
sical style “Classical” within three clusters. Of course, it can be argued that the
approach of Towsey et al. works with a corpus that is too small; the authors them-
selves also point out that this problem may lead to difficulties in regard to a consis-
tent comprehension of a given style. If the analysis methods enable distinctions of
certain styles, this aspect will also naturally show the inhomogeneity of the corpus.

Whether it is possible to find quality criteria for “good” melodies that are binding
beyond style remains to be seen; a particularly successful melody – considering the
diverse ways of interpreting “good,” “successful,” etc. – may also show naturally
in a large derivation from a particular musical criterion. Nevertheless, the authors
work is proof of the particular suitability of multi-stage fitness functions for musi-
cal resynthesis because, here, characteristics of the corpus may be looked at from
several different perspectives.

7.4.3 Limits of Genetic Algorithms – A Comparison

Somnuk Phon-Amnuaisuk, Andrew Tuson and Geraint Wiggins10 used genetic al-
gorithms to harmonize soprano voices. In this approach, genetic operators such as
mutation of chord type, swapping voices etc. are applied and the fitness functions
are executed in compliance with basic rules of music theory. Figure 7.12 shows a
harmonization performed using this method. The authors work is interesting also
due to the fact that they point out intrinsic weaknesses of a genetic algorithm re-
garding the performance of particular tasks. An optimal fitness for all categories
cannot be achieved even within a very large number of productions; the generation
of chord progressions turns out to be extremely difficult.

Fig. 7.12 Harmonization generated by the system of Phon-Amnuaisuk et al.

First, harmonic progressions are highly context-sensitive so that when changing
a chord, the functional context of the entire environment must be recreated. In the

8 In this analysis method, a large number of variables are reduced to a smaller number of influenc-
ing values. Variables that intercorrelate to a large extent are combined.
9 Formation of disordered material in categories or groups by means of algorithms; see chapter 10.
10 In [33] and with George Papadopoulos in [45] – here, the production of a melody voice is treated
in addition, like in [29].

7.4 Genetic Algorithms in Algorithmic Composition 171

context of a genetic algorithm this may mean that when improving a particular fit-
ness dimension, the newly generated chromosome provides worse values for other
fitness dimensions. Another problem is rooted in the fact that the genetic algorithm
yields good results in small musical tasks without, however, being able to generate
the musical part as a whole in a way that makes sense. Finally, consideration must
be given to the fact that the search in the state space is heuristic and not complete,
and this, as a result, is a reason for the impossibility of always reaching an optimal
solution for the musical task.

If there exists sufficient problem-specific knowledge in a given musical domain,
then rule-based systems are in most cases superior to a genetic algorithm for the
abovementioned reasons, as described by Phon-Amnuaisuk and Wiggins in a further
study [34]. In this comparison, harmonization is generated by a genetic algorithm
as well as by a rule-based system; the same domain knowledge is made available
to both techniques. Knowledge of correct progressions is implemented in the ge-
netic algorithm by the type of data representation, the genetic operations and the
fitness evaluations. The structuring of the genetic algorithm in the harmonization of
a given soprano voice is done similar to the above approach. The rule-based system
first produces chord progressions that serve as a basis for the further arrangement of
the musical fine structure. A backtracking system11 controls the single steps of the
generation process. Evaluation is done by means of giving penalty points according
to the breaking of simple rules of music theory – for the abovementioned reasons, as
expected, the rule-based system yields better results. Figure 7.13 displays the results
of the harmonization processes of both methods, the best result from the genetic al-
gorithm scoring twenty penalty points after 250 generations, the rule-based system,
however, scoring only two penalty points in one variant.

Fig. 7.13 Comparison of different automatic harmonizations by means of a genetic algorithm (left)
and a rule-based system (right).

The problems regarding voice leading occurring in the example of the genetic
algorithm are caused by the parallel octave at the end of the first bar as well as by
the last pitch in the bass part being out of range. In the result from the rule-based
system, the generation of the progressions “V–ii” as well as “V–V7” is considered
inappropriate.

11 In case a solution is not satisfactory, the solution found before is calculated anew; this process
is applied until a satisfactory result is reached.

172 7 Genetic Algorithms

Even if the rule-based system shows a clear advantage over the genetic algorithm
in this study, the fact that the rule-based approach is also subject to strong restric-
tions must be considered. The system is determined by the implemented rules; the
output is completely foreseeable so that in some cases the gain of any insight from
musical resynthesis must also be questioned. On the other hand, the genetic algo-
rithm is completely able to produce surprising and yet musically satisfying results.
Most of the algorithmic fitness functions generalize musical information by means
of knowledge-based or rule-based strategies in order to be able to represent a uni-
form set of criteria for the system’s outputs. In the recognition of inventive solutions
– that are actually violations of musical convention – these fitness functions reach
their limits early. In addition to the abovementioned strategies, artificial neural net-
works may also be applied for fitness evaluations; some works on this subject were
produced by Lee Spector and Adam Alpern, Brad Johanson and Al Biles (see be-
low). A neural network may produce surprising results, both as a producing and an
evaluating entity. Regarding context-sensitive structure, however, neural networks
are often subject to the same restrictions as genetic algorithms so that in these cases,
rating by a user is recommended.12

In order to reduce the enormously increasing search space in these cases, Paul
Pigg [35] suggested a two-staged model for the improvement of these restrictions.
In his approach, the user structures movements such as Intro, Chorus, Solo, etc.
and initializes them by indicating bar and key. Two genetic algorithms then gener-
ate the fine structure: The first genetic algorithm produces a genetic pool of bars
that possess all characteristics of the corresponding movement; by this, a separate
population is generated for each movement. The chromosome is represented by two
separate symbol strings, the first referring to the pitch class and the other to the
position of the octave. In place of a pitch class, symbols for rests and holds may
be introduced in the symbol string as well. Crossover and mutation find application
as genetic operators, whereas crossover is carried out in the usual way in the pitch
classes and octaves. Mutation processes consist of shortening, extending and chang-
ing notes as well as random octave mutation. Fitness is rated by means of the simple
principle that pitch classes are compared with the scale degrees that are, in turn,
determined by the key of the respective movement. The evaluation of every single
octave is based on the mean value of the chromosome; each derivation reduces an
optimal fitness. The second genetic algorithm generates further variations on the
basis of these chromosomes. In contrast to the first algorithm, this one generates
chromosomes of greater length and its fitness function additionally includes triads
belonging to the scale in the evaluation. Even when, due to the simple comparison
of patterns, the fitness functions in Pigg’s model have difficulties in recognizing a
“coherent” melodic structure, the pre-structuring of the musical material is an inter-
esting approach to an efficient reduction of a large search space.

12 The abovementioned works are treated in the sections on genetic programming and interactive
systems; for further approaches using neural networks as fitness functions, see [37, p. 2–3].

7.4 Genetic Algorithms in Algorithmic Composition 173

7.4.4 Rhythmic Generators

So far, applications regarding the generation of melodic and harmonic structure have
been described; however, genetic algorithms also find application in the production
of rhythm. Damon Horowitz developed a system [19] in which rhythmic patterns
of differently instrumented structure are generated by means of the preferences and
ratings of a user. Each chromosome represents a bar whose rhythmic values may
comprise pauses as well as note values between 1/16 triplets and 1/4 notes. A num-
ber of rhythmic parameters including density, repetition, stressed beats and many
more are created by the user in different ways according to their importance for
the generation of the populations. Each of these criteria is furthermore assigned an
optimal value for the fitness evaluation that must be reached, as well as a weight-
ing in relation to the other criteria. This weighting controls how dominantly the
respective criterion is represented in the musical appearance of the chromosome.
As an additional option, another genetic algorithm produces the mentioned optimal
values and weightings, and by doing this allows the generation of rhythmic “fami-
lies,” groups of structures that differ in the occurrence of rhythmic characteristics.
This Meta-GA facilitates evaluation by a user because the selection of particular
rhythmic “families” leads more quickly to a rhythmic structure that is considered
satisfying. Another function enables an efficient generation of rhythmic patterns by
further structuring chromosomes regarding some parameters. The rhythmic struc-
ture of each chromosome is produced by different percussion instruments whose
sound characteristics are distinguished by their respective parameter ranges from
each other. Crossover and mutation are also only applied within similar instruments
so that sudden changes of sound color may be avoided by genetic operations.

Other interesting approaches in which genetic algorithms are applied in the gen-
eration of rhythmic structure can be found in the works by Alejandro Pazos, A.
Santos del Riego, Julian Dorado and J. J. Romero-Cardalda, [30, 31]13 who used
artificial neural networks as fitness raters in their works.

Pazos et al. developed a model of a genetic algorithm in which two interacting
populations of “artificial musicians” create different rhythmic structures that are
evaluated by a user.

For the generation of his genetic algorithms, Burton used ART (short for Adap-
tive Resonance Theory) networks as fitness evaluators which are a type of network
applied to the forming of categories within unordered data (see chapter 9). For the
fitness evaluation, the network is trained with a corpus of drum patterns of different
styles; the outputs of the genetic algorithm are compared by means of the result-
ing categories (clusters). An interesting aspect of this comprehensive work is also
shown by a number of variants of genetic operations that are examined regarding
their suitability for producing the rhythmic patterns.

In his work, Pearce treats the generation of rhythmic patterns in the style “drum
and bass” and uses a multi-layered perceptron (see chapter 9) as a fitness function.

13 See also the comprehensive developments in the dissertations of Anthony Richard Burton [6]
and Marcus Pearce [32].

174 7 Genetic Algorithms

He legitimately criticizes the mostly inexact rating of the results of systems of algo-
rithmic composition and counters this lack in his work with a number of evaluations:
“In the present study an attempt has been made to evaluate in more objective terms
whether the system fulfils the specified aims. In fact, aesthetic judgment has been
removed from the evaluation of the generated patterns. This chapter describes three
experiments: The first was a musical Turing Test of whether subjects could discrimi-
nate human from system generated patterns (section 5.2); the second asked subjects
to classify the patterns according to style (section 5.3); and the final experiment
asked for judgments of the diversity present in groups of three system generated
patterns taken from both between and within runs (section 5.4). In a less objective
manner a musician was asked to evaluate the system (section 5.5) and finally, the
system was informally judged on its usability and practicality [. . .]” [32, p. 61]. The
results of the evaluation show that patterns generated by humans were rated as bet-
ter – a fact that, however, is caused by the occasionally unreliable fitness evaluation
done by artificial neural networks rather than by the genetic algorithm itself.

7.4.5 Applications of Genetic Programming

In numerous applications of genetic programming, Lee Spector and Adam Alpern
developed strategies for the automatic production of programs for the generation
of musical structure. In a first approach [39], four-bar melodies serve as input gen-
erating melodies of the same duration as an output. The notes are represented as
vectors of duration and pitch, each bar being given 48 of these pairs. This division
allows for rhythmic variations of the melodic material ranging from full notes to
1/32 triplets, the length of the symbol string staying the same for every chromo-
some. For the genetic programming, different functions such as crab, reduction or
copying of a musical fragment are chosen that are applied to the melodies of the
input. In another project [40], Spector worked with specialized control structures
and functions that enable different strategies of copying and transposing. In a multi-
stage process, the results are evaluated both by a neural network and by a rule-based
system – an approach allowing a significantly better output of the system in this
project. For the automatic generation of control structures, Lee Spector [41] set au-
tomatically generated macros in contrast to the automatically generated functions.
In the programming language Lisp that is applied here, macros refer to structures
generating program codes. The advantages of a macro over a function can be seen
e.g. in program sequences in which side effects play an important role. In Lisp, a
side effect is a value assignment for a variable in the course of a function call. This
effect may be desired explicitly; in the formulation of a control structure by means
of a common function definition, however, undesired value assignments may result.
If, for example, a control structure of the kind “if then else” is to be formulated in
Lisp, then the following problem occurs in the definition as a function: In a common
function definition in Lisp (defun name (parameter) (function body)) the parameters
are analyzed before transferring them to the function body. So, a function defini-

7.4 Genetic Algorithms in Algorithmic Composition 175

tion of the kind (defun if (if then else) (function body)) will first carry out the value
assignments of the forms “then” and “else” before evaluating the function body. In-
dependent from the value of the “if” form, both following expressions are evaluated
even though this is undesired. If, however, this function is defined as a macro, it
behaves, if called, like an assignment of the form “if then else” common in other
programming languages: Depending on the value of “if,” either the “then” form or
the “else” form is evaluated.

Brad Johanson described his method of applying genetic programming in the
conception of his GPMusic system in [22], with Ricardo Poli [23]. GPMusic enables
the production of melodies of variable length that, in the first version of the program,
are rated by a user. The musical units used are the chromatic tones in a range of six
octaves, a symbol for pauses, and arpeggiated chords from the tones of the C major
scale (so-called “pseudo chords”). For genetic operations, the following functions
are developed:

1. Play two: This function takes two note sequences and concatenates them to-
gether.

2. Add space: A rest is inserted after each time slot in the original sequence.
3. Play twice: Repetition of the sequence.
4. Shift up: Transposition one step up within the used scale.
5. Shift down: Shift up vice versa.
6. Mirror: The argument sequence is reversed.
7. Play and mirror: The argument sequence is reversed and concatenated onto it-

self.

In this approach, a number of productions have disadvantageous effects that ei-
ther generate very short or very long monotone sequences. Significant improve-
ments can be achieved, for example, by reducing the tone material to diatonic scale
degrees as well as by automatically eliminating very short sequences. In the fit-
ness rating done by a user, an interface allows for modifications such as repeating a
sequence or setting its length. Further, a neural network is used for the fitness eval-
uation that may be able to avoid the restrictions of the fitness bottleneck, but lets
melodies of inferior quality pass as adequate.

The fact that genetic programming may be applied efficiently, as shown in the
example of the multiplexer, yet nevertheless faces significant problems in the field
of music, can be explained by the requirements that the particular fitness functions
have to meet. The operation mode of a multiplexer itself represents, at the same
time, a perfect fitness function. In the musical domain the way to design the respec-
tive genetic algorithm or the genetic programming strategies has great influence on
the processing and representation of the musical data. The decisive factor, however,
remains the efficiency of the fitness function that in all described variants must eval-
uate the musical output in a conclusive way. If the criteria for “quality” are to be
formulated easily, the sense of genetic generation may be questioned; if this is not
the case, the difficulty lies in coherently evaluating musical information in a mul-
titude of mutually influential factors. The abovementioned restrictions, however,

176 7 Genetic Algorithms

occur mainly in the field of style imitation; if genetic algorithms are used for gen-
uine compositional tasks, the application of these algorithms can yield interesting
results. So, also in approaches that react interactively to the input of a user during
processing, genetic algorithms may hold great potential. These approaches range
from systems that, like GenJam, are located within a particular genre, to software
implementations like Vox Populi that base their outputs on the comparison of partial
structures of distinct tones. Some of the other applications described in the follow-
ing section utilize the basic principles of genetic algorithms in an inventive way by
simulating reproduction and interaction of musical units within artificial habitats.

7.4.6 Interactive Systems

In numerous works (see [1], [2], [3], [4], [5]), Al Biles described the functioning
of his program GenJam, developed to improvise jazz music based on genetic algo-
rithms. On the basis of given harmonic and rhythmic structures, GenJam generates
melodies that are rated by a user. The starting point for the melodies to be produced
is information about tempo, rhythmic articulation, parts to be repeated and chord
progressions. The chromosomes are represented as binary strings within two popu-
lations indicating bars and phrases. A bar in the genetic population consists of the
assigned fitness as well as other values that represent notes, ties and pauses. The
chromosomes on the phase level dispose of pointers on each four bar units. The
population size in GenJam comprises 48 phrases and 64 bars. The scale degrees for
the single chromosomes are selected on the bar level with respect to a number of
possible chord types, as can be seen in table 7.1.

Chord Scale Chord Scale
CMaj7, C6, C C D E G A B C7#9 C Eb E G A Bb
C7, C9, C13 C D E G A Bb C7b9 C Db E F G Bb
Cm7, Cm9, Cm11 C D Eb F G Bb CmMaj7 C D Eb F G A B
Cm7b5 C Eb F Gb Ab Bb Cm6 C D Eb F G A
Cdim C D Eb F Gb G# A B Cm7b9 C Db Eb F G A Bb
C#5 C D E F# G# A B CMaj7#11 C D E F# G A B
C7#5 C D E F# G# A# C7sus C D E F G A Bb
C7#11 C D E F# G A Bb CMaj7sus C D E F G A B
C7alt C Db D# E Gb G# Bb Â Â

Table 7.1 Allowed tone pitches regarding chord type in GenJam.

The genetic operation carried out on both chromosome types is a one-point
crossover, one half of the symbol string resting unmodified, the other half being sub-
ject to a number of mutations (table 7.2). Holds are represented here by “15,” pauses
by “0.” Four chromosomes of the bar level are chosen at random, the two with the
highest fitness being selected for mutation; their production replaces the two other

7.4 Genetic Algorithms in Algorithmic Composition 177

chromosomes. This population forms the basis for the structuring of the phrases
that in turn may be submitted to several mutations. The operator “Invert” addition-
ally changes pauses to holds and vice versa. “Genetic repair” randomly chooses a
new order for the elements and also replaces the chromosome with the worst fit-
ness by a randomly selected element. “Super phrase” generates a completely new
phrase by using bars of greatest fitness selected from four groups that consist of
three consecutive bars each. “Lick thinner” substitutes randomly selected bars that
are chosen most frequently in order to avoid the generation of material that only dif-
fers slightly from an “optimal” solution. “Orphan phrase” works similar to “super
phrase” with the difference that it selects those bars that occur least frequently. By
means of these genetic mutations operating on the bar and phrase level, structurally
similar phrases may be generated whose genetic variety is guaranteed by functions
that work against the production of monotonous musical material. The output of the
system is rated binary by the user during playback. The fitness obtained through this
is assigned to each particular combination of phrases and bars and serves as a guide-
line for the further generation of populations. In an extension of the software, the

Mutation Operator Mutated Measure
None (Original Measure) 9 7 0 5 7 15 15 0
Reverse 0 15 15 7 5 0 7 9
Rotate Right (e.g. 3) 15 15 0 9 7 0 5 7
Invert (15-value) 6 8 15 10 8 0 0 15
Sort Notes Ascending 5 7 0 7 9 15 15 0
Sort Notes Descending 9 7 0 7 5 15 15 0
Transpose Notes (e.g. +3) 12 10 0 8 10 15 15 0

Mutation Operator Mutated Phrase
None (Original Phrase) 57 57 11 38
Reverse 38 11 57 57
Rotate Right (e.g. 3) 57 11 38 57
Genetic Repair 57 57 11 29
Super Phrase 41 16 57 62
Lick Thinner 31 57 11 38
Orphan Phrase 17 59 43 22

Table 7.2 Genetic mutation in bars (top) and phrases (below) in GenJam.

originally random selection of note values is controlled by algorithms that initialize
the genetic populations by a structure similar to a reference corpus.

Another improvement is the integration of user improvisations that are used as a
basis for the genetic mutations. Figure 7.14 shows the comparison of an improvisa-
tional input with the corresponding output of GenJam.

In a further experiment, Al Biles, Peter G. Anderson and Laura W. Loggi [5]
implemented a neural network for the rating function. The neural network is trained

178 7 Genetic Algorithms

Fig. 7.14 Input of a user (top) and reaction of GenJam (bottom).

with statistical analyses of improvisations and serves to discard material that is mu-
sically unsuitable in advance of the genetic operations. However, the results do not
meet expectations and show a clear advantage of the fitness evaluation carried out
by a human expert.

Vox Populi by Jonatas Manzolli, Artemis Moroni, Ferdinando von Zuben and Ri-
cardo Gudwin14 is an interactive system that serves to generate musical structure in
real time by means of genetic algorithms. In this approach, chromosomes are chords
of four notes that are represented by binary symbol strings. During the output, the
automatic fitness rating is evolved; in addition, during playback Vox Populi reacts
to user inputs that have an influence on the different fitness functions as well as on
the temporal processing of the genetic algorithm. At the beginning of the genetic
cycle, a population of thirty chords is generated whose notes are assigned randomly
selected MIDI values between 0 and 127. Consequently, each of these chromosomes
has different pitch information for each chord tone; all the other musical parameters
such as rhythmic structure or timbre are given by the user and may also be modi-
fied during playback. The genetic operations are crossover and mutation processes
typically applied in binary symbol strings. Fitness is evaluated with regard to voice
ranges and consonance relations within the individual chords.

Fig. 7.15 Initial values for voice ranges in the fitness evaluation in Vox Populi. [25, p. 5]. With
kind permission of the authors.

For the voice range fitness, rough areas of four distinct voices (soprano, tenor,
bass, alto) are assumed as fuzzy sets, as shown in figure 7.15. Depending on how

14 [25], without Gudwin in [28].

7.4 Genetic Algorithms in Algorithmic Composition 179

many of the chord voices lie within the fuzzy set, the voice ranges are assigned a fit-
ness rating between 0 and 1. The fitness rating for harmonic consonance compares
chord notes in regard to corresponding frequencies in the upper harmonic tones.
This fitness evaluation takes place between the notes of a chord and also between a
given note (tonal center) and the chord notes. The interface of “Vox Populi” allows
for the modification of the following parameters during the playback of generated
musical structure: The “tonal center control” enables the modification of the tonal
center. “Biological control” determines the slice of time necessary to apply the ge-
netic operation. “Rhythmic control” indicates the slice of time necessary to evaluate
the fitness and consequently also to generate a new population. “Voice range con-
trol” allows enlarging or diminishing the voice ranges represented in figure 7.15.
“Orchestra control” assigns different instruments to the musical structures.15 An-
other input window enables the drawing of curves that are linked to each of the two
abovementioned parameters. “Performance control” enables the adjustment of set-
tings related to differing temporal performance of harmonic constellations as well
as the selection of particular scales that serve as a basis for the genetic operations;
again, these scales naturally depend on the currently selected tonal center.

Sidney Fels and Jonatas Manzolli [10] developed an interactive system for algo-
rithmic composition that is controlled by the movements of two users in a space.
The outputs of the system are generated by the interaction of nested modules as
shown in figure 7.16.

Fig. 7.16 Components of the system of Fels and Manzolli.

15 In this case: Strings, brass instruments, keyboards and percussion, as well as a random orchestra
that takes any instrument from the General-Midi list.

180 7 Genetic Algorithms

The system is initialized with melodies in a range of two octaves; every tone
pitch is assigned a duration and a velocity. These melodies each make up a pop-
ulation of twenty chromosomes that are partly subject to crossover and mutation.
Within the “Musical Cycle,” a number of chromosomes are selected by means of
pattern comparison with a “hidden melody.”16 This reference melody is established
a priori, does not affect the evolution of the population and also is not subject to
any genetic operations. It only determines which melody of the current population
is played. This cycle repeats at a particular rate, allowing a polyphonic overlapping
of the generated melodies in higher values. The genetic operations of crossover and
mutation are carried out in the “Biological Cycle” and affect velocity, pitch and du-
ration. The mutation modifies musical parameters in fragments of a chromosome
and crossover generates a new chromosome by swapping fragments of two ran-
domly selected “parent chromosomes.” The degree of application of mutation and
crossover to the chromosomes of a population is determined by weighted proba-
bilities that result from the position of two objects – in a later version two users –
in a space. The movements of the objects or users are captured by a tracking sys-
tem. The physical proximity of the users is directly proportional to the mutation
probability and the relative angle between the users and a video wall is indirectly
proportional to the crossover probability. On the wall, the melodies are represented
as zigzag lines whose lengths give the durations and their angles the tone pitches.
An inventive view of a biological system is shown by the fact that the “shared line
of sight” of the users on the video wall is awarded with intensive crossover behavior
and “distance” is punished with “mutated” offspring.

An interesting aspect in the work of Fels and Manzolli is the absence of any
kind of fitness function. This approach enables the system to produce a constantly
changing output that, on the one hand, does not approximate an “ideal state,” but
on the other hand, moves within a musical range which is given by the respective
structural proximity of the chromosomes to the “hidden melody.”

7.4.7 Artificial Life-Forms

By means of genetic algorithms, Peter Todd and Gregory Werner, as well as Palle
Dahlstedt and Matts Nordahl, simulated artificial life-forms in which “individuals”
interact in different ways.

Todd and Werner [44] examined different conditions for passing over and eval-
uation of melodic material by means of a system of algorithmic composition. A
number of “males” are selected by “females” on the basis of the attractiveness of
their “love songs” (32 tone pitches from a two-octave range) for mating that pro-
duces offspring through genetic operations. Each female disposes of a matrix of
transition probabilities representing the expectations for particular transitions. The
matrices of the female population are initialized with simple folk song melodies and

16 Cf. also: target pattern in [18], pattern comparison in [11], [12], and [13]; the “hidden melody,”
however, does not act as a fitness function in contrast to these approaches.

7.4 Genetic Algorithms in Algorithmic Composition 181

compared with the productions of the males in three different ways. In the first case,
each new transition that is “heard” is compared with the transition probabilities of
the matrix and all obtained values are finally added to the evaluation of the “love
song.” If, for example, the minor sixth scored highest in the comparison matrix –
meaning that it occurred most frequently in the coded songs – a “love song” by
a male consisting mainly of this transition receives very high ratings accordingly.
Because only the attractiveness of every single interval step is measured in this so-
called “local transition preference,” an evaluation of the entire musical structure is
therefore deliberately avoided. In the second method, the “global transition prefer-
ence,” a matrix with transition probabilities is generated for each male production
that is compared with the comparison matrix of the female. So, in this case, similar-
ity is evaluated with regard to the total structure of the “love song.” In order to avoid
the development of unvaried material, the “surprise preference” is implemented as
a last method. Here, an evaluation occurs based on the sum of each difference be-
tween the transition with the highest expectation and every single transition of the
“love song,” meaning that precisely the most surprising movements – the ones oc-
curring least frequently in the comparison matrix – are rated highest. An additional
input variable (2 to 20) determines how many selected males are evaluated by the
females at the same time. Through a combination of the abovementioned evaluation
possibilities, each female finally chooses a male for mating and the process is car-
ried out by crossover or mutation of the two genomes. The offspring is copied into
the population and when a critical amount is reached, a randomly chosen third of
the population is deleted. Each female generates one offspring with a male partner.
With the males, the evaluation of their melodies decides the number of mating part-
ners. As a further extension of this model, Todd and Werner allow modifications of
the female transition tables by coevolving with the productions of the males – an
alternative that leads to greater variability in the gene pool.

Palle Dahlstedt and Matts Nordahl [7] developed an artificial world of interacting
creatures that can walk, eat and search for mating partners. The individuals move on
a grid and can walk in eight different directions; these are either limited by walls,
or the grid has a toroidal structure.17 The creatures move in time cycles that also
influence the lifetime of the individuals. Chances of survival can be improved by
eating the food stored on the grid. Activities such as singing, walking and mating
reduce life points that are thrown out in the world as randomly distributed food.
The genome of the individuals consists of two parts. The “sound genome” contains
melodies of up to ten notes, the first note indicating the species to which the creature
belongs. The “procedural genome” controls the actions of the individual as an as-
sociated function that is generated by genetic programming.18 A creature dies if its
life points decrease below a particular threshold, when a given age limit is exceeded
or when the genome length exceeds a critical value. The criteria for mating result
from the requirement for a minimal number of necessary life points, sexual matu-
rity (expressed by a particular number of lived time steps) as well as the necessity

17 For torus, see chapter 8.
18 The instructions used here are: “WALK,” “TURN,” “REST,” “SING,” “LOOP” and “IF,”
whereas “LOOP” and “IF” cannot be nested and “TURN” may be used for different directions.

182 7 Genetic Algorithms

of a direct proximity to a mating partner of the same species, expressed by the same
first note or a same first interval. A further criterion for successful reproduction that
occurs by means of crossover of the single genomes is the existence of suitable
melodies that do not necessarily have to come from the selected partner. Dahlstedt’s
and Nordahl’s system features a number of other parameters for the production of
musical structure which always makes the total activity of the “biological” system
audible.

The works of Todd and Werner19, as well as those of Dahlstedt and Nordahl,
show interesting application possibilities of genetic algorithms in systems of algo-
rithmic composition that refer to the behavior of individuals in biological habitats
in an inventive way.

Another approach that deals with biological processes is evident in some works
that make use of the sonification of genetic structure. In these, however, the search
for mapping strategies for an adequate representation of genetic sequences in mu-
sical structure is in the foreground [15, 14, 9]. A number of systems apply genetic
algorithms to sound synthesis, a field that is, however, not in the scope of this work.

7.5 Synopsis

Genetic algorithms as a method of heuristic state space search have, in addition
to neural networks, a special position among the methods of algorithmic compo-
sition.20 The architecture of this class of algorithms promotes the production of a
large number of small form segments in the generation of musical structure. An es-
sential feature of a genetic algorithm is the continuous generation and examination
of symbol strings – a procedure that is highly suitable for process-like composi-
tional concepts. Besides the fitness evaluation, which is of crucial importance, the
way the musical information is encoded in the chromosomes plays an essential role.
Among the different methods mentioned, the decision for an absolute or relative en-
coding of tone pitches has the greatest effect on the results of the genetic operations.
When a chromosome symbol is modified, in an absolute representation (e.g. desig-
nating concrete tone pitches) the following pitches remain untouched. In a relative
encoding (intervallic), all succeeding pitches change corresponding to the value of
the transposition. The relative representation allows for tone pitch transposition of
whole segments and by this, provides a traditional procedure of musical structure
modification. If, however, the transposition only applies to one voice of a poly-
phonic movement or an undesired abrupt modulation occurs through this operation,
an absolute representation of the chromosomes will be preferable. The mutation of
a chromosome symbol produces a larger modification of absolute tone pitches in

19 See also [42] – in this article, numerous other approaches of genetic algorithms are treated
in detail, particularly considering the differently generated fitness functions. Further interesting
reading should be found in the newly published book edited by Miranda and Biles [27].
20 Markov models, generative grammars, transition networks, Lindenmayer systems and cellular
automata are equivalent in some configurations.

7.5 Synopsis 183

relative representation as compared to the absolute variant. This makes the effects
of the mutation, on the one hand, more difficult to foresee, on the other hand, a
larger genetic variety is produced within one generation. Better results may gener-
ally be achieved in genetic algorithms with representation procedures that represent
the complexity of different aspects of musical information. An interesting aspect
besides the abovementioned strategies is given by Michael Mozer,21 who develops
a multi-dimensional representation system based on perceptive principles for his
neural network.

The operations of the traditional genetic algorithm, such as crossover and muta-
tion are, in some works, extended or replaced by manipulating the musical material
by means of mirror, crab, etc. The application of this approach, however, is not
always suitable because on the one hand, these musical transformations do not rep-
resent generally accepted principles, but are, for example, only used in the context of
particular styles in order to create formal relations between musical components in
the western musical tradition. On the other hand, another problem arises in the appli-
cation of these transformations within a genetic algorithm. The transformations of
crab, mirror and simple transpositions refer in general to musical segments formally
belonging together. Because, however, a genetic algorithm generally generates new
outputs by continuously arranging fragments of chromosomes, correspondingly, dif-
ferent transformations within a chromosome are combined and therefore lose their
structural functions. A genetic algorithm achieves locally acceptable results very
fast; the generation of larger musical fragments, however, is a major problem be-
cause, in analogy to the above example, in every genetic operation the context is
completely changed within the chromosome. If, for example, the chromosomes rep-
resent chord progressions, it is highly probable that with every crossover an unde-
sired abrupt modulation also results. As shown in the work of Mc Intyre, a large
population and a large number of generations are therefore not able to respond to
this problem adequately. If, according to this, specific knowledge about the domain
to be modeled is available for the task of style imitation, rule-based procedures nat-
urally prove to be superior to genetic algorithms as demonstrated very clearly in
the examination of Phon-Amnuaisuk and Wiggins. Even though no domain-specific
knowledge is available, but a corpus of correct compositions for the examination
of style conformity may be provided, the application of other procedures such as
Markov chains or generative grammars is recommended because these are better
able to process context-dependent information. These techniques also have special-
ized methods that can better accomplish the generation of globally acceptable struc-
ture.22

The fitness evaluation in the genetic algorithm is the decisive factor with regard
to the quality of the generated material. The fitness function may be carried out with
different evaluators. If the evaluation is not performed by a human user, which im-
plies the previously mentioned problem of fitness bottleneck, rule-based procedures
or neural networks may be applied for the examination of the generated material. An

21 Cf. Michael Mozer’s work treated in chapter 9.
22 E.g. the Viterbi algorithm in hidden Markov models (chapter “Markov Models”) or Kohonen’s
“Self-Learning-Grammars” (chapter 4).

184 7 Genetic Algorithms

algorithmic fitness evaluation of this kind, however, has two serious disadvantages.
First, the evaluated algorithm could itself undertake the task of generating material
instead of only acting as an instance of examination – in this case, the genetic al-
gorithm only provides a great number of material to be examined that rarely yields
correct results due to the hardly feasible treatment of context in the generation pro-
cess. Secondly, the creation of an algorithmic fitness evaluation – except for simple
rules of music theory – is in a musical context a very difficult undertaking because
the fitness function in this case would have to represent an absolutely valid qual-
ity criterion for the judgment of a number of mutually connected and influencing
musical factors. This is, firstly, extremely difficult to put into practice and secondly,
makes the genetic algorithm itself unnecessary in the framework of a possible imple-
mentation within a particular knowledge-based system. One principal alternative for
the improvement of evaluations is to apply fitness functions to a series of different
quality criteria, and also to numerous stages, as is done in some of the mentioned
works. However, here too, the problem often arises whereby, in improving a cer-
tain fitness dimension, the already received fitness of another category is worsened
again.

Therefore, for the field of style imitation, the development of an algorithmic fit-
ness evaluation is, due to the aforementioned reasons, a challenging problem. On the
other hand it is precisely the specific behavior of the genetic algorithm that makes
it so suitable for a number of alternative tasks. The permanent modification of mu-
sical material, the generation of a great number of differently interpretable amounts
of data, as well as the immanently time-dependent aspect – the permanent passing
of the multiple cycle of production, modification and examination – are aspects of
great interest for numerous compositional approaches. A further strength of the ge-
netic algorithm is also shown in some of the previously mentioned systems that in
an innovative way use behavior in a “biological habitat” as a source of inspiration.

References

1. Biles JA (1994) GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of the
1994 International Computer Music Conference. International Computer Music Association,
San Francisco

2. Biles JA (1995) GenJam Populi: training an IGA via audience-mediated performance. In:
Proceedings of the 1995 International Computer Music Conference. International Computer
Music Association, San Francisco

3. Biles JA (1998) Interactive GenJam: integrating real-time performance with a genetic algo-
rithm. In: Procedings of the 1998 International Computer Music Conference. International
Computer Music Association, San Francisco

4. Biles JA (1999) Life with GenJam: interacting with a musical IGA. In: Proceedings of the
1999 IEEE International Conference on Systems, Man and Cybernetics, vol 3. IEEE, Pisca-
tory, NJ, pp 652–656

5. Biles JA, Anderson PG, Loggi LW (1996) A neural network fitness function for a musical
IGA. In: Anderson PG, Warwick K (eds) IIA ’96/SOCO ’96: first international ICSC sym-
posium on intelligent industrial automation (IIA ’96) and soft computing (SOCO ’96). ICSC,
Millet, Alberta, pp B39-B44

References 185

6. Burton AR (1998) A hybrid neuro-genetic pattern evolution system applied to musical com-
position. Dissertation, University of Surrey, 1998

7. Dahlstedt P, Nordahl MG (2001) Living melodies: coevolution of sonic communication.
Leonardo, 34/3, 2001

8. Darwin C (1859) On the origin of species by means of natural selection, or the preservation
of favoured races in the struggle for life. John Murray, London

9. Dunn J, Clark MA (1999) The sonification of proteins. Leonardo, 32/1, 1999
10. Fels S, Manzolli J (2001) Interactive, evolutionary textured sound composition. In: Jorge JA,

Correia NM, Jones H, Kamegai MB (eds) Multimedia 2001: Proceedings of the Eurographics
workshop in Manchester, United Kingdom, September 8–9, 2001. Springer Wien, pp 153–164

11. Gartland-Jones A (2002) Can a genetic algorithm think like a composer? In: Proceedings
of 5th International Conference on Generative Art, Politecnico di Milano University, Milan,
2002

12. Gartland-Jones A (2003) MusicBlox: a real-time algorithmic composition system incorporat-
ing a distributed interactive genetic algorithm. In: Raidl G et al (eds) Applications of evolu-
tionary computing. Lecture notes in computer science, vol 2611. Springer, Berlin, pp 490–501

13. Gartland-Jones A, Copley P (2003) The suitability of genetic algorithms for musical compo-
sition. Contemporary Music Review, 22/3, 2003

14. Gena P, Strom C (2001) A physiological approach to DNA music. In: Proceedings of CADE
2001: the 4th Computers in Art and Design Education Conference, Glasgow, 2001

15. Gena P, Strom C (1995) Musical synthesis of DNA sequences. XI Colloquio di Informatica
Musicale, Univeristà di Bologna, 1995

16. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Ad-
dison Wesley, Bonn. ISBN 0-201-15767-5

17. Holland J (1975) Adaption in natural and artificial systems. University of Michigan Press,
Ann Arbor, Michigan

18. Horner A, Goldberg DE (1991) Genetic algorithms and computer-assisted music composi-
tion. In: Proceedings of the 1991 International Computer Music Conference. International
Computer Music Association, San Francisco

19. Horowitz D (1994) Generating rhythms with genetic algorithms. In: Procedings of the 1994
International Computer Music Conference. International Computer Music Association, San
Francisco

20. Jacob BL (1994) Composing with genetic algorithms. In: Proceedings of the 1994 Interna-
tional Computer Music Conference. International Computer Music Association, San Fran-
cisco

21. Jacob BL (1996) Algorithmic composition as a model of creativity. Organised Sound, 1/3,
December, 1996

22. Johanson B (1997) Automated fitness raters for the GPMusic system. Masters Degree Final
Project, University of Birmingham, 1997

23. Johanson B, Poli R (1998) GP-Music: an interactive genetic programming system for music
generation with automated fitness raters. In: Koza JR et al (eds) Genetic programming 1998.
Morgan Kaufmann, San Francisco

24. Koza JR (1992) Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, Mass. ISBN 0-262-11170-5

25. Manzolli JA, Moroni F, Von Zuben R, Gudwin R (1999) An evolutionary approach applied to
algorithmic composition. In: Proceedings of SBC99 - XIX National Congress of the Compu-
tation Brazilian Society, Rio de Janeiro, 3, 1999

26. Mc Intyre RA (1994) Bach in a Box: the evolution of four part Baroque harmony using the ge-
netic algorithm. In: Proceedings of the First IEEE Conference on Evolutionary Computation,
Orlando, Florida, 1994, vol 2. IEEE, Piscataway, NJ, pp 852–857

27. Miranda ER, Biles JA (eds) (2007) Evolutionary computer music. Springer, London. ISBN
13 978-1-84628-599-8

28. Moroni A, Manzolli J, Von Zuben F (2000) Composing with interactive genetic algorithms.
In: Proceedings of SBC2000 – Congresso da Sociedade Brasileira de Computação, 2000

186 7 Genetic Algorithms

29. Papadopoulos G, Wiggins G (1998) A genetic algorithm for the generation of jazz melodies.
STeP98, Jyväskylä, Finland, 1998

30. Pazos A, Santos A, Dorado J, Romero-Cardalda JJ (1999) Adaptative aspects of rhythmic
composition: Genetic Music. In: Banzhaf W (ed) GECCO ’99: proceedings of the Genetic
and Evolutionary Computation Conference, vol 2. Morgan Kaufmann, San Francisco

31. Pazos A, Romero-Cardalda JJ, Santos A, Dorado J (1999) Genetic Music Compositor. In:
Proceedings of 1999 Congress on Evolutionary Computation, vol 2. IEEE, Piscataway, NJ.
pp 885–890

32. Pearce M (2000) Generating rhythmic patterns: a combined neural and evolutionary approach.
Dissertation, Department of Artificial Intelligence, University of Edinburgh, 2000

33. Phon-Amnuaisuk S, Tuson A, Wiggins G (1999) Evolving musical harmonisation. In: Dob-
nikar A, Steele NC, Pearson DW Albrecht RF (eds) Artificial neural nets and genetic algo-
rithms: proceedings of the International Conference in Portoroz, Slovenia, 1999. Springer,
Wien, pp 229–234

34. Phon-Amnuaisuk S, Wiggins GA (1999) The four-part harmonisation problem: a comparison
between genetic algorithms and a rule-based system. In: Proceedings of the AISB ’99 Sym-
posium on Musical Creativity. Society for the Study of Artificial Intelligence and Simulation
of Behaviour, Edinburgh

35. Pigg P (2002) Cohesive music generation with genetic algorithms.
http://web.umr.edu/ tauritzd/courses/cs401/fs2002/project/Pigg.pdf Cited 11 Nov 2004

36. Rechenberg I (1973) Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzboog, Stuttgart

37. Santos A, Arcay B, Dorado J, Romero J, Rodrı̀guez J (2000) Evolutionary computation sys-
tems for musical composition. In: Mastorakis NE (ed) Mathematics and computers in modern
science. World Scientific and Engineering Society Press, Athens. ISBN 960 8052 238

38. Seebach G (2004) Evolutionsstrategien.
http://www.seebachs.de/Evolutionsstrategien.html Cited 4 Mar 2005

39. Spector L, Alpern A (1994) Criticism, culture, and the automatic generation of artworks. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence. American Associ-
ation for Artificial Intelligence, Menlo Park, Calif

40. Spector L, Alpern A (1995) Induction and recapitulation of deep musical structure. In: Work-
ing Notes of the IJCAI-95 Workshop on Artificial Intelligence and Music

41. Spector L (1995) Evolving control structures with automatically defined macros. In: Working
Notes of the AAAI Fall Symposium on Genetic Programming. American Association for
Artificial Intelligence, Menlo Park, Calif

42. Todd PM, Werner GM (1998) Frankensteinian methods for evolutionary music composition.
In: Griffith N, Todd PM (eds) Musical networks: parallel distributed perception and perfor-
mance. MIT Press/Bradford Books, Cambridge, Mass. ISBN 0262071819

43. Towsey M, Brown A, Wright S, Diederich J (2001) Towards melodic extension using genetic
algorithms. Education Technology & Society, 4/2, 2001

44. Werner GM, Todd PM (1997) Too many love songs: sexual selection and the evolution of
communication. In: Husbands P, Harvey I (eds) (1997) Fourth European Conference on Arti-
ficial Life. MIT Press/Bradford Books, Cambridge, Mass. ISBN 0262581574

45. Wiggins G, Papadopoulos G, Phon-Amnuaisuk S, Tuson A (1999) Evolutionary methods for
musical composition. International Journal of Computing Anticipatory Systems, 1999

Chapter 8

Cellular Automata

Cellular Automata (CA) are, for the most part, used to model discrete dynamic sys-
tems. The temporal development of the system is represented in an n-dimensional
cell space. The cell space is represented by vectors or n-dimensional matrices
whereas the dimension is assumed to be principally infinite. Within this space there
are cells that may assume a finite number of states. The state of a cell at a discrete
timestep t0 is determined by its own state as well as the states of the neighbor-
ing cells at timestep t−1. In nearly every type of cellular automaton, only discrete
changes of state are taken into consideration. Each cell of the grid must follow the
same state transition rules. A new state of a cellular automaton results from the
application of the state transition rules to all cells of the cell space.

8.1 Historical Framework and Theoretical Basics

From 1922 on, the German physicist Wilhelm Lenz and his student Ernst Ising ex-
amined the properties of ferromagnetism. The so-called “Ising model” acts based
on the assumption that, in magnetizing a ferromagnetic substance, the magnetic
moments of the atoms can only assume two states. Furthermore, paired interactions
between neighboring particles occur that eventually lead to a state of collective order
in the system. The “Ising model” may be considered as a general model of interact-
ing particles and may also be applied to phenomena such as the condensation in
gases. Because the interactions in the “Ising model” occur in analogy to the rules
in a cellular automaton, this model may be considered a forerunner of this class of
algorithms.

The first theories concerning cellular automata in the strictest sense were devised
in the 1950s by Konrad Zuse, Stanislav Marcin Ulam and John von Neumann. Kon-
rad Zuse developed an alternative description of physics with a model he calls the
“Calculating Space” [34]. In this virtual space, information is exchanged by means
of interactions of adjacent cells. The elementary units of this “information contin-
uum” are represented by different states that the cells can assume. Beginning in

187

188 8 Cellular Automata

Fig. 8.1 Stanislav Martin Ulam. Courtesy Los Alamos National Laboratory. Reproduced with kind
permission.

1942, when Ulam was working under the direction of Oppenheimer on the “Man-
hattan project,” he developed in his free time a principle for the computer in Los
Alamos that allows for creating complex graphic patterns by means of interacting
objects to be produced by a printer. His “recursively defined geometric objects”
are simply cells of a cellular automaton whose state changes occur based on the
states of the circumjacent cells. Inspired by Ulam’s concepts, von Neumann devel-
oped groundbreaking ideas for the application of this newly discovered principle
amongst others by using the model of a universal computer with the ability to self-
reproduce. Due to his early death in 1957, von Neumann was unable to finish this
line of research. His considerations were later further developed by the American
philosopher and computer scientist Arthur W. Burks, who also published von Neu-
mann’s “Theory of Self-Reproducing Automata” [28] in 1966. In the beginning of
the 1970s, cellular automata gained unexpected popularity due to John Horton Con-
way’s “Game of Life” (GoL), which was presented to a broad public in the monthly
rubric on mathematical games of the magazine “Scientific American” [15]. Conway
worked with different initial configurations of his cellular automaton for a few years
in order to evoke different patterns of behavior. The behavior of cellular automata
became the subject of broader scientific examination. William Gosper, an expert on
artificial intelligence at the Massachusetts Institute of Technology (MIT), resolved
one of Conway’s integral issues concerning self-reproducing structures within the
GoL with his “glider gun.” Furthermore, cellular automata also find application in
the simulation of physical processes. Ed Fredkin founded the Information Mechan-
ics Group at the MIT that was increasingly devoted to this aspect of cellular au-
tomata. In 1987, Fredkin’s colleagues Tomaso Toffoli and Norman Margolus pub-
lished a study [31] which dealt with the modeling of physical processes as well as
basic theoretical reflections on the application of cellular automata. Carter Bays of

8.2 Types of Cellular Automata 189

the University of South Carolina worked to extend cellular automata into the third
dimension, modeling his work on the “Game of Life.” [1].

Fig. 8.2 Stephen Wolfram. c© 2002 Stephen Wolfram, LLC. All rights reserved. Used with per-
mission.

The British mathematician Stephen Wolfram considers the theory of cellular au-
tomata an evolution of the whole scientific field. In the preface of his book “A New
Kind of Science,” published in 2002, he writes: “Three centuries ago science was
transformed by the dramatic new idea that rules based on mathematical equations
could be used to describe the natural world. My purpose in this book is to initiate
another such transformation, and to introduce a new kind of science that can be em-
bodied in simple computer programs.” [33, p. 1]. According to Wolfram, cellular
automata make revolutionary models and problem solving strategies possible for a
wide field of natural scientific and humanistic as well as artistic disciplines.

8.2 Types of Cellular Automata

8.2.1 1-Dimensional Cellular Automata

The simplest form of a CA consists of cells that may assume two states dependant
on two neighboring cells. The state of the adjacent cell and that of the given cell
make up the so-called “neighborhood” which may assume 23 possible configura-
tions. From the eight possible states of the neighborhood that each may cross over
into two possible states of the given cell, 28 possible transition descriptions for this
class of CA result. Naturally, more distant cells whose number is determined by the
“radius” (R) may also be involved. So, given R = 2, for example, the four adjacent
cells, as well as the given cell are considered, enabling 25 possible configurations of
the neighborhood. The neighborhood and the states in a 1-dimensional cellular au-

190 8 Cellular Automata

tomaton are also sometimes represented by K(m)R(n), K(m) indicating the number
of cell states and R(n) representing the radius of the neighborhood. The states of a
neighborhood are usually noted as binary symbol strings in a row. In the next row,
the resulting successive states of the given cells are also represented as binary val-
ues. The value of the second row specifies the number of the transition description
or the rule of the CA, always assuming the same order of the state groups in the first
row (configurations of three, arranged as binary values, ascending from right to left
(see figures 8.4 and 8.5). Wolfram classifies 1-dimensional cellular automata into
four basic types:

• Class 1: The CA shows simple behavior and evolves to a homogeneous final
state.

• Class 2: The CA leads to different final states consisting of simple stable or peri-
odically repeating structures.

• Class 3: The CA shows apparently chaotic and random behavior.
• Class 4: The CA produces complex patterns that may also repeat self-similarly.

A graphic representation of the behavior of these classes is indicated in figure 8.3.
In all images, one single state is shown as one line; evolution in time begins at the
top line and moves downward. The depiction of the behavior of the automata within
these classes is simplified here to a large extent. Moreover, it must be considered
that a CA on a finite toroidal (see below) grid will always display periodic behavior
due to the fact that the possibilities with regards to placing cells on this grid are
finite. So, if a CA perpetually generates new settings of cells (patterns) on a grid,
a pattern must inevitably recur at some point. Because a traditional CA is based on
deterministic rules, from now on, the patterns on the grid will constantly be repeated
within this period. Given an infinite grid and a correspondingly infinite memory in a
computer, a particular CA could naturally and continually generate its patterns anew
without ever lapsing into a cycle.1

Fig. 8.3 The four classes (from left to right) of 1-dimensional cellular automata [33, p. 231]. c©
2002 Stephen Wolfram, LLC. All rights reserved. Used with permission.

Figure 8.4 shows a cellular automaton of class 3 of rule 30. The representation
depicts the changes of the CA in a cycle from top to bottom.2

1 But due to the fact that even space is curved, this innovative CA will, unfortunately, also fall into
a periodical cycle.
2 The graphic representations were produced with the software program Mcel [32], unless other-
wise noted.

8.2 Types of Cellular Automata 191

Fig. 8.4 Cellular automaton of rule 30 – graphic representation in 75 iteration steps.

Figure 8.5 shows a cellular automaton of class 4 of rule 90.

Fig. 8.5 Cellular automaton of rule 90 – graphic representation in 63 iteration steps.

The structure resulting from this CA represents a self-similar so-called “Sierpin-
ski triangle”; self-similar structures may also be easily generated with a Linden-
mayer system (see chapter 6).

8.2.2 2-Dimensional Cellular Automata

The best known example of a 2-dimensional cellular automaton is Conway’s “Game
of Life.” The initial configuration is presented as follows: “To play life you must
have a fairly large checkerboard and a plentiful supply of flat counters of two colors.
(Small checkers or poker chips do nicely.) An Oriental go board can be used if you

192 8 Cellular Automata

can find flat counters that are small enough to fit within its cells.” [15, p. 1]. An
arbitrary arrangement of counters forms the initial point. This CA follows three
basic rules:

• If an empty cell has exactly three adjacent neighbors, a counter is placed on it at
the next move.

• Every counter with two or three neighboring counters survives for the next gen-
eration.

• In every other case, no counter is placed on the cell.

The term “checkerboard” must be seen as an analogy here, because in contrast
to board games, the evolving patterns are generated by the state changes of the
individual cells of the system, and not by changing the local positions of single
components. The dimension of a CA’s grid is generally assumed to be infinite. In a
finite observation space, the grid behaves similarly to a torus (figure 8.6). Because
the surface of a torus may be depicted without singularities on a square area, in
a 2-dimensional representation, “leaving” the observed grid on one side leads to
“entering” it on the opposite side.

Fig. 8.6 2-dimensional grid mapped on a torus.

In figure 8.7, a simple configuration forms the basic pattern of the CA. By ap-
plying the rules of the “Game of Life,” in this initial configuration a development
occurs that finally grinds to a halt by oscillating between two stationary patterns.

Fig. 8.7 Variation of a simple initial configuration by the rules of the GoL.

The complex behavior of a cellular automaton in the context of the “Game of
Life” shows particularly in a widely spread initial configuration. In some initial
configurations of the GoL, some patterns have the ability to “move” over the grid of
the CA without changing structure. Others change their initial configuration and are
recreated after a certain number of cycles.

8.2 Types of Cellular Automata 193

For the description of these and similar phenomena in particular initial config-
urations, a specific terminology is used. For example, “space ships” refer to finite
patterns that reappear after a number of generations in changed position but with
same orientation. “Puffers” move over the grid emitting elements of higher (“clean
puffer”) or lower (“dirty puffer”) order.3

8.2.3 3-Dimensional Cellular Automata

If a 2-dimensional CA is represented within a 3-dimensional structure, where the
third axis indicates the steps of the temporal development, this leads to a pseudo-3-
dimensional CA, as shown in figure 8.8.

Fig. 8.8 Pseudo-3-dimensional CA [33, p. 172]. c© 2002 Stephen Wolfram, LLC. All rights re-
served. Used with permission.

The chronological development of a real 3-dimensional CA may be represented
by means of a cube in which, however, 26 cells must always be taken into account.
Figure 8.9 illustrates some of the stages of a 3-dimensional CA with a very simple
generation rule: A cell is activated when precisely one of its adjacent cells is active,
whereas already active cells remain in their active state.

3 For a detailed description of the different types see [30].

194 8 Cellular Automata

Fig. 8.9 Chronological development of a 3-dimensional CA [33, p. 183]. c© 2002 Stephen Wol-
fram, LLC. All rights reserved. Used with permission.

8.2.4 Extended Types of Cellular Automata

Whereas the state changes of a cellular automaton generally occur in discrete steps,
functions that provide continuous values, usually between 0 and 1, may also be
used for these processes; these automata are commonly referred to as continuous
automata [33, p. 921–922]. Another extension of the traditional CA is given by the
implication of chance. By means of a probability-based selection, different rules for
the same cell configuration may be applied in this case. As another option, the rule
of the CA may also define a probability for the next state of the cell [33, p. 922, 591–
592]. In the types of automata mentioned so far, a rectangular grid is assumed; other
shapes, however, may also be chosen.4 A cellular automaton may also be created in
more than three dimensions.5

These variants are only a few examples of extended formalisms of cellular au-
tomata: “In a general way, it is possible to build any type of automata by playing on
structural and functional rules. The first ones define the spatial structure of the au-
tomata network, that is its number of dimensions, the disposition of cells (squares,
hexagons,. . . in a two dimensional automaton) and the type of neighborhood deter-
mination. The second ones will determine the number of states and the transition
rules.” [29, p. 5].

4 E.g. CA with triangular cells and 6 neighbors each, cf. [2].
5 A 4-dimensional application of the “Game of Life” can be found in [18].

8.3 Cellular Automata in Algorithmic Composition 195

8.3 Cellular Automata in Algorithmic Composition

Peter Beyls was one of the first to use cellular automata for the generation of mu-
sical structure [3]. As an expansion on traditional approaches, Beyls established
additional methods for the definition of the neighborhood. Furthermore, a greater
number of previous states of a cell may be considered for the calculation of the next
state. Musical mapping on tone pitches is carried out by assigning pitches of a scale
chosen by the user to the cell positions. Rhythmic values result from the rule that
successive identical pitches lead to a held note. The instrumentation of the musi-
cal structure is completed for each event by the assignment of a MIDI channel that
corresponds to the index of the respective cell modulo the number of the available
MIDI channels.

In another work [4], Beyls introduced a 2-dimensional cellular automaton and
enables the user to alter different parameters in real time. For the application of
rules, in addition to the current state of the neighborhood, previous states may also
be considered. The generations in the first CA may be modified by a user through
the activation of particular cells6 or also, by changing the generation rule in regard
to the considered radius of the neighborhood. The time-averaged behavior of each
cell is saved as a measure of its degree of activity. In order to avoid stationary situa-
tions in the CA, cells that are active within a particular time period are deactivated;
the duration of this period may be set variably. An additional method that can be
used to affect the activity of the CA is to modify the generation rule depending on
Chris Langton’s Lambda parameter.7 This value measures the number of cells that
transition to an active state in the following generation and indicates a proportional
relation between the activated and non-activated cells. Cellular automata with a pa-
rameter value between 30% and 40% prove to be particularly productive. The user
enters a value for λ – the rule of the CA is then modified until the behavior of the
automaton corresponds to the desired activation behavior.

In a later work [5], Beyls described his software CA Explorer which, for the gen-
eration of musical structure, uses 1-dimensional cellular automata and Lindenmayer
systems that are subsequently further processed by a genetic algorithm.

Beginning in 1990, Dale Millen developed Cellular Automata Music [19, 21], in
which the data of 1- to 3-dimensional cellular automata may be mapped in a grid
on MIDI values assigning pitch and duration values. In another work [20], Millen
described the behavior of an interesting 1-dimensional cellular automaton with two
possible states per cell and a neighborhood consisting of five cells (K2R2): “The
list of rule results may contain instances of repeating sequences of various lengths.
Some of these repeating sequences possess an internal structure that can be de-
scribed as consisting of repetition with variation.” [20, p. 398]. This CA is assumed
to have a grid size of ten units; each of the 25 distinct states of the neighborhood is
indicated by numbers between 0 and 31. In the following example, the cells 4, 5 and

6 A “cell” in this context – as in some of the following works as well – often also refers to a distinct
cell on a particular position in the grid.
7 Cf. [17], for a detailed description also see [14, p. 242ff].

196 8 Cellular Automata

8 are set to “1” (active) in the initial configuration and the rest of the cells are deacti-
vated. For the musical mapping, only the values of the cells 1, 5 and 9 are considered
in further generations. The following rule for the cellular automaton is agreed upon:
The neighborhood configurations 2, 6, 7, 11, 12, 15, 16, 17, 21, 22, 26, 27, 30 that
represent the neighborhood as five-digit binary numbers cause the activation (1) of
the middle cell in the next generation. The table below shows the first generations
in an initial configuration of 0 0 0 1 1 0 0 1 0 0. For the musical mapping, the neigh-

1 2 3 4 5 6 7 8 9 10
Gen0 0 0 0 1 1 0 0 1 0 0
Gen1 0 0 0 1 1 0 0 0 0 1
Gen2 0 1 0 1 1 0 1 0 1 0

borhood configurations of each cell are mapped on MIDI pitches between 60 and 90
(table 8.1). With a neighborhood state of 0, a pause is set. In the table, in generation
1, for example, the resulting value for the mapping of cell 1 is 8 and for the 5th and
9th cell the values are 12 and 2 , according to the neighborhoods 0 1 0 0 0, 0 1 1 0 0
and 0 0 0 1 0. From the first three generations of the observed cells on, regular pat-
terns within the number sequences are produced in the next 40 generations. In order
to represent the regularity more clearly, the values of the periodic sequence are di-
vided into 23 entries each, whereas in the first row of table 8.1, the three previously
mentioned generations are depicted. In another work [21], Millen described a newer

0 12 8 8 12 2 18 13 20
1 27 16 17 23 20 6 8 9 5 19 17 24 3 22 26 2 14 4 13 17 24 10
6 27 16 6 23 20 5 8 9 26 19 17 20 3 22 0 2 14 8 13 17 19 10
6 2 16 6 12 20 5 29 9 26 2 17 20 12 22 0 13 14 8 11 17 19 20
6 2 9 6 12 1 5 29 17 26 2 6 20 12 5 0 13 24 8 11 26 19 20
4 2 9 24 12 1 27 29 17 23 2 6 8 12 5 19 13 24 3 11 26 2 20
4 13 9 24 10

1 27 16 17 23 20 6 8 9 5 19 17 24 3 22 26 2 14

Table 8.1 Regularities in the production of a CA.

version of Cellular Automata Music that implements the above mentioned princi-
ples in an extended form. The size of the grid is enlarged considerably herein; in
addition, it is possible to modify the selection of the columns used for the mapping
during playback. For the mapping of the pitches, the user may select from a number
of predefined or self-designed scales. Timbre results from assigning MIDI channels
to single cell columns. This automaton develops its generations within an adjustable
time cycle that determines tempo. The duration of every sonic event depends on the
density of the neighborhood. In this version, the software allows for the processing
of 1-dimensional cellular automata of the types K2R1, K3R1, and K2R2. The user

8.3 Cellular Automata in Algorithmic Composition 197

specifies the CA type and the rule, chooses the size of the grid and selects up to 16
cells of the CA grid that different MIDI channels are assigned to.

An early application of an interactive composition system that is based on cel-
lular automata is developed by Andy Hunt, Kirk Ross and Richard Orton with the
software Cellular Automata Workstation. [16]. In this system, 1-dimensional cellu-
lar automata with two states and different radiuses may be used for the generation
of musical structure. In a simple mapping, the user defines the rule number and
selects a particular number of cell positions whose chronological development is
transformed into musical output. The automaton starts with the generation of its
states at a rate that is set by the user. Ascending from left to right, the cell positions
are assigned MIDI values that represent tone pitches – a transposition of the entire
tone pitch range may be preset. The pool of pitches for the musical mapping may be
chosen variably for distinct segments of generation of the CA, whereas the type of
transition ranging from a sudden change to smooth crossfading is also determined
by the user. Musical mapping may also be carried out by using values of cell areas
as control parameters for synthesis processes.

In 1993, Eduardo Reck Miranda8 began the development of CAMUS (from Cel-
lular Automata MUSic). This software generates musical structures on the basis of
two cellular automata. In this system, the output of Conway’s Game of Life and of
the Demon Cyclic Space (DCS), a CA created by the mathematician David Grif-
feath [10], are applied. The term “demon” is to be understood here as a “demon of
work,” because this CA continuously generates complex patterns that spread reiter-
atively (Cyclic) on a grid (Space). In a DCS, the cells are initialized with random
values between 0 and an indicated maximal value. These values make up the states
of the CA and are usually associated with colors. The following rules apply for the
behavior of the CA: If a cell has at least one neighbor whose state is higher than its
own state by exactly 1, it is adjusted to the neighbor’s state. Cells with a maximal
value can only be changed by an adjacent cell whose value is 0 and then are assigned
a value of 0 as well. Due to the fact that a cell value of maximum +1 changes to 0
again, this rule transfers the idea that cell space behaves exactly like the toroidal
grid space.

In Miranda’s system, Conway’s CA serves to generate pitches and durations and
the DCS provides parameters for the instrumentation of the structure. Each cell
generated by the automaton receives its musical parameters due to its position in
a coordinate system. CAMUS interprets the coordinates as triads, the x-axis repre-
senting the interval between a given fundamental tone and the middle chord tone
and the y-axis representing the distance between the middle and the upper chord
tone (figure 8.10).

After each generation of the cellular automaton, the active cells of the GoL are
analyzed sequentially and mapped on the corresponding triads. In order to determine
the temporal shape, the program creates a binary list [s1, s2. . . , s8] for each triad
containing the states of the eight neighboring cells. This list provides the material
for four other lists in the following order: w1: [s1, s2, s3, s4]; w2: [s4, s3, s2, s1];

8 [22, 23, 24, 25, 26]. Further interesting reading should be found in the newly published book
edited by Miranda and Biles [27].

198 8 Cellular Automata

Fig. 8.10 Pitch mapping in CAMUS.

w3: [s5, s6, s7, s8]; w4: [s8, s7, s6, s5]. The temporal shape of the triads results from
the temporal position of the notes as well as their duration. For the succession and
duration parameters, Miranda gives ten configurations that are then combined in
pairs (figure 8.11).

Fig. 8.11 Configurations for the temporal order of the triads.

The temporal order can be obtained by combining two of the abovementioned
lists each. For the temporal organization of a triad, a logical operation is used to
combine w1 and w2, for the durations, w3 and w4 are combined in the same way.
The symbol strings are assigned to the configurations as follows:

0000 a[dn] 0010 adn 0101 and 0111 nad 1011 nda
0001 [dna] 0011 dna 0110 dan 1001 d[na] 1111 n[da]

So, for example with the resulting constellations “nad” and “a[dn],” a time struc-
ture is produced for the triad (figure 8.12, left) which may generate concrete musical
material in case concrete tone pitches and durations are assigned to the triad struc-
ture (figure 8.12, right).9

The configuration of the Demon Cyclic Space determines the instrumentation
of the composition – the value ranges of the DCS being assigned different MIDI

9 Miranda does not describe how the dynamic relationships are generated.

8.3 Cellular Automata in Algorithmic Composition 199

Fig. 8.12 Temporal mapping in CAMUS.

channels; by means of the overlapping of DCS and Gol, the single cells in the GoL
are given their own timbres.

In a 3-dimensional version of CAMUS [9, p. 5], the z-coordinate is used for the
generation of a further chord part; for the production of the temporal structure, a
first-order Markov process is applied.

According to Miranda, CAMUS allows for an efficient application of the be-
havior of two cellular automata on musical structure: “The results of the cellular
automata experiments are very encouraging. They are good evidence that both syn-
thesized sounds10 and abstract musical forms can be successfully modeled using
cellular automata.” [22, p. 11]. Even though Miranda’s musical conceptions can be
successfully realized by CAMUS, the musical mapping, however, deviates from the
fundamental behavioral pattern of a CA: In CAMUS, coordinates of active cells
are mapped on the pitch structure of triads in a grid of a certain size. Due to this
principle, the pitch relationships for each active (meaning sounding) cell are solely
determined by the size of the underlying grid. The grid size is, of course, an essential
parameter for the graphic representation of a CA, but the basic mode of operation
of the CA is determined exclusively by the rule and neighborhood configuration of
every single cell. Indeed, the rule of the CA determines which triad constellations
are made audible, but the eminently important task of shaping the tone pitches is,
however, realized by a peripheral parameter of the CA; this also means that a CA
that has an identical initial configuration and the same rule but a different grid size
provides wholly different musical results. Due to the fact that “active triads” are
additionally read out successively from the grid, a cycle is established that is not
caused by the state changes of all cells in the CA as is generally the case, but is
only observable in the progression from one cell position to another. While these
mapping strategies do not conform to the basic behavior of a CA, this is not nec-
essarily a weakness; it may be considered a legitimate variant to make one’s own
musical preferences audible by means of a system of algorithmic composition. In
this context it is also interesting that the instrumentation of the triads is produced by
the overlapping of two distinct types of CA, thus intentionally forgoing a structural
relation between harmonic and temporal organizations of the triads on the one hand,
and their timbral aspect on the other hand.

10 Miranda refers here to another of his software programs, Chaossynth; cf. [23, p. 3–4].

200 8 Cellular Automata

8.3.1 Polyrhythmic Structures

Alan Dorin has developed interesting applications of cellular automata by using his
system Boolean Sequencer for producing rhythmic structures. In one approach [11],
Boolean networks (BN) are used as structure generators. A BN is a set of connected
nodes; the state of each node is determined by the states of its neighboring nodes,
which are designated as the node’s input. The BN is represented by means of binary
symbol strings; all nodes change their states simultaneously. Dorin applies bars that
correspond to a generation in a 1-dimensional CA. In contrast to a traditional CA,
for every cell position which is represented here by its position in the bar, a partic-
ular rule in the form of a logical function may be selected. Therefore, these logical
functions determine the state of each note on each bar position by the neighborhood
of the notes on the corresponding positions in the previous bar. The OR function
activates the note if either one of the two or both neighbors of the previous note
were active. The XOR function activates the note if one but not both neighbors of
the previous note was active. In this system, NOT activates the note if neither of the
two neighbors was active in the previous state. The AND node requires both of its
neighbors to be active in the previous state of the BN. The activated notes of a bar
are played successively on their temporal position, the BN moves depending on the
defined rules to its new state and the process begins again. In Dorin’s model, the
Boolean networks are implemented as a multitrack system whose tracks are repre-
sented by the single bars. Different rules as well as a particular MIDI channel may
be assigned to each track. During playback, pitch, duration and velocity of the nodes
may be altered.

In another software implementation LIQUIPRISM [12], Dorin used a cube
whose six sides each correspond to the grid of a cellular automaton. For each cel-
lular automaton it may be determined how fast it produces new generations. The
cells of each CA which border an edge of the cube, also count the closest cells on
the adjacent faces as their neighbors. Hence, the usual toroidal structure of the CA
is dissolved and transferred to the topological form of a sphere. For the musical
mapping, each cell is assigned to a particular tone pitch and the sides of the cubes
to different MIDI channels. A note generates a sonic event when the state of the
respective cell changes from 0 to 1. A threshold value may be set that limits the
number of notes that are made audible simultaneously.

8.3.2 Comparison of Cellular Automata

Eleonora Bilotta and Pietro Pantano [7] examined the behavior of different 1-
dimensional cellular automata, applying a musical mapping for the purpose of a
sonification of a dynamic process rather than to the generation of interesting musi-
cal structure. With the so-called “local musification codes,” the cells of the CA are
transferred to pitches: If K (the states) is 2, one tone pitch is determined for each
cell, whereas in K > 2, each state value of the cell is given another tone pitch. In

8.4 Synopsis 201

producing the tone pitches in this way, this code reads the CA line by line from left
to right. By doing that, the usually common simultaneous state change of all cells
of the CA in musical mapping is not considered. “Global musification codes” cal-
culate the total activity in every generation and make it audible by means of musical
mapping. “Mixed musification codes,” in contrast, use segments of a 2-dimensional
representation of numerous generations of a 1-dimensional cellular automaton and
assign musical parameters to these parts. In another work by Bilotta and Pantano[8],
genetic algorithms are applied for the selection of optimal CA rules. As a fitness
function, in the melodic output of the CA, the consonance is measured in intervallic
progressions. Furthermore, repeating structures in terms of motifs are searched for
as well.

In cooperation with Valerio Talarico, Eleonora Bilotta and Pietro Pantano [6] ex-
amined 1-dimensional automata within Wolfram’s four classes in regard to their be-
havior under different rules and the production of periodical appearances of graphic
patterns. According to the authors, the sonified results show that the different ob-
served CA structures are highly distinguishable; concrete examples of the sonifica-
tions, however, are not given.

8.4 Synopsis

Cellular automata are often mentioned together with genetic algorithms within one
category. While the terminologies for both of these methods suggest a close rela-
tion with biological processes, they do not share any common functional principles.
Cellular automata may, however, be compared to substitution systems and above
all context-sensitive Lindenmayer systems that produce symbol strings of the same
length in each generation and by doing this may be equivalent to a 2-dimensional
cellular automaton [13]. Apart from these similarities, the basic differences are,
however, evident. Lindenmayer systems are producing an increasing number of
symbols. Because of their self-similarity the output is easily predictable. A frequent
mapping represents active cells as visible; therefore, if a large number of cells also
change their state to “active” during the CA generations, it suggests an increasing
number of cells. But naturally, the number of cells in a CA remains constant. More-
over, the aspect of self-similarity is – in the same way as it is fundamental in a
Lindenmayer system – possible in some configurations of cellular automata,11 but
is rather an exception than the rule. Properties essential for the operation mode of
a traditional CA are infiniteness and also a toroidal structure of the underlying grid
as well as the irrelevance of the local position of each cell, in case the configuration
of the immediate neighborhood is not considered. Despite the simple rules and the
deterministic character, the behavior of most of the cellular automata is extremely
complex and difficult to predict in the resulting configurations.

11 Cf. the Z1R1 automaton of class four and rule 90, see 1-dimensional automata.

202 8 Cellular Automata

A musical mapping that may be observed frequently does not follow the ba-
sic principles of the CA, but instead uses a mapping of the graphic representation,
which itself already constitutes a mapping of the actual algorithm. In the graphic
representation, the cells seem to move over the grid – an impression that, however,
is only produced by the state changes of all cells of the CA. If values of musical
parameters are assigned to particular positions in the grid, and consequently, a par-
ticular cell state on these positions leads to the output of the respective values, the
principle of irrelevance of the local position of the cells is not taken into account in
the musical mapping since the configuration of the neighborhood is the only deci-
sive factor for the state changes. This kind of musical mapping therefore interprets
the grid of a CA as a musical event space that is crossed by moving cells. Here,
a monotonously ascending or descending output is reduced by means of a modulo
operation to the range of a particular parameter – a procedure which is necessary in
case of a limited number of tone pitches. Due to this mapping, another dissonance
in terms of the toroidal structure of the CA grid may also occur. Because in most
cases a scale is given, for example, for the tone pitches on the grid positions along a
CA axis – naturally, a scale consisting of dynamic values or other musical parame-
ters could also be used – the border areas of the grid represent the lowest or highest
tones. If in the abovementioned mapping, the cells cross the visual border of the
grid, thus wrapping around to the other side, a maximal change of tone pitch results,
even though the toroidal structure of a CA would actually only cause a change by
one scale step.

These works, however, also raise the question as to whether the characteristic
behavior of a particular algorithmic class must be reflected by the way of musical
mapping. Of course, in each system of algorithmic composition, the musical out-
put is of paramount importance; if, however, the specific properties of the applied
algorithms are not suitably used for structure generation, the motivation for select-
ing them is questionable – these applied algorithms become exchangeable and one
runs the risk of generating arbitrary material. The fact that the characteristics of an
algorithm may indeed be creatively modified in order to achieve specific musical
results is shown amongst others by the work of Dorin, who transforms several 2-
dimensional grids to the topological form of one sphere. The velocities of the CA
cycles are furthermore assigned to the grid areas and interpreted as metric layers;
this strategy of musical mapping allows a basic principle of the CA – the cyclic
actualization of all cell values – to become audible in a polyrhythmic structure.

Just like Lindenmayer systems, cellular automata are an exception among the
different paradigms of algorithmic composition because they are almost exclusively
used for the implementation of personal compositional strategies. The generation
of style imitations is rather unfeasible as it is impossible to analyze and encode a
corpus within a CA; nevertheless it is, however, theoretically conceivable to gener-
ate musical material by means of a CA’s rules which may, due to its homogeneity,
correspond to a particular stylistic notion.

References 203

References

1. Bays C (1987) Candidates for the game of Life in three dimensions. Complex Systems 1,
1987

2. Bays C (2005) About trilife cellular automata. University of South Carolina Department of
Computer Science and Engineering
http://www.cse.sc.edu/ bays/trilife3/Readme.html Cited 18 Jul 2005

3. Beyls P (1989) The musical universe of cellular automata. In: Proceedings of the 1989 Inter-
national Computer Music Conference. International Computer Music Association, San Fran-
cisco

4. Beyls P (1991) Self-organising control structures using multiple cellular automata. In: Pro-
ceedings of the 1991 International Computer Music Conference. International Computer Mu-
sic Association, San Francisco

5. Beyls P (2003) Selectionist musical automata: Integrating explicit instruction and evolution-
ary algorithms. In: Proceedings of IX Brazilian Symposium on Computer Music, 2003

6. Bilotta E, Pantano P, Talarico V (2000) Music generation through cellular automata: How to
give life to strange creatures. In: Proceedings of Generative Art Conference GA2000, Milano,
Italy

7. Bilotta E, Pantano P (2001) Artificial life music tells of complexity. In: ALMMA 2001: Pro-
ceedings of the workshop on artificial life models for musical applications. Linguistics De-
partment, University of Calabria, Arcavacata di Rende

8. Bilotta E, Pantano P (2002) Synthetic harmonies: An approach to musical semiosis by means
of cellular automata. Leonardo, 35/1, 2002

9. Burraston D, Edmonds E (2005) Cellular automata in generative electronic music and sonic
art: Historical and technical review. Digital Creativity 16/3, 2005

10. Dewdney AK (1989) Cellular universe of debris, droplets, defects and demons. Scientific
American, August, 1989

11. Dorin A (2000) Boolean Networks for the generation of rhythmic structure. In: Proceedings
of the 2000 Australian Computer Music Conference

12. Dorin A (2002) LIQUIPRISM: Generating polyrhythms with cellular automata. In: Proceed-
ings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2–5, 2002

13. DuBois RL (2003) Applications of generative string-substitution systems in computer music.
Dissertation. Columbia University, 2003

14. Flake GW (1998) The computational beauty of nature. Computer explorations of fractals,
chaos, complex systems, and adaption. MIT Press, Cambridge, Mass

15. Gardner M (1970) Mathematical games: The fantastic combinations of John Conway’s new
solitaire game “live.” Scientific American, 223, October, 1970

16. Hunt A, Kirk R, Orton R (1991) Musical applications of a cellular automata workstation. In:
Proceedings of the 1991 International Computer Music Conference. International Computer
Music Association, San Francisco

17. Langton C (1986) Studying artificial life with cellular automata. Physica D 22, pp 120–149
18. Meeker Lee (1998) Four-dimensional cellular automata and the Game of Life. Thesis, Uni-

versity of South Carolina
19. Millen D (1990) Cellular Automata Music. In: Proceedings of the 1990 International Com-

puter Music Conference. International Computer Music Association, San Francisco
20. Millen D (1992) Generations of formal patterns for music composition by means of cellular

automata. In: Proceedings of the 1992 International Computer Music Conference. Interna-
tional Computer Music Association, San Francisco

21. Millen D (2005) An interactive cellular automata music application in cocoa. In: Proceed-
ings of the 2004 International Computer Music Conference. International Computer Music
Association, San Francisco

22. Miranda ER (2001) Evolving cellular automata music: From sound synthesis to composi-
tion. In: ALMMA 2001: Proceedings of the workshop on artificial life models for musical
applications. Linguistics Department, University of Calabria, Arcavacata die Rende

204 8 Cellular Automata

23. Miranda ER (2003) On the music of emergent behaviour: What can evolutionary computation
bring to the musician? Leonardo, 36/1, 2003

24. Miranda ER (2003) On making music with artificial life models. 5th Consciousness Reframed
Conference, University of Wales College, Newport, Caerleon, Wales, UK, 2003

25. Miranda ER (2003) Introduction to cellular automata music research. DIGITAL music online
tutorials on computer music.
http://x2.i-dat.org/ csem/UNESCO/8/8.pdf Cited 29 Mar 2005

26. Miranda ER (2003) At the crossroads of evolutionary computation and music: Self-
programming synthesizers, swarm orchestras and the origins of melody. Evolutionary Com-
putation, 12/2, 2003

27. Miranda ER, Biles JA (eds) (2007) Evolutionary computer music. Springer, London. ISBN
13 978-1-84628-599-8

28. Von Neumann J (1966) Theory of self-reproducing automata. University of Illinois, Urbana,
Ill

29. Rennard JP (2006) Introduction to cellular automata.
http://www.rennard.org/alife/english/acintrogb01.html Cited 2 Aug 2007

30. Siver S (2003) Life Lexicon.
http://www.argentum.freeserve.co.uk/lex z.htm Cited 14 Dec 2004

31. Toffoli T, Margolus N (1987) Cellular automata machines: A new environement for modeling.
MIT Press, Cambridge, Mass. ISBN 0262200600

32. Wojtowicz M (2004) Mcell 4.20.
http://www.mirekw.com/ca/index.html Cited 13 Dec 2004

33. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign, Ill. ISBN 1-57955-
008-8

34. Zuse K (1970) Calculating space. MIT Technical Translation, MIT Press, Cambridge, Mass

Chapter 9

Artificial Neural Networks

Artificial neural networks (ANN) enable problem solving by changing the struc-
ture of interconnected components. In analogy to the biological model, these in-
terconnected elements are referred to as neurons and make up the basic units of
information processing. A simple model of a biological neuron is composed of the
following components, illustrated in figure 9.1: A large number of short nerve fibers
called dendrites conduct impulses from the adjacent neurons to the cell body. The
cell reacts to this input with an impulse that is carried to other cells by an axon.
An axon is a long nerve fiber that may be up to one meter in length and undergoes
extensive branching at its end which enables communication with dendrites or other
cell bodies. The neurons are connected via synapses. When an electrical impulse
runs through an axon, this causes the synapse to release a substance called a neu-
rotransmitter which is picked up by a neighboring dendrite and changes the electric
potential of the cell. When a particular threshold value is reached, an action poten-
tial is generated in a cell that in turn is sent along the axon through the synapses to
the dendrites of the connected neurons. The human brain has approximately 1011

interconnected neurons whose reaction time is estimated at one millisecond. The
average processing time for the recognition of complex visual and/or acoustic in-
formation by a human brain is approximately 0.1 seconds. If biological neuronal
systems would work like strictly sequential digital computers, only 100 instructions
would be possible in that time frame [12, p. 172]. To overcome this restriction,
knowledge processing is performed in both the biological model and the artificial
neural network in parallel, meaning that all neurons of one level process their out-
puts at the same time.

Artificial neural networks are used in numerous applications; depending on the
type of ANN, they are often applied in pattern recognition, prediction, optimization
and automatic classification.

205

206 9 Artificial Neural Networks

Fig. 9.1 Model of a biological neuron.

9.1 Theoretical Basis

The fundamental element of every ANN is the artificial neuron that in basic mod-
els is composed of the following components: An interface for taking up informa-
tion from the environment or the output of other connected neurons; a propagation
function that combines all inputs of the neuron into one piece of information; an
activation function which, considering a threshold value, determines the activation
state of the neuron on the basis of the value of the propagation function. The output
function calculates an output from the activation state of the neuron that is sent to all
connected neurons. The state of activation and the threshold value of the neuron are
stored in a local memory. The activation functions used are, depending on the type
of learning method, different sigmoid (resembling an “S”) functions. Simple vari-
ants are the linear function or the threshold function; in a linear function (figure 9.2,
top left), the input information is adopted directly, whereas the threshold function
(figure 9.2, top right) only allows for an activation of the neuron when the present
net input exceeds the threshold value. If the steepness of the curve is to be influenced
by an additional parameter (c), the hyperbolic function (figure 9.2, bottom left) or
the logistic function (figure 9.2, bottom right) may be applied as well.

The arrangement of the neurons in the respective model determines the architec-
ture or topology of the ANN whose different forms are described later in detail. As
information is processed within the network structure in numerical values, appro-
priate encoding schemes must be designed in order to enable the ANN to interpret
input and output values. An encoding scheme is also decisively responsible for the
implementation of an appropriate learning algorithm.

9.2 Historical Development of Neural Networks 207

Fig. 9.2 Activation functions of an artificial neuron [12, p. 175]. With kind permission of Carl
Hanser Verlag.

9.2 Historical Development of Neural Networks

The first reflections on connectionist structures were made in 1943 by the neuro-
physiologist Warren St. McCulloch and the mathematician Walter Pitts, who dealt
with the calculation of reaction patterns in nervous systems.1 In another work, Mc-
Culloch describes a non-hierarchic structure in nervous systems that he discovered
by means of studies on the spinal marrow of frogs.2 The so-called McCulloch–Pitts
neuron, as the earliest example of a connectionist model, enables the calculation
of logic functions. In 1949, the psychologist Donald Olding Hebb formulated a
principle which would be one of the first learning rules for connectionist archi-
tectures. According to this principle, the weights of frequently used connections are
increased. From a biological point of view, Hebb states: “When an axon of cell A
is near enough to excite cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.”3 This principle is referred
to as Hebbian learning and is implemented in artificial neural networks of different
architectures as well as used both in supervised and unsupervised learning. In 1957,
Frank Rosenblatt began with the development of another model of ANN, the per-
ceptron. At the same time, he was supervising the construction of the first fully func-
tioning neurocomputer4 in the Cornell Aeronautical Laboratory, the Mark I Percep-
tron. In 1962, Rosenblatt described theoretical elements and possible applications

1 “A Logical Calculus of the Ideas Immanent in Nervous Activity” [14].
2 “A heterarchy of values determined by the topology of nervous nets” [15].
3 From “The Organization of Behavior” [3], cited after [13, p. 690].
4 Already in 1951, Marvin Minsky, the founder of the Artificial Intelligence Laboratory at the MIT,
developed the neurocomputer “Snark” in the course of his doctoral thesis in Princeton. However,
the model was never built.

208 9 Artificial Neural Networks

of the perceptron5 and showed that this model was also able to learn every function
it could represent by entering weights and threshold values.6 In 1959, Marvin Min-
sky and Seymor Papert pointed out the restrictions and limitations of this model7

which led to a more critical view of connectionist problem solving in the follow-
ing years and also to the fact that symbol-based methods were awarded a universal
claim to problem solving. In 1960 Bernard Widrow and Marcian E. Hoff8 devel-
oped the Adaline (short for: Adaptive linear element), an extended model of the per-
ceptron which generates outputs of +1 and –1 and, similar to the McCulloch–Pitts
neuron, has an additional input. Teuvo Kohonen’s linear associator from 1972 rep-
resents an extension of the Adaline as it has several neurons in the output layer. This
type of architecture is also referred to as Madaline (Multiple Adaline).9 In 1974,
in his doctoral thesis10 at Harvard University, Paul Werbos laid the foundation for
the back-propagation algorithm that became popular through publications by David
Rumelhart, Geoffrey Hinton and James McClelland [21, 22] in 1986. Beginning in
1982, John Hopfield created a connectionist architecture named after himself that
are described in two works [6, 7]; in the same year, Kohonen developed the princi-
ple of Kohonen feature maps (also: self-organizing maps, SOM).11 From 1976 on,
Stephen Grossberg and Gail Carpenter created the adaptive resonance theory (ART
or also ARTMAP), a neural network architecture consisting of connectionist models
for automatic classification.

9.3 The Architecture of Neural Networks

The McCulloch–Pitts neuron (figure 9.3) is the first model of an artificial neuron
whose different switching possibilities generate the basic architecture of an ANN.
The information processing in this model is explained in the following example
by means of two logic functions [13, p. 665]. The inputs are excitatory (+1) or in-
hibitory (–1), a third input is called bias or calibration and in this case has a constant
value of 1. When the AND function is calculated, the neuron gets the weightings +1,
+1, –2 for the three inputs, multiplies each weight by the respective input and sums
up the results. If a value is greater than 0, the condition is fulfilled and the neuron
outputs the value 1. When the weighting for the calibration is set at –1, the neuron
yields the correct results for the OR function.

Figure 9.4 illustrates different types of networks by means of matrices and
graphs. When a neuron is neither part of the input layer nor the output layer, and

5 “Principles of Neurodynamics” [20].
6 Also known as “perceptron-convergence theorem.”
7 “Perceptrons: An Introduction to Computational Geometry” [16].
8 “Adaptive switching circuits” [30].
9 “Correlation Matrix Memories” [9].
10 “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences” [29].
11 “Self-organized formation of topologically correct feature maps” [10].

9.3 The Architecture of Neural Networks 209

Fig. 9.3 Logic calculation in the McCulloch–Pitts neuron.

is consequently only connected to other neurons, it belongs to the so-called hidden
layer. A feedforward network (figure 9.4, top left), of which the perceptron is an
example, is characterized by an input and an output layer, as well as one or more
hidden layers. The denomination feedforward is explained through the fact that the
connections only point in one direction, from inputs through hidden layers to out-
puts. A model of this network type with numerous hidden layers (figure 9.4, top
right) also requires a more complex training algorithm. This model is also known as
multi-level perceptron. The other structures illustrate network types that skip one or
more layers (figure 9.4, middle left), recurrent structures (figure 9.4, middle right),
and completely interconnected structures that are not directly recurrent (figure 9.4,
bottom). Within this classification, those network architectures must also be men-
tioned in which processing is performed within one single layer, such as is the case
in self-associative or Hopfield nets. The adaptive resonance theory, as an adaptive
network architecture, additionally involves information on previous network pat-
terns in the problem solving process as well. Further possibilities for classifying
ANNs are given by dividing up the networks into trainable and non-trainable nets,
as well as making a distinction in terms of the type of learning algorithm.

9.3.1 The Perceptron

The perceptron (figure 9.5) is a model of a feedforward network that is constructed
in regard to visual pattern recognition based on the concept of an artificial eye. The
perceptron of a simple form has no inner layer and the information from the im-
age is passed to the input layer by non-trainable connections and fixed weights and
from the input layer to the output layer with trainable connections and adjustable
weights. In the binary model of the perceptron, inputs and outputs may only assume
binary values and the weights are represented in real numbers. A simple threshold
function is applied here and the output layer may consist of one or more neurons.
As a training algorithm, the perceptron uses the delta rule which is a form of su-
pervised learning in which the weightings of the neurons are updated corresponding
to the error in the output of the perceptron [13, p. 672ff]. An extended model of a
perceptron has a number of trainable layers and is known as a multi-level percep-
tron or also – corresponding to the learning algorithm that is applied in this type – a
back-propagation net.

210 9 Artificial Neural Networks

Fig. 9.4 Different types of artificial neural networks [12, p. 178–179]. With kind permission of
Carl Hanser Verlag.

Fig. 9.5 Perceptron for pattern recognition [12, p. 184]. Terms in figure translated into English.
With kind permission of Carl Hanser Verlag.

The abovementioned criticism by Minsky and Papert regarding the possible ap-
plications of a perceptron referred to the one-layer model that is unable to find so-
lutions for non-linear separable functions, and this diminished interest in ANN for
some time. This means that if the outputs of the net are represented within a two-
dimensional coordinate system, correct and incorrect results cannot be divided into
two half-planes by a straight line.

9.3 The Architecture of Neural Networks 211

9.3.2 The Back-Propagation Net as an Extension of the Perceptron

A back-propagation net is a perceptron extended by additional layers and solves the
class of non-linear separable functions. This type of ANN is trained with the back-
propagation learning algorithm that also represents a method of supervised learn-
ing. The back-propagation algorithm12 changes the connection weights depending
on the net error, which is the difference between the expected and the actual output
of the ANN. The weights are changed beginning with the connections to the output
layer and then continue backwards to the connections of the input layer. Two-level
binary perceptrons are able to produce polygons for classification through the su-
perposition of planes by subtending the planes with an additional AND neuron. In a
three-level perceptron, any number of sets for classification may be generated by su-
perposition of polygons; additional levels within the perceptron do not allow further
differentiation.

9.3.3 Recurrent Neural Networks

If information from a previous pass is important for the actual one, recurrent neural
networks can be used, which implement feedback in their design, like by connec-
tions leading from units in a layer to the same layer or to previous ones. In a Jordan
net, this happens by means of context neurons that transfer the information of the
output layer again to the inner layer (figure 9.6, left); here, the number of context
neurons corresponds to the number of neurons in the output layer. This ANN is
trained with the back-propagation algorithm. In an Elman net (figure 9.6, right), re-
current processing is done by context neurons within the inner layer; the number of
context neurons equals the number of neurons in the inner layer.

Fig. 9.6 Scheme of a Jordan (left) and an Elman (right) net [12, p. 224, 226]. With kind permission
of Carl Hanser Verlag.

12 [13, p. 675ff], [12, p. 190ff].

212 9 Artificial Neural Networks

9.3.4 Kohonen Feature Maps

For classification tasks in the context of unsupervised learning, Kohonen feature
maps are used. Within this architecture, two structural levels are applied: An input
layer and a map layer, each neuron of the input layer being connected to each neuron
of the map layer. The neurons within the map layer are in turn completely linked to
each other, but not to themselves. For automatic classification, a series of data is
repeatedly presented to the net in unordered form. The neurons of the map layer
are initialized with random weights; in a further step, a so-called winner neuron is
established whose state is active for all those input patterns that resemble each other
in one way or another. During the learning process, the weights of the winner neuron
and the circumjacent neurons are adapted to the input patterns. After a number of
cycles, local maxima that represent positions for similar datasets will form in the
map layer.

9.3.5 Hopfield Nets

In contrast to Kohonen feature maps, which may be applied to recognize structures
in unordered inputs, self-associative or Hopfield nets are used for the allocation of
input material in terms of given categories. A Hopfield net consists of one single
neuron layer within which the neurons are linked completely to one another. The
initial weighting of the net is given by a pattern which must be recognized; a cyclic
process decides after several steps if the input pattern matches the pattern to be
recognized within certain tolerance ranges.

9.3.6 The Adaptive Resonance Theory

Automatic classification may also be performed by different network architectures
of the adaptive resonance theory. Patterns are assigned by examining the similarities
of these two previously categorized classes. If a large deviation to the already clas-
sified areas is detected in a new pattern, a new category is generated. The ARTMAP
was originally developed to solve the stability-plasticity dilemma. In this context,
stability means that once recognized patterns are not covered or deleted by new pat-
terns; this would mean that in a new, significantly differing pattern the characteristics
of the class which the pattern is assigned to is changed extensively. Plasticity refers
to the ability to generate new classes in order to maintain stability. The stability-
plasticity dilemma results from the fact that it is not always that easy to decide if the
new pattern, based on its deviation, only belongs to an already classified class or if
a new class should be generated.

9.4 Artificial Neural Networks in Algorithmic Composition 213

9.4 Artificial Neural Networks in Algorithmic Composition

Hermann Hild, Johannes Feulner and Wolfram Menzel [4] developed HARMONET,
a system that harmonizes melodies in the style of J.S. Bach based on neural networks
and a rule-based system. For the generation of a harmonic skeleton, a recurrent net
with a hidden layer is used. This architecture is consequently extended to three par-
allel nets. An interesting representation form in HARMONET indicates each tone
pitch as the set of all harmonic functions that may contain this pitch as a chord el-
ement (table 9.1). In the generation of the harmonic skeleton, each quarter note is

Fct. T D S Tp Sp Dp DD DP TP d Vtp SS
C 1 0 1 1 0 0 0 0 0 0 0 0
D 0 1 0 0 1 0 1 0 0 1 1 1
E ..

Table 9.1 Representation of tone pitches in HARMONET.

harmonized, taking into account its local context that functions as the input of the
net (figure 9.7).

Fig. 9.7 Local context for harmonic skeleton in HARMONET.

The current harmony (Ht) consists of the harmonic (Ht−1,Ht−2,Ht−3) and the
melodic (st−1,st ,st+1) context; phrt contains information on the position of Ht rela-
tive to the beginning or the end of a musical phrase; strt as a Boolean value indicates
whether the current harmony is a stressed quarter. For the encoding of this context,
106 neurons are used. 70 of these neurons are used within a hidden layer and 20
form the output of the net. Having been generated by the ANN, the harmonic pro-
gressions are controlled by constraints that examine the material in terms of voice
distances, parallels and the like. The net is trained on two sets of Bach chorales, each
containing 20 chorales in major and minor respectively, using the back-propagation
algorithm as training method. In a final step, ornamenting eights are added to the
chord skeleton by a further net structure which also works in a context-based man-

214 9 Artificial Neural Networks

ner. In an extended version of HARMONET, three parallel nets are used to generate
the harmonic skeleton: These nets work with variable context sizes and the harmo-
nization produced most frequently is transferred to other nets that determine chord
inversions and dissonances of the harmonization.

Fig. 9.8 Example of a harmonization by HARMONET.

9.4.1 Strategies of Musical Representation

In an early work by Peter M. Todd [28], basic considerations on the application
of neural networks in algorithmic composition were made.13 An essential question
therein is the factor of time and how it can be represented. In one case, a win-
dow may be laid over a number of musical events (e.g. notes in a measure). The
network receives a measure as input and produces a measure as output. In this “spa-
tial” representation, the different time points (successive notes) are represented by
single neurons – time is virtually mapped on space. In the second alternative that
corresponds more to the treatment of time in musical processes, a net is used that
produces successive notes; the output of a note depends on a number of previously
produced notes. A network of this type requires a memory for past events, meaning
that it is possible to apply notes of the output as input for the generation of the next
note. Therefore, recurrent networks must be used that are able to store a particular
number of already produced events. The behavior of the two networks differs: The
“spatial” network generates a particular output on the basis of an input, whereas the

13 Further interesting reading by Todd should be found in the newly published book edited by
Miranda and Biles [17].

9.4 Artificial Neural Networks in Algorithmic Composition 215

“sequential” network continuously produces new events due to its recurrent connec-
tions.

For the production of melodies, Todd uses a recurrent Jordan net with three layers
(figure 9.9). The output of the net consists of notes with associated information
about pitch and duration. The plan units are neurons that designate the melody that
is currently processed; context units maintain notes produced so far. The output units
generate the current notes, every output neuron being assigned a context neuron. The
neurons of the hidden layer that are connected with the plan units, context units as
well as with the output layer by a set of learned, weighted connections, represent the
compact encoding for the generalization capability of the net, meaning the ability
of a neural network to generalize the knowledge represented by the training set – in
this case this refers to the possibility to generate similarly designed musical material.
The current output is finally transferred to the beginning of the recurrent cycle.

Fig. 9.9 Jordan net for melody generation [28, p. 30]. c© 1981 by the Massachusetts Institute of
Technology.

For the representation of tone pitch and duration, different approaches may be
used. In regards to the pitch, a “relative” (intervallic) or an “absolute” (designating
concrete pitches) representation may be chosen. The “relative” representation, in
principle, may lead to a serious disadvantage. As soon as the net error produces one
single “wrong” tone pitch, this affects all succeeding pitches due to transposition.
Therefore, in the context of this ANN, an “absolute” representation is preferable.
Within this form, representation may occur again in two different ways. In “dis-
tributed” representation, numerous neurons of the output layer represent one tone
pitch; within a “localist” representation each pitch is assigned a particular output
neuron (an example for “localist” representation with three neurons would be: 0 0
1 = C, 0 1 0 = C#, 1 0 0 = D – the “1” indicating the activation – therefore: 0 0
0 = rest). A “distributed” representation may be produced by a binary encoding of

216 9 Artificial Neural Networks

the activation states (e.g. 1 0 0 = C, 1 0 1 = C#, 1 1 1 = D). However, the “dis-
tributed” representation proves to be disadvantageous: Due to the fact that for the
representation of notes (that are represented as equal), different numbers of neurons
are used, it is difficult to train the ANN in a “distributed” representation. So, the
net error is, by choosing a note C (one neuron) instead of D (three neurons), higher
than, for example, with C# (two neurons) instead of D (three neurons), although in
both of these cases, only one “wrong” note is produced; this means that equally “se-
rious” errors are evaluated differently. As for the pitch representation, the duration
of notes may also be presented in two different ways. First, a separate pool of out-
put and context units, alongside with the output units for the pitch information, can
be used, where this representation can also be “local” or “distributed.” In the other
alternative, which Todd ultimately chose for his concept, the melody is divided up
into slices of time of equal length. Each output in the sequence corresponds to a
pitch during one slice of time, which also represents the smallest rhythmical unit.
Numerous notes of the same pitch may either produce longer rhythmic values by
being tied or tone repetitions. The information “nb” (note-begin) (figure 9.9, bottom
left) indicates the beginning of a new note for the necessary differentiation of both
cases. After a training process with melodic material, the ANN generates melodies
as shown in figure 9.10.

Fig. 9.10 Melodies generated by a recurrent ANN.

The productions of the ANN are often limited in the output to stationary repeat-
ing melodic phrases (repeat mark in figure 9.10). Todd also compares the efficiency
of his ANN to productions of Markov processes. A great difference from a Markov
process lies in the treatment of the context of a note value, be that related to the tone
pitch or duration. In a MM, the probability of the production of a certain note value
depends on transition probabilities of note sequences in a corpus. The context depth
given by the order of the Markov process, however, follows a sequential considera-
tion of past events. So, the statistical prediction of a note value in a Markov process
of nth order is only possible if the already produced n note values also occur in the
same order in the underlying corpus. An ANN, however, is not bound to this strictly
sequential view. Even though the consideration of a particular – although generally
not very large – context is possible, note values may still be generated that do not
occur in the same sequential order in the corpus. The advantage of this freer context
treatment of an ANN is also explicitly mentioned in the following work which, in

9.4 Artificial Neural Networks in Algorithmic Composition 217

a similar comparison, contrasts Markov processes as well as the formalism of gen-
erative grammar with an ANN. Nevertheless, this special type of context treatment,
naturally, does not have to be an explicit advantage because choosing a particular
method will mainly motivated by the composition of the training corpus as well as
the desired properties of the structure to be produced.

Michael C. Mozer [18] developed an ANN that, among other things, enables the
production of melodies with underlying harmonic progressions. The system CON-
CERT is trained on soprano voices of Bach chorales, folk music melodies and har-
monic progressions of various waltzes. The architecture of the software is based
on a recurrent Elman net and for the training, a modified back-propagation algo-
rithm is used.14 This system differs from the previously mentioned approaches in
terms of the interpretation of the ANN’s output. In most of the applications of neu-
ral networks in algorithmic composition, the outputs are interpreted as concrete note
values. In CONCERT, the output of the net can consist of probabilities for the se-
lection of the next note values, whereas a variable setting of the weights within the
recurrent structure allows for their adaptation to the properties of the training set.

The specialty of this ANN lies in its representation of tone pitch, duration and
harmonic function through a multi-layer representation model. Conventional meth-
ods present a certain disadvantage especially in regard to the perceptual similarities
of certain pitches due to psychological reasons.

Fig. 9.11 Pitch representation by Mozer.

14 Because CONCERT contains recurrent structures and the back-propagation algorithm is gener-
ally only used in the context of feedforward networks; see the modifications in [18, p. 7–8].

218 9 Artificial Neural Networks

Based on a model by Roger Shepard [25], pitch is represented in a five-dimensional
space (figure 9.11). The pitch class is determined by a position on the “chroma”
circle and the absolute tone pitch is indicated by the position on a scale, the “pitch
height.” This particular form of pitch representation can be displayed within a three-
dimensional helix-structure. Since tones of the same pitch class have the same value
in one dimension, an adequate modeling of the perceptual similarity is possible.
Two further dimensions indicate the pitches on the circle of fifths, which allows
the modeling of additional aspects of auditory perception [18, p. 10]. To adapt this
five-dimensional representation for different requirements, the components can be
weighted by adjusting the diameters of the chroma circle and the circle of fifths.
Chords are represented for each of the component pitches by the fundamental and
the first four harmonics, mapped to the nearest pitch class of the chromatic scale.
This representation is based on a proposal by Bernice Laden and Douglas H. Keefe
[11] and modified by Mozer in some aspects [18, p. 15]. Additionally, chords that
have a dominant or subdominant relationship to one another are rated as being
higher in terms of their similarity. The representation of note durations allows for
the formalization of the similarities between different durations by involving partial
relations. Based on the encoding of each beat (quarters) as twelfths, note values are
represented also in a multi-dimensional space (figure 9.12).

Fig. 9.12 Rhythmic representation by Mozer.

“Duration height” indicates the multiple of the quarter which is taken as a ba-
sic unit. Two additional values represent the duration as coordinates on a 1/3 and
a 1/4 circle. The coordinate on the 1/n beat circles results from the duration after
subtracting out the greatest integer multiple – as well as by performing a modulo
operation. The following example is made with the durations 18/12 (quarters with
held eights) and 15/12 (quarters with held 1/16): After performing the modulo oper-
ation for 18/12, a value of 2/12 on the 1/3 beat cycle and 0/12 on the 1/4 beat cycle
results; for 15/12, the result is: 3/12 (1/3 beat) and 0/12 (1/4 beat). In this encoding
the same value of both durations in relation to the 1/4 beat circle shows the simi-
larities of both note values in terms of their composition of even note values (e.g.
quarters and eights). The fact that both note values also have similar lengths is proof
of their close positioning in “duration height.”

9.4 Artificial Neural Networks in Algorithmic Composition 219

CONCERT is initialized with a short sequence and produces musical material
that is thereupon subject to a series of examinations. In the beginning, scales, ran-
dom walks,15 random walks with melodic jumps and simple form schemes are
learned. Apart from the learning of formal components that possess a large context
[18, p. 20], the generations of the system are satisfying. Consequently, CONCERT
is used for the production of material in the style of simple folk melodies, soprano
voices of different works of J.S. Bach, as well as waltzes of several composers. The
productions of CONCERT prove to be superior to Markov chains of third order
in a hearing trial. Even though CONCERT generates interesting musical segments
on a small scale, the system, however, is lacking with regard to the structuring of
longer musical sequences. In longer sequences these thematic relations are lost and
the productions of the ANN tend to be arbitrary so that for the improvement of its
efficiency, possible extensions of the system are presented [18, p. 26].

9.4.2 Boltzmann Machines and LSTMs

Matthew Bellgrad and Lawrence Peh Tsang [1] use a Boltzmann machine (BM) for
the harmonization of given chorale melodies composed in the Baroque period. A
Boltzmann machine is one variant of a Hopfield net. As in a Hopfield net, the BM
consists in general of a single layer of completely connected neurons and serves to
assign patterns as well. In order to prevent the net from being limited to local en-
ergy minima, in the processing of a cycle the BM may also take on states with a
higher energy potential. This process is a form of simulated annealing, so called for
the conceptual analogy of this algorithm to the hardening of metals. In a BM, the
net energy is temporarily increased by means of a controllable temperature param-
eter that in each step may additionally modify the activation of a neuron through a
probability-based value. For their model Bellgrad and Tsang use an extended ver-
sion of a so-called Effective Boltzmann Machine (EBM) that is trained on the local
contexts of a set of chorales. All chorales of the training set are transposed on a mu-
tual key. The tone pitches are represented locally by 35 neurons that present pitches
of an underlying scale. Three further neurons indicate formal segments. According
to its use by Bellgrad and Tsang, an “event” is the interconnection of a number
of neurons to form a chord in the shortest appearing duration; longer durations are
produced by repetitions. The harmonic context is learned by means of nested Boltz-
mann machines that each examines the immediate harmonic neighborhood of the
note currently sounding. In case the observed context is not contained in the same
configuration in the training set, the model may also generate harmonizations with a
differing number of voices, as shown in the upper part of figure 9.13. An extension
of the system that comprises restricting rules avoids undesired voice crossings and
guarantees the correct number of voices for each harmonization step. A harmoniza-

15 Here: Melodies that change always one step at most in the respective tonal system per time unit.

220 9 Artificial Neural Networks

tion of the soprano in the above figure after an examination by these constraints is
illustrated in the lower part of figure 9.13.

Fig. 9.13 Example of an incorrect harmonization of a given soprano voice, due to lacking corre-
spondence in the training set (top). Harmonization of the BM after implementation of constraints
(bottom).

Jürgen Schmidhuber and Douglas Eck [23] use a long short-term memory re-
current neural network (LSTM)16 for the production of melodic material over a
given chord progression. A problem occurring in traditional network architectures
lies in their treatment of context-sensitive material. Although common recurrent
ANNs may consider a certain number of previously produced data, in a larger con-
text, however, this type of network also shows some weaknesses, as Mozer states
for his system: “While the local contours made sense, the pieces were not musically
coherent, lacking thematic structure and having minimal phrase structure and rhyth-
mic organization. It appears that the CONCERT architecture and training procedure
do not scale well as the length of the pieces grows and as the amount of higher-
order structure increases.” [18, p. 26]. An LSTM consists of an input and output
layer as well as a number of interconnected memory blocks. Each block contains a
differing number of recurrent memory cells containing the information of previous
states. Information is exchanged through gates that, according to the input and type
of threshold function, may enable either the admission or transfer of information,
pass on information after a delay or delete the content of the memory block. In most
cases a conventional recurrent ANN may use ten to twelve previous steps for the
context treatment, while an LSTM can treat a context of over 1000 timesteps.

Eck and Schmidhuber use a “local” representation of note values and rhythmic
changes are produced by holds. For both the chord and melody material the tonal
space of an octave is applied. In a first experiment, only chord progressions are
learned using a form of twelve bar blues. Further, parallel to the chord sequence,
melody lines are built based on a pentatonic scale. An evaluation carried out by
a jazz musician finds clearly better results for these generations than for passages
produced with a random walk method. Although a considerably larger context may

16 Developed by Sepp Hochreiter and Jürgen Schmidhuber, cf. [5].

9.5 Synopsis 221

be treated by LSTMs in contrast to simple recurrent architectures, this model also
reveals certain limitations in terms of the generation of larger musical sections.

In the context of algorithmic composition neural networks are, in most cases, not
exclusively used for the generation of structure, but can be found, however, often
as an extension of other procedures (for example, in the form of fitness raters in
the field of genetic algorithms) or for the examination of single musical aspects.
Alejandro Pazos, A. Santos del Riego, Julian Dorado and J.J. Romero-Cardalda
[19] developed a system treating agogics in Western classical music. The musical
information used is provided by means of rhythmic pulsations of a MIDI pedal made
by the musician. These data make up the training material of the ANN that is used
for the prediction of agogic variation.

Artificial neural networks may also be well applied in the field of classification
where musical material is, among other things, examined in terms of the tonality
of individual musical segments [26, 27] or stylistic distinctions [2, 8]. For these
analyses, it is mainly Kohonen’s self-organizing maps that are applied.

9.5 Synopsis

Artificial neural networks were developed – according to the scheme of information
processing in the cortex – originally for tasks of image recognition and classifi-
cation. In contrast to the biological model, the processing capacity of an artificial
neural network is extremely low – however, these algorithms are also able to solve
complex tasks within the original core applications, producing satisfactory results.
There are only certain classes of neural networks that are suited to processing mu-
sical information; in some approaches, the architecture of network types is adapted
in order to be able to optimally represent and produce specific properties of musi-
cal structure. ANNs are frequently applied in the framework of hybrid systems of
algorithmic composition where they are used, for example, as fitness raters in the
context of a genetic algorithm.

Besides the application of special network architecture, it is above all the repre-
sentation of musical information that forms an essential aspect of musical structure
genesis. The different possibilities of “distributed,” “local,” “absolute” and “rela-
tive” representation have, as already demonstrated by the works of Todd and Mozer,
decisive effects on the processing of the musical inputs. Mozer follows an inter-
esting approach in his system CONCERT. The complexity of musical information
is taken into consideration by means of a multi-dimensional representation model
that represents pitch, rhythm and harmony of the musical components under differ-
ent aspects. In most cases, the output of neural networks consists of concrete note
values; this system’s output, however, consists of probabilities for the generation
of particular note values. CONCERT and some other abovementioned systems as
well, may generate satisfying results over short passages, but show weaknesses in
the creation of larger context-dependent material. On the one hand, the reason for
these difficulties lies in the application of the back-propagation algorithm used fre-

222 9 Artificial Neural Networks

quently in the training, which has problems in processing an exhaustive context.
On the other hand, the modeling of large and context-dependent musical sections is
a general problem for all methods of algorithmic composition that are not able to
process information as a hierarchically ordered structure. For the treatment of ma-
terial which is context-dependent over long passages, generative grammars are well
suited. When knowledge about the domain to be modeled exists, rule-based systems
are generally preferred. Moreover, the generations in a neural network often end up
in stationary situations. Another disadvantage is the fact that for the production of
longer musical segments, a great number of training cycles is in most cases required.

An essential point of criticism made by Mozer refers to the fact that generations
of neural networks in algorithmic composition are mostly discussed uncritically.
Either the material is not evaluated because a successful output is already rated as
a success per se, or subjective criteria that do not enable an objective rating of the
achieved results are used for an evaluation – this criticism points out a common lack
in a number of publications in the field of algorithmic composition.

A great advantage of neural networks over Markov models and generative gram-
mars, however, becomes evident in the production of smaller musical components.
Both in generative grammars and also in Markov models, only transitions (e.g. of
tone pitches) that are also explicitly contained in the corpus may be generated. Here,
the neural network may produce surprising movements that nevertheless meet the
requirements of the underlying corpus – this aspect of artificial neural networks
may also represent an interesting motivation for their application in a framework of
innovative compositional concepts.

References

1. Bellgrad MI, Tsang CP (1994) Harmonizing music the Boltzmann way. Connection Science,
6, 1994

2. Dannenberg RB, Thom B, Watson D (1997) A machine learning approach to musical style
recognition. In: Proceedings of the 1997 International Computer Music Conference. Interna-
tional Computer Music Association, San Francisco

3. Hebb DO (1949) The organization of behavior. Wiley, New York
4. Hild H, Feulner J, Menzel W (1992) HARMONET: A neural net for harmonizing chorales in

the style of J.S. Bach. Advances in Neural Information Processing Systems 4
5. Hochreiter S, Schmidhuber, J (1997) Long Short-Term Memory. Neural Computation, 9/8,

1997
6. Hopfield JJ (1982) Neural networks and physical systems with emergent collective compu-

tational abilities. Proceedings of the National Academy of Sciences of the United States of
America, 79, 1982

7. Hopfield JJ (1984) Neurons with graded response have collective computational properties
like those of two-state neurons. Proceedings of the National Academy of Sciences of the
United States of America, 81, 1984

8. Kiernan F (2000) Score-based style recognition using artificial neural networks. In: Proceed-
ings of the first International Conference on Music Information Retrieval (ISMIR 2000), Ply-
mouth, Mass

9. Kohonen T (1972) Correlation Matrix Memories. IEEE Transactions on Computers C-21, 4,
April 1972

References 223

10. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43, 1982

11. Laden B, Keefe DH (1989) The representation of pitch in a neural net model of chord classi-
fication. Computer Music Journal 13/4, 1989

12. Lämmel U, Cleve J (2001) Lehr- und Übungsbuch Künstliche Intelligenz. Fachbuchverlag
Leipzig im Carl-Hanser-Verlag, München. ISBN 3-446-21421-6

13. Luger GF, Stubblefield W (1998) Artificial intelligence. Structures and strategies for complex
problem solving, 3rd edn. Addison-Wesley Longman, Amsterdam. ISBN 0-805-31196-3

14. McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5, 1943

15. McCulloch W (1945) A heterarchy of values determined by the topology of nervous nets.
Bulletin of Mathematical Biophysics, 5, 1945

16. Minsky M, Papert S (1969) Perceptrons: An introduction to computational geometry. MIT
Press, Cambridge, Mass

17. Miranda ER, Biles JA (eds) (2007) Evolutionary computer music. Springer, London. ISBN
978-1-84628-599-8

18. Mozer MC (1994) Neural network music composition by prediction: Exploring the benefits
of psychoacoustic constraints and multiscale processing. Connection Science, 1994

19. Pazos A, del Riego SA, Dorado J, Romero-Cardalda JJ (1999) Connectionist system for music
interpretation. In: International Joint Conference on Neural Networks (IJCNN’99), vol 6.
IEEEE, New York, pp 4002–4005

20. Rosenblatt F (1962) Principles of neurodynamics. Spartan, New York
21. Rumelhart DE, Hinton GE, Williams R (1986) Learning internal representations by error

propagation. In: Rumelhart D, McClelland JL (eds) (1986) Parallel distributed processing:
Explorations in the microstructure of cognition, 1: Foundations, MIT Press, Cambridge, Mass

22. Rumelhart DE, Hinton GE, Williams R (1986) Learning internal representations by back-
propagating errors. Nature, 323, 1986

23. Schmidhuber J, Eck D (2002) A first look at music composition using LSTM recurrent neural
networks. Technical Report IDSIA-07-02, 2002

24. Schmidhuber J, Eck D (2005) Composing music with LSTM recurrent networks - Blues im-
provisation.
http://www.idsia.ch/ juergen/blues/index.html Cited 3 Nov 2005

25. Shepard RN (1982) Geometrical approximations to the structure of musical pitch. Psycholog-
ical Review, 89/4, 1982

26. Tillmann B (1999) Connectionist simulation of tonal knowledge representation. Publications
Journées d’Informatique Musicale, Issy-Les-Moulineaux, 1999

27. Tillmann B, Bharucha JJ, Bigand E (2000) Implicit learning of tonality: A self-organizing
approach. Psychological Review, 107/4, 2000

28. Todd PM (1989) A connectionist approach to algorithmic composition. Computer Music Jour-
nal, 13/4, 1989

29. Werbos P (1974) Beyond regression: New tools for prediction and analysis in the behavioral
sciences. PhD Thesis, Harvard University, 1974

30. Widrow B, Hoff ME (1960) Adaptive switching circuits. IRE Western Electric Show and
Convention Record, 4, August 23, 1960

Chapter 10

Artificial Intelligence

The field of research on artificial intelligence (AI) combines a number of different
disciplines dealing with the automatization of intelligent behavior. It is difficult to
systematize the distinct approaches of AI for various reasons. Relevant methods are
enumerated mostly in terms of their applicability to domain-specific tasks. So, many
approaches are either integrated in a system of AI or treated as a separate discipline.

If a definition of intelligent behavior is used as a description model for relevant
algorithms, a further problem arises due to the fact that the term “intelligence” is in-
terpreted in various ways. In the following, some aspects of ELIZA,1 one of the first
programs for the simulation of intelligent behavior, are described in order to illus-
trate this. Joseph Weizenbaum’s intention in designing this program was to create a
mimicry of a conversational situation in a psychotherapeutic context. The “patient”
(user) enters his or her questions in the program and the “psychotherapist” (ELIZA)
answers them. The extract below illustrates a typical conversation between a user
and ELIZA.
“Men are all alike.
IN WHAT WAY?
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE?
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE.
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED.
It’s true. I am unhappy [. . .].” [65, p. 36].

ELIZA uses the following principal strategies for the simulation of a conversation
partner:

1 Developed by Joseph Weizenbaum (1923–2008), mathematician and computer scientist; from
1964, teaching at the MIT, 1964–1967 work on language analysis programs. For ELIZA, see [65].

225

226 10 Artificial Intelligence

• Identification of key words2 in the user’s input text.
• Discovery of a minimal context of the particular key word.
• The choice of appropriate rules in order to transform the context of the input in

the corresponding context of the output.
• Generation of uncontroversial and general responses in the absence of appropri-

ate key words.

The efficiency of programs such as ELIZA in terms of simulating a human con-
versation partner is often examined by means of a test arrangement. In “Computing
Machinery and Intelligence,” [62] Alan Turing developed a virtual setup to eval-
uate a computer’s intelligent behavior. In the beginning of his considerations, he
designed a game in which a person is to guess the sex of two other conversation
partners. A man, a woman and the person who carries out the test go into separate
rooms; they can only communicate in writing. The testing person’s task is now to
find out the partner’s sex through asking targeted questions. What makes this task
even more difficult is that the man and the woman aim to convince the questioner
that they are the opposite sex by giving deliberately true or false answers. If a com-
puter then takes the part of one of the questioned persons, the essential question of
the test (which has since become legendary) is: Who is the human and who is the
machine?

Fig. 10.1 Alan Mathison Turing by Elliott & Fry. Quarter-plate glass negative, 29 March 1951. c©
National Portrait Gallery, London.

2 Key words are words that may be included as carriers of meaning in a general context in the
course of the further conversation, such as “boyfriend” or “depressed” in the abovementioned
example.

10 Artificial Intelligence 227

It is evident that the Turing test could also be passed by a machine3 that simulates
intelligent behavior without, however, providing intelligent problem solving strate-
gies. The rule system of ELIZA serves as an example to show that the “intelligent
behavior” of a program is not to be achieved necessarily through AI specific algo-
rithms of whatever type. In a tautological sense, all approaches that are used to solve
AI specific tasks may be considered methods of AI. If the process of generating co-
herent musical structure is understood to be “compositional intelligence,” then some
of the already treated procedures of algorithmic composition may be ranked among
the methods of AI as well. A prime example of an application of this “compositional
intelligence” is surely Cope’s system EMI, which, in the field of style imitation, per-
forms a job comparable to that of a human expert.4 In the framework of algorithmic
composition, in some respects, this system also represents a parallel to ELIZA as
can be demonstrated by means of a “musical Turing test.”5

Generally, one may attempt to partially explain the field of AI-specific procedures
by means of a definition of the term “intelligence.” Etymologically, the term derives
from Latin “intelligentia,” formed by “inter legere,” (i.e. to classify a term in the
right category by critically considering its relevant properties). Due to the fact that
this term is used in different humanistic and natural scientific disciplines, its defi-
nition must often be interpreted depending on the context. Recursive descriptions
that, for example, explain intelligence through “intelligent behavior” of a biological
species or a machine indeed exemplify the term, but leave an imprecise definition.
The problem of a clear definition of the term is also precisely described by Turing
in the context of his test: “I propose to consider the question, ‘Can machines think?’
This should begin with definitions of the meaning of the terms machine and think.
The definitions might be framed so as to reflect, as far as possible, the normal use
of the words, but this attitude is dangerous. If the meaning of the words machine
and think are to be found by examining how they are commonly used, it is difficult
to escape the conclusion that the meaning and the answer to the question, ‘Can ma-
chines think?’ is to be sought in statistical surveys such as a Gallup poll. But this is
absurd [. . .].” [62]. Two definitions that represent a highly general possible expla-
nation of the term are presented by scientists who, from early on, strove to establish
a standard for the evaluation of “human” intelligence. The German psychologist
and philosopher William Stern (1871–1938) coined the term “Intelligenzquotient”
(intelligence quotient) and founded “differential psychology,” a discipline which ex-
amines the differences between single persons in terms of their mental properties.
Stern defines intelligence as the general ability of an individual to consciously ad-
just his or her thinking to new requirements; in this sense, intelligence represents a
general adaptability to new tasks and conditions of life. According to the American

3 In 1991, the Loebner Prize (100,000 USD) was created to award the first program to pass the
Turing test to the fullest extent; up to today, no program has been able to completely meet these
requirements. For the Loebner Prize, see [36, 55].
4 Of course, EMI is a prominent procedure in algorithmic composition in the framework of AI;
due to the fact that transition networks are an essential component of EMI, this type of network is
treated in chapter 5.
5 Cf. chapter “The Game,” in [10, p. 13ff].

228 10 Artificial Intelligence

psychologist David Wechsler (1896–1981), who developed the concept for the first
standardized intelligence test [63], intelligence is “the aggregate or global capac-
ity of the individual to act purposefully, to think rationally and to deal effectively
with his environment.” [63, p. 3]. Based on general definitions, different descrip-
tions of artificial intelligence can be made, such as the suggestion of Avron Barr
and Edward A. Feigenbaum: “Artificial Intelligence (AI) is the part of computer
science concerned with designing intelligent computer systems; that is, systems that
exhibit the characteristics we associate with intelligence in human behavior – un-
derstanding language, learning, reasoning, solving problems and so on.” [17, p. 3].
This definition shows two possible manifestations of artificial intelligence implic-
itly. In one case, AI programs are developed for problems that require “intelligent”
behavior in order to be solved. In the other case, the aim of the program is to imitate
“intelligent” behavior, as done, for example, by ELIZA through the simulation of
a conversation partner. This second aspect can also be found explicitly expressed
in a definition of AI by the computer scientist John McCarthy on the occasion of
the Dartmouth Conference of 1956, an event that is often considered the beginning
of the research field of AI: “[. . .] making a machine behave in ways that would be
called intelligent if a human were so behaving.” Because algorithmic composition
in the context of artificial intelligence searches for “intelligent” problem solving
strategies for musical tasks, a definition in terms of imitation can be left unconsid-
ered for this field. Even though processes that are modeled on human compositional
strategies6 are integrated in systems of algorithmic composition, such can be natu-
rally understood as an extended problem solving approach rather than an imitation
of intelligent behavior.

10.1 Algorithmic Composition in AI

Algorithmic composition in the framework of artificial intelligence may be pre-
sented from different points. Based on exemplary publications in this field, there
are methods that are either assigned to AI or described outside this area.7 Further-
more, in algorithmic composition several methods of AI are not exclusively used
for the generation of musical structure, but represent components of comprehen-
sive systems. This applies above all to principles of knowledge processing in AI.
In this context, the state space search is relevant to many data intensive methods,
and therefore is also part of numerous algorithmic composition procedures, with-
out, however, having to represent an independent composition technique. Based on
the treatment of several introductory publications8, this chapter attempts to estab-

6 E.g. Variations in [28] and [29], see chapter 7.
7 So, e.g. in the anthology “Understanding Music with AI” [6] a series of approaches can be found
that in the framework of this work are subsumed under separate methods, such as e.g. the works of
Kippen and Bel (see chapter 4) and others.
8 Feigenbaum [17], [18], [19], Russell [52], Winston [68], Kreutzer [32], Goerz [23], Luger [35],
Lämmel [33].

10.1 Algorithmic Composition in AI 229

lish a system of AI which contains all those approaches that are important for the
generation of musical structure.

In the creation of such a system it turns out to be difficult to find a uniform classi-
fication for the different approaches. Although particular methods such as first-order
predicate logic, expert systems, agents, etc. are treated more or less in detail in some
works, for the most part different approaches are taken regarding their classification.
In the following, only a few examples should be mentioned representatively: Luger
and Stubblefield treat neural networks as a sub category of machine learning. Görz
describes them in a separate section, whereas, for example, non-monotonic reason-
ing represents a category of machine learning. This method, on the other hand, can
be found in Luger and Stubblefield in the category “reasoning with uncertain or in-
complete information” as a sub category of “representations for knowledge-based
problem solving,” etc. Due to this different classification, for the representation of
algorithmic composition in the context of AI, a structure as simple as possible is
developed (see figure 10.2), in which some techniques may represent components
of hybrid systems without, however, having to be explicitly treated as separate pro-
cedures. These include, for example, the way knowledge is represented, the possi-
bilities of state space search or the application of logical operations in the context
of a program sequence. So, for example, the software OpenMusic of IRCAM (In-
stitut de Recherche et Coordination Acoustique/Musique) has a number of libraries
that provide different procedures such as logical operations or rewriting systems.
In some works of Phon-Amnuaisuk, Alan Smaill and Geraint Wiggins [44, 45],
the encoding of musical material, among other things, is carried out in the logical
programming language Prolog; Christopher Fry [22] and Kemal Ebcioglu [14] are
developing their own representation languages within their software systems.

In algorithmic composition, it is not always fully possible to assign the men-
tioned works to the context of a particular method because several developments in
this field are set out as hybrid systems and therefore apply a number of differing
procedures for musical structure genesis.

In general, systems of algorithmic composition that generate musical structure
based on domain-specific knowledge require that this information be represented in
one way or another. Knowledge representation consists basically of the possibility
of formally storing knowledge in an information system and further drawing con-
clusions on the basis of this information with the help of various procedures. As for
algorithmic composition, in the simplest case, a number of musically interpretable
data may be collected out of which parts are selected randomly for the composition
process. In order to establish relationships between the separate data and to en-
able conclusions that can be arrived at when examining information from different
perspectives, a number of methods for knowledge representation, such as experts
systems, are used in algorithmic composition.

230 10 Artificial Intelligence

Fig. 10.2 Algorithmic composition in the framework of artificial intelligence.

10.1 Algorithmic Composition in AI 231

10.1.1 State Space

However the representation of knowledge is formalized in these systems, it brings
about the definition of a state/search space that represents all possible events of the
respective discourse field. For the representation of the state space, a graph notation
may be used in various ways. If particular directions are assigned to the edges, it is
referred to as a directed graph. A root graph begins precisely at one node. Within
a tree the nodes of a graph are connected in pairs solely by one edge. Figure 10.3
illustrates the state space by means of the possible movements of the knight on a
chess board.

Fig. 10.3 State space by means of the possible movements of the knight on a chess board.

In the so-called uninformed search, the state space is traversed fully. Forward
chaining is a reasoning method that starts searching from the initial nodes to the
goal nodes, i.e. from facts to conclusions. This strategy is also referred to as a data-
driven search. In backward chaining, the state space graph is searched starting from
the goal nodes to the initial nodes. This method is also called a goal-driven search.
Depending on the task, the search in forward and backward chaining results in state
spaces of different size. As an example, the search for an ancestor within ten gener-
ations could be of use here. In forward chaining, two parents must always be taken
into consideration; therefore 210 states result. If every pair of parents is assumed
to have three children, in backward chaining, however, a considerably larger state
space of 310 states results [35, p. 117].

232 10 Artificial Intelligence

Irrespective of the direction of the search, the state space may be searched in
two different ways. In depth-first search, a node of the same level is only searched
when the node that had been searched before has been traversed in all deeper levels.
Breadth-first search is an algorithm that searches every level in the search graph
completely; only after this has finished the next level is explored, as can be seen in
figure 10.4.

Fig. 10.4 Breadth-first search (left) and depth-first search (right).

If the state space must be limited due to large amounts of data, informed or
heuristic search strategies are applied that integrate probability-based estimations of
the achievement of a particular goal in the problem solving process. In algorithmic
composition, heuristic search strategies are, for example, used in genetic algorithms
in which large amounts of generated data must be examined in the course of an
automatic fitness evaluation. Heuristics can also be found in real-time systems that
are developed for interactive improvisation or automatic accompaniment. So, the
live recordings of a musician may be compared to scores in a database in order
to generate appropriate accompanying voices. An example of an accompaniment
system of this kind can be found in the work of Roger Dannenberg [13]. In this
system, heuristics are applied in the comparison of patterns of input values that
try to find the most similar structures possible in the stored data. In an application
of Randall Spangler [56], musical material is analyzed in order to extract rules of
harmony; these rules are then applied to generate new harmonizations in response
to a melody input in real-time by heuristic methods.

In reference to a general definition of the term “heuristic,”9 these techniques are
part of nearly every algorithmic composition system. In a stricter sense, heuristics
are often referred to as methods for limiting state space search. Different algorithms
provide, in this context, solutions for a state space search which is optimized in
regard to the data to be examined. The solutions of a heuristic state space search,
however, render only uncertain results, in contrast to a complete traversing of the

9 E.g. “involving or serving as an aid to learning, discovery, or problem-solving by experimental
and especially trial-and-error methods” [16].

10.1 Algorithmic Composition in AI 233

state space, also called a “brute-force search.” The more effort required for its cal-
culation, the higher the probability of success of a heuristic algorithm. A simple
example of a problem for which heuristics do not always find an optimal solution is
the Traveling Salesman Problem. The problem statement is to find the shortest route
between a number of cities. Along the route, the salesman must visit every city ex-
actly once and then return to the starting point again. The solution seems simple, but
even with a relatively small number of cities an exhaustive traverse of the state space
requires enormous calculation efforts due to the large number of possible combina-
tions, commonly called combinatorial explosion.10 One of the simplest heuristics
that, in contrast, requires only little expenditure of calculation is the Nearest Neigh-
bor Heuristic. This method continues searching only from the best nearest node. By
means of breadth-first search, the search is continued only from the optimal node
of the first level; no other paths are taken into consideration. The same principle is
applied to every further level. If, for example, the nearest neighbor heuristic is used
at this point to solve the Traveling Salesman Problem, then additional solutions may
also be found that do not describe the optimal route between the separate cities, as
shown in figure 10.5 (right).

Fig. 10.5 Two solutions of a Nearest Neighbor Heuristic for the Traveling Salesman Problem

10.1.2 Context-Dependent Variants of Knowledge Representation

Semantic networks represent different types of objects and classes within a graph.
In that representation, the nodes stand for objects, classes and subclasses; the edges
are labeled to mark the relations between the separate nodes. Figure 10.6 illustrates
through a semantic network that all violinists are musicians, that Sarah is a particular
example of a violinist – and is consequently also a musician – and also, that Sarah
owns a Stradivari, which again is a special example of the class “violin.”

Based on the observation that humans describe objects of a class by means of par-
ticular characteristics, knowledge may also be represented in the form of so-called
frames that produce a standardized context for stereotypical situations. Frames pro-
vide the framework for a particular context and may be represented within a seman-

10 For example, for 4 cities (3*2*1) = 6 possible routes, for 8 cities = 5040, and for 12 cities already
more than 479 million.

234 10 Artificial Intelligence

Fig. 10.6 Semantic network.

tic network. Consequently, a car has, in most cases, four tires; in a kitchen one can
find an oven of some kind, etc.

In contrast to frames, scripts structure stereotypical sequences within a context.
An example of a script could be the process of shopping: First, one enters a shop,
then the goods are selected; finally one must inevitably go to the cash register. By
embedding pieces of information in such a standardized context, multiple semantic
meanings may be clarified and also, information that is not contained in the input
may be inferred from the context. On a shopping trip, for example, at the stage
“payment,” it may be assumed that this happens at a cash register, a shop assistant
is involved, etc.

An additional form of knowledge representation in which elements of a discourse
field are connected by particular relations, is concept graphs. Within the graph rep-
resentation, the nodes may either represent elements or relations. The elements of
a concept graph are referred to as concepts (the boxes in figure 10.7) and may il-
lustrate concrete or abstract objects, or also, particular properties of an object. By
means of concept relations (circles in figure 10.7), the concepts are related to each
other in different ways. The network of relationships is represented by a bipartite
graph,11 in which the concepts may only be connected through concept relations.
As an example, figure 10.7 shows the representation of the sentence “a child eats
a pudding with a plastic spoon” by means of a concept graph. Here, AGNT refers
to the agent, i.e. the doer of the action; PTNT is the object affected by the process,
the patient; INST is the instrument used to carry out the action; MATR stands for
material and represents the relation between the instrument and the material.

Fig. 10.7 Concept graph.

11 A graph is called bipartite when its nodes may be divided into two disjoint sets (bipartition)
so that there are no edges between the nodes within a set (meaning the concepts and the concept
relations).

10.1 Algorithmic Composition in AI 235

Semantic networks or concept graphs find their parallels in different systems of
algorithmic composition that process information within classes, objects and their
mutual relations. If basic conditions are formulated for particular musical classes,
this approach can be expressed in AI through the concept of frames. Scripts are mod-
els for the chronological organization of exemplary sequences of musical events.

10.1.3 Reasoning

A number of systems of algorithmic composition make use of propositional calcu-
lus and first-order predicate calculus for the encoding and derivation of musical in-
formation.12 Extensions of classical logic enable reasoning in uncertain situations.
Classical logic has the property of monotonicity of entailment, which states that new
knowledge may indeed be obtained through logical operations; already proven facts,
on the other hand, cannot be revised any more.

Methods of non-monotonic reasoning, in contrast, replace axioms of a calcu-
lus by assumptions that can be further replaced by new assumptions. One form of
non-monotonic reasoning is abductive reasoning in which unknown reasons are in-
ferred from known facts by forming hypotheses. In this sense, for example, smoke
may point to fire.13 Abductive reasoning is also referred to as “inference to the best
possible explanation.” Due to the fact that a conclusion derived by inference is not
necessarily ascribable to an underlying premise or reason, abduction is not a cor-
rect rule of reasoning in the sense of classical logic. Just like abduction, induction
(reasoning from the special to the general) may only make a proposition of an as-
sertion. Although these methods of reasoning use proposition instead of proof, they
are nevertheless often used in adaptive systems that are able to renew already made
assumptions along with increasing information. These forms of knowledge acqui-
sition are also basic means of natural scientific research whose findings are subject
to permanent changes as well. In addition, case-based expert systems that are often
applied in algorithmic composition must be seen in the context of these techniques.

In the sense of traditional logic, fuzzy sets extend the “law of the excluded mid-
dle” in terms of the membership to a particular set. In a classical two-valued logic,
a proposition is either true or false. In a multi-valued logic, such as fuzzy logic, the
truth value – a value that indicates to what extent a proposition belongs to a partic-
ular set – may express itself in an interval between 0 and 1. In the context of fuzzy
sets, traditional rules of reasoning and memberships to a set are discrete operations
that may be extended by means of fuzzy sets in the sense of smooth state transitions.
An example of fuzzy sets that are used for the categorization of sizes is shown in

12 Apart from the already treated approaches, an early algorithmic composition system of IRCAM
named CARLA must also be mentioned here (CARLA: Composition Assistée par Représentation
Logique et Apprentissage); this system enables the encoding of knowledge on musical objects by
means of the predicate calculus; cf. [11].
13 Cf. the syllogism in Buddhist logic in chapter 2.

236 10 Artificial Intelligence

figure 10.8. In this case, for example, one and the same T-shirt can be of the size
“small” or “medium.”

Fig. 10.8 Fuzzy sets by means of size.

On the one hand, fuzzy logic in algorithmic composition makes the definition of
imprecise areas of musical parameters possible; on the other hand, the application
of rules may be variably weighted by means of fuzzy sets that represent differing
musical solutions. As a model, fuzzy logic is well suited to the representation of mu-
sical value ranges because musical components cannot always be assigned clearly to
a particular category. In this sense, for example, dynamic indications must be seen
relatively, chords may have different functions in a harmonic context, and so on.
Manzolli and Moroni use in their system Vox Populi14 fuzzy sets for the scope of
voice ranges. Peter Elsea15 shows different applications of fuzzy logic in terms of
musical parameters and the selection of chord inversions. The membership of single
notes to different scales, as well as dynamic markings, are mentioned in this work
to serve as examples.

In the traditional probability calculus, the probability p of an event x is calcu-
lated on the basis of a given hypothesis. Bayesian reasoning infers the probability
of a proposed hypothesis based on an observed event. Different hypotheses are as-
sumed to have different probabilities; samples are taken then that correct the original
assumptions. The revision of the evaluations shows the learning effect of Bayesian
reasoning. In a Bayesian network (also: belief network) the approach of Bayesian
reasoning is represented in a directed acyclic graph (no cyclic structures occur).
Bayesian reasoning is not explicitly a procedure of algorithmic composition; how-
ever, it is frequently applied in the field of musical analysis [9, 46].

10.1.4 Production Systems and Rule-Based Systems

A production system is a model of a rule-based system that employs pattern match-
ing in the problem solving process. In most cases, a production system consists of a
set of rules (called productions), a working memory (or database), and a long-term
memory. The system works by running repeatedly through a cycle which is made

14 [38], see chapter 7.
15 In: “Fuzzy Logic and Musical Decisions” [15].

10.1 Algorithmic Composition in AI 237

up of three stages: recognize, resolve, and act. Production rules consist of precon-
ditions and actions, the preconditions determining which action is executed at what
time. The working memory has a description of the environment of the production
system, meaning the facts to which the rules of the production system may refer.
The rules are matched against the current state of the working memory, which re-
sults in the conflict set, a collection of rules following from the previous matching
algorithm. The conflict set represents the preconditions that the rules may apply.
The actions determined by the preconditions are executed until no precondition is
left to be applied to the content of the working memory – a process referred to as the
recognize-act cycle. In this type of system, either a data-oriented or a goal-oriented
problem solving process may be carried out. Forward chaining in a production sys-
tem works similarly to the recognize-act cycle – by means of rules and data, the
system searches the path to the given target precondition. In a system that uses
backward chaining instead of the preconditions, the actions are matched against the
working memory and the preconditions are included in the memory. This new state
is again compared to other action parts of the production rules, etc. The search ends
when the preconditions of all production rules have been applied.

An expert system that, in its different forms, is structured upon the concept of a
production system uses subject-specific knowledge for solving and evaluating given
facts. In a rule-based expert system, the knowledge base consists of a set of produc-
tion rules that are divided up into “if-then” conditions; case-specific data is stored
in the working memory. In most cases, rule-based expert systems apply forward
chaining; however, backward chaining is also possible in the context of hypothesis
examination.

Rules and constraints are knowledge-based problem solving strategies, meaning
that there must be knowledge about the principles of the structure to be generated. A
method of machine learning may be used here to gain knowledge about a problem
that is further encoded in rules and constraints. In general, rules are formulated as
“if-then” conditions. Constraints are conditions that limit the state space and may
therefore give value ranges for variables that, for example, in algorithmic composi-
tion, limit the scope of musical parameters. Rules and constraints are often applied
within a two-level procedure that first produces musical structure by means of rules
that is further examined by constraints. As an example, a proceeding could demand
tonics after a dominant function (the rule); the possible chord combinations are then
examined in regard to the occurrence of parallels of perfect consonances (limiting
condition in the sense of a constraint). In the literature, approaches in algorithmic
composition that work with rules and/or constraints are often classified under the
one or the other term.16 Due to the fact that most approaches for algorithmic com-
position in this field use both rules and constraints, the works treated here are sub-
sumed under the term “rule-based.” This definition also results from the possibility
of labeling constraints as a special class of rules that exclude objects of a discourse
range from further processing within a system.17

16 “The first two chords violate the parallel fifth rule [. . .]” [42].
17 Examples for the use of constraints for the generations of chord progressions can be found in
[47] and [24].

238 10 Artificial Intelligence

If the terms “rule” and “constraint” are applied in the sense of aesthetic categories
irrespective of their informational importance, a distinction between the terms is,
however, both interesting and meaningful. Early systems in the field of algorithmic
composition often use Generate And Test (GAT) methods. The principle here is the
generation of a number of values that in a further step are examined in terms of their
musical usability.

The first example of a computer-generated composition produced by a GAT
method is the “Illiac Suite” of Lejaren Hiller and Leonard Isaacson.18 Regardless of
the application of Markov chains, random values are generated that in further steps
are examined for their musical usability by limiting rules. In the generation of the
“Illiac Suite,” the constraint is, in its notional meaning, also an aesthetic concept of
the compositional process: “Moreover, the process of musical composition itself has
been described by many writers as involving a series of choices of musical elements
from an essentially limitless variety of musical raw materials. The act of composing,
therefore, can be thought of as the extraction of order out of a chaotic environment.
[. . .] In general, the more freedom we have to choose notes or intervals to build up
a musical composition, the greater number of possible compositions we might be
able to produce in the particular musical medium being utilized. Controversially, if
the number of restrictions is great, the number of possible compositions is reduced.
As an initial working premise, it is suggested that successful musical compositions
as a general rule are either centrally placed between the extremes of order and dis-
order, and that stylistic differences depend to a considerable extent upon fluctuation
relative to these two poles.” [25, p. 9]. The analogy of the compositional process
to a directed process of selection is an interesting aesthetical concept, but, how-
ever, does not correspond to the reality of compositional practice. Even though an
examination of musical generations is carried out in different stages of the composi-
tional process, the initial material already represents a limited number of applicable
structural components and is not a priori the total of all possibilities.

Regardless of its aesthetical implication, this approach must certainly also be
seen as the pragmatic approach of Hiller and Isaacson in which for the realiza-
tion of the “Illiac Suite,” elements of a discourse field are continuously eliminated
according to a rule system in order to achieve correct results. Also, Hiller and Isaac-
son’s hypothesis regarding “successful composition” which is located somewhere
between the two poles of order and disorder, does not claim universal validity; how-
ever, due to its conception it may be easily formalized in the framework of a system
of algorithmic composition. In the “Illiac Suite,” Hiller and Isaacson work with
different “experiments” that treat separate musical tasks. In experiments 1 and 2,
counterpoint techniques modeled on the concepts of Josquin de Près and Giovanni
Pierluigi da Palestrina are used for the generation of musical material. A less restric-
tive rule system is implemented in experiment 3 for the generation of “experimental
music.” Experiment 4 is an application of Markov chains of different order. The
basic mode of operation in experiments 1 to 3 is well illustrated by means of coun-
terpoint rules in the following text passage: “The music so produced was arranged

18 Cf. [25], for the “Illiac-Suite,” also see chapters 2 and 3.

10.1 Algorithmic Composition in AI 239

to start with random white-note music [meaning here the white keys on a piano] and
then by the successive addition of counterpoint rules was forced to progress grad-
ually to more and more cantus firmus settings. We thought this procedure would
provide an example of how order or redundancy might be brought into a musical
texture.” [25, p. 11]. Figure 10.9 shows the main routine for chromatic music as a
part of the generation process of “experimental music” (experiment 3). The genera-
tion of the rhythmic structure is done by the generation of random binary numbers
representing holds or rests, depending on playing instructions generated by an addi-
tional routine. Figure 10.10 shows the basic rhythmic schemes and their coding for
4/8 meter.

Fig. 10.9 Main routine for chromatic music in experiment 3 [25, p. 17]. c© 1993 Massachusetts
Institute of Technology. By permission of The MIT Press.

The “Illiac Suite” marks the beginning of a number of computer generated com-
positions. In the context of these works, the first computer music languages are
subsequently being developed. In this field as well, Hiller is doing pioneer work
together with Robert Baker. Their computer music language Musicomp, which ba-
sically consists of several small programs that can be combined, was designed in the
early 1960s.19

A complex application of rule-based systems in the context of algorithmic com-
position can be found in Kemal Ebcioglu’s system CHORAL, which harmonizes
melodies in the chorale style of J.S. Bach [14]. For the software, a proprietary
programming language is being developed; besides rules and constraints, heuristic
procedures are also applied. Ebcioglu’s programming language BSL (Backtrack-

19 A well-known composition that was realized with Musicomp is the “Computer-Cantata” by
Hiller and Baker (1963). For Musicomp, see [26, p. 37ff], for “Computer Cantata” [26, p. 50ff],
for further works developed after the “Illiac Suite,” see [26, p. 36].

240 10 Artificial Intelligence

Fig. 10.10 Coding of rhythmic patterns [25, p. 19]. c© 1993 Massachusetts Institute of Technology.
By permission of The MIT Press.

ing Specification Language) encodes the domain-specific knowledge in a formalism
similar to first-order predicate calculus and, due to its application-specific design,
is capable of faster processing speeds than Prolog, Lisp and other similar languages
– an advantage that, however, because of the processing speeds of today’s com-
puters, is rather of historical importance.20 The harmonization in CHORAL takes
place in a multi-level process that was designed according to Schenker’s hierar-
chical system. Based on a skeleton of fermatas and rhythmless chords, the single
voice leadings are generated in further steps. This architecture illustrates another
type of rule-based systems in algorithmic composition that is applied frequently.
The generation process is motivated less by the GAT method which examines ran-
domly generated values with a number of functions in terms of their musical us-

20 Prominent systems of algorithmic composition such as CommonMusic (CM) by Rick Taube
or OpenMusic (OM) by IRCAM are recently developed Lisp-based systems that are constantly
being further developed. CM also enables the processing of the stringent Lisp dialect “Scheme.”
Taube’s book “Notes from the Meta Level” [58] includes a detailed description of CM for different
applications of algorithmic composition. A good introduction to the concepts of OM can be found
in [39, p. 967ff]. A number of articles treating algorithmic composition in the framework of OM
can be found in “The OM Composers Book - Vol. 1.” [1]; Vol. 2 to be published in 2008.

10.1 Algorithmic Composition in AI 241

ability. Rather, a rule-based system is applied here hierarchically, which structures
the composition step by step.21 This structuring happens in Ebcioglu’s system in
separate procedures that build on one another: According to the given melody, the
“chord skeleton view” generates several rhythmless chord progressions on the basis
of rules and constraints; the heuristics placed in this view prefer cadences in the
style of Bach. The “fill in view” that in turn is divided up into a number of proce-
dures,22 generates possible note values based on these progressions. A number of
rules and constraints control the selection of notes in terms of their function as pass-
ing tones, suspensions, ornamentations, etc. The notes receive these functions as a
result of their position, harmonic function, and meaning in a Schenkerian context
that is given by the “Schenkerian analysis view.”

If the results of the harmonization do not correspond to the constraints and heuris-
tics, backtracking is applied. Figure 10.11 illustrates a chorale melody harmonized
by CHORAL.”

An additional approach that also generates chorale harmonization by means of
rule-based strategies is being developed by Somnuk Phon-Amnuaisuk, Alan Smaill
and Geraint Wiggins [44]. An inference module written in Prolog accesses a data
base in which domain-specific knowledge is encoded in the form of musical struc-
tures and operations on these structures. An example of this architecture is illustrated
in figure 10.12. As in Ebcioglu’s work, the generation is carried out within a hier-
archical model in which, due to a transparent program structure, control structures
may be variably designed and the system may be extended for different applications.

Figure 10.13 provides an example of two harmonization versions of the same
chorale line in different rhythmic densities.

Rule-based systems in algorithmic composition use different strategies for the
representation and processing of music-specific knowledge. Apart from the rule (as
an “if then” condition), constraints and the logical clause, generative grammars of-
fer an additional possibility for encoding knowledge. Charles Ames and Michael
Domino [2] use this formalism as a part of their Cybernetic Composer, which pro-
duces musical pieces of popular genres. Like the abovementioned systems, this soft-
ware also uses constraints and backtracking in addition to other methods.

Most approaches to algorithmic composition generate musical structures in form
of a score, i.e. requiring interpretation in terms of agogics and dynamics by per-
formers. By contrast, some systems model performance practice of existing scores,
thus studying the often implicit notions of musical interpretation.

Margret Johnson [30] developed a system that processes an input consisting of
fugues from the Well-Tempered Clavier and outputs rules regarding the fugues’
tempo, articulation and application of some ornaments. The used instrument is as-
sumed to be a cembalo; due to this, dynamical structure may be disregarded. The in-

21 Another interesting application of a hierarchical rule system can be found in [34]. David Levitt
designed a system that generates a composition on the basis of simple basic conditions by using
constraints of increasing specialization.
22 Like, for example, “time-slice view” and “melodic-string view” which observe both vertically
harmonic and horizontally melodic aspects of the harmonization in terms of a so-called “multiple
viewpoint system”; cf. [14, p. 392ff].

242 10 Artificial Intelligence

Fig. 10.11 Chorale harmonization by Kemal Ebcioglu’s system [14, p. 396, 397]. c© 1993 Mas-
sachusetts Institute of Technology. By permission of The MIT Press.

terpretation rules are based on the expertise of two professional performers. Knowl-
edge as to the correct interpretation is, on the one hand, determined by the rules,23

and on the other hand by procedures that indicate their preferences for the appli-
cation of the rules. The system examines the fugue by means of a tree structure
in which the rules are encoded, and gives instructions for their interpretation, as
partly shown in table 10.1. This approach therefore enables the recognition of mo-
tifs that are consequently, however, always interpreted in the same way. Although
it promotes the recognition of identical motifs, this approach is not able to treat

23 E.g. “If there are four 16th notes and a leap of greater than a third between the first and the
second, then play the first 16th note staccato and slur the last three 16th notes” [30, p. 45].

10.1 Algorithmic Composition in AI 243

Fig. 10.12 Representation of musical structures with Phon-Amnuaisuk et al. Kindly provided by
Somnuk Phon-Amnuaisuk.

Fig. 10.13 Two harmonization versions of the same chorale with Phon-Amnuaisuk et al.

their musical context, because the repetition of a motif may be musically moti-
vated in different ways – a fact that in a successful “human” interpretation also be-
comes evident in different interpretations of the same motif. Anders Friberg, Vittorio
Colombo, Lars Frydén and Johan Sundberg [21] developed Director Musices, a sys-
tem for the musical interpretation of MIDI files. In this system, rules are formulated
within categories on different hierarchical levels. In this way, a rule may affect an
entire segment and also a particular event in this segment at the same time. The cor-
pus of rules is particularly comprehensive and consists of the following categories:
“Grouping rules” mark boundaries between note groups, “differentiation rules” pro-
duce contrasts between categories (e.g. loud – silent, short – long), and “ensemble
rules” enable interactions between musicians in an ensemble and relate them to gen-
eral specifications (e.g. interpretation with a swing feel). Combinations of different

244 10 Artificial Intelligence

Bar Beat Message
Base tempo: M. M. quarter note = 80; fastest note value = 16th.
Opening: Slur the two 16th notes together.

1 2 Subject: Play both eighth notes staccato.
1 3 Subject: Prolong the downbeat note slightly.
1 3 Subject: Slur the two 16th notes together.
1 4 Subject: Play both eighth notes staccato.

Table 10.1 Output of Johnson’s system for the interpretation of Bach fugues.

rules are used to produce interpretations of a particular “emotional quality.” The de-
gree of application of the rules (like the higher, the louder) can be modified during
playback in real-time by a user.

Some systems of algorithmic composition and analysis aim to model or recognize
the “emotional content” of musical material. In these systems particular musical
information is classified, for the most part, under a certain “emotional aspect.”

Douglas Riecken’s [50] system WOLFGANG is based on inductive machine
learning in a knowledge-based system. In order to generate compositions in a char-
acteristic style, four distinct emotions are assigned to the musical units in different
shares. These components are combined within a network24 and should make a
genuine compositional process comprehensible by means of concerted “emotional
qualities.”

The Kansei Music System by Haruhiro Katayose and Seiji Inochuki [31] attempts
to analyze musical material by means of emotional and extra-musical labeling: “We
have assumed that sentiment is inspired from recognized musical primitives, such
as melody, chord progression, rhythm, timbre, and their combinations. We there-
fore designed an experiment to extract sentiments using music analysis rules that
extract musical primitives from transcribed notes and rules that describe the relation
between musical primitives and sentiments.” [31, p. 74–75].

In these approaches consideration must be given to the fact that the “emotional
content” of a composition or a musical segment is actually a complex phenomenon
of reception with enormous cultural and personal variation that in most cases cannot
be derived from a particular musical constellation.

10.1.5 Machine Learning

In the technique of supervised learning, the output of a system is examined in terms
of its problem solving ability by an entity that is independent of the system. In a
dataset that is used for learning, a single data field may also be explicitly identified
as target category. Reinforcement learning is an application of supervised learning.

24 By using the so-called “K-line memory” that reactivates previous behavior when a pattern reoc-
curs; cf. [40, e.g. p. 60, 84ff].

10.1 Algorithmic Composition in AI 245

In this technique, a system receives positive or negative feedback when interacting
with its environment, although the system is not provided with an action strategy.

Examples of supervised learning can be found in algorithmic composition in all
systems whose outputs are evaluated in regard to particular objectives or by a user25

and that apply the results as an extension of the knowledge base in order to solve
further problems.

In unsupervised learning, no target values are given. This method of machine
learning aims, among other things, to achieve an autonomous recognition of notice-
able patterns in data and to classify them.26 Unsupervised learning is also applied in
data compression which examines the input values in terms of essential components.

Symbol-based machine learning seeks to infer higher orders or general facts from
a given amount of data by using mostly inductive methods, whereas problem solving
is carried out by sentences formulated in a symbolic language. For the reduction of
large state spaces, inductive biases that choose efficient procedures on the basis of
heuristics are applied. Knowledge may be represented by means of every symbolic
representation, such as with first-order predicate logic, object hierarchies, or frames.
The concept space makes up the area of all possible solutions that are examined. One
possible strategy for the examination is the generalization of statements through, for
example, replacing constants by variables or deleting conditions from a conjunctive
expression. These generalizations are made on the basis of regularities found in the
data material.

Machine learning may be used in supervised or unsupervised form in a num-
ber of different procedures. Examples of representative applications in algorithmic
composition can be found in chapters 9 and 7. Learning techniques may, however,
also make use of statistical procedures, as shown for example by Belinda Thom
[59, 60, 61], who designed a software program that, in the framework of unsuper-
vised learning, enables the development of a system for automatic interactive im-
provisation. In the following, some approaches of symbol-based machine learning
are presented which may be divided into rule-based, model-based and case-based
techniques.

As examples of rule-based learning, three works will be described briefly, whose
knowledge base builds upon rules that are consequently extended by the system.
Stephan Schwanauer [54] generates harmonizations by applying different learning
models with his system MUSE. On the basis of simple perception models, Ger-
hard Widmer is developing different problem solving strategies that from correct
solutions of musical tasks infer explanations that are then integrated as rules in the
learning process. In an exemplary application [66], an upper voice is generated to
become a cantus firmus; in an additional work [67], simple melodies are given sug-
gestions for functional harmonic accompaniment.

Schwanauer’s system MUSE (Music Understanding System Evolver) fulfils dif-
ferent tasks in the context of four-part harmony. “Learning by rote,” “learning from
instruction,” “learning from failure,” and “learning from examples” are the cate-

25 E.g. Al Biles’ system GenJam, cf. chapter 7.
26 Cf. Kohonen feature maps in chapter 9.

246 10 Artificial Intelligence

gories within which MUSE provides strategies for the required tasks. Schwanauer
also introduces some other interesting approaches, such as “learning by analogy”
or “learning from discovery” which, however, are not implemented in his program.
In “learning by rote,” a number of musical tasks are solved by combining different
problem solving entities. The fives stages to be solved are as follows: generation
of filling voices for a soprano and bass in root position triads; completing the in-
ner voices for a soprano and figured bass; writing a soprano line and completing
the inner voices for a figured bass; writing a soprano line and completing the inner
voices for an unfigured bass; harmonizing a chorale melody. As examples of the
generation of filling voices, these are selected out of the harmonic material which
corresponds to the given soprano and unfigured bass line. At this stage, it is mainly
notes in prominent harmonic position that are processed and certain doublings are
avoided. A further step examines the results regarding voice leading rules which ex-
amine the material for the occurrence of parallel fifths, octaves, and the like. These
constraints as absolute prohibitions, together with some directives that do not re-
ject notes outright but that prefer particular notes, make up the exhaustive class of
“learning from instruction.” If the solutions generated do not correspond to the con-
straints i.e. in case all attempts to complete the inner voices in the previous steps
fail, the state space is once again traversed by means of backtracking, beginning
from the last valid solution until a satisfactory result is reached. The results of the
backtracking process are stored in MUSE and reflect “learning from failure.” If a
particular approach proves to be successful in repeating situations, it may be for-
mulated by the program as a new rule – this generalization capability is called by
Schwanauer “learning from examples.”

In Widmer’s [66] system for the generation of upper voices to a given cantus fir-
mus, a musical perception model is established which, together with a training cor-
pus, enables the learning of counterpoint rules. The musical material is organized
in a hierarchical system which contains information about key, interval constella-
tions, context of the musical units and the like. The perception model that forms
the basis of the system refers to vertical and horizontal interval constellations that
are assigned different degrees of harmonic tension. Sequencing events are labeled
with properties such as “contrast,” “parallelism,” or “relaxation.” The user evaluates
constellations of four notes each with “good,” “bad,” and “unacceptable.” Based on
these evaluations, the system inductively generates rules for the musical generation
within PROLOG clauses. Figure 10.14 shows a learned generalized rule for the in-
terdiction of “parallel fifths” by a musical configuration classified as “unacceptable.”

Furthermore, the system produces hypotheses about possible rules that are then
made subject to the user’s examination. A determination which may also be applied
on the constellation of “parallel fifths” is illustrated in figure 10.15.

These determinations are statements of generalized possibilities that can only be
induced to a rule by an exact definition in the framework of a case study. In the
above example the general description “bad effect” would have to be concretized by
means of a concrete case example through the constellation “perfect consonance” in
order to be formulated to a general rule, after positive affirmation by a user. Along

10.1 Algorithmic Composition in AI 247

Fig. 10.14 Learned rule from user evaluation [66, p. 495]. c© 1992 American Association for
Artificial Intelligence.

Fig. 10.15 Determination of possible forbidden constellations. c© 1992 American Association for
Artificial Intelligence [66, p. 501].

with the determinations, this system also uses heuristics that determine preferences
for the order of applied hypotheses.27

Widmer’s [67] system for the harmonization of simple melodies is based on user
evaluations of a training corpus on the basis of which the system generates its har-
monization rules. In a hierarchical analysis model with increasing abstraction, the
properties of evaluated harmonized songs are related to one another in order to gen-
erate criteria for the independent harmonization: “The arrows in Fig. 1 [see figure
10.16] determine what the model can be used for. They describe possible influ-
ences between effects; that is, they describe in which way one effect can contribute
to the emergence or prominence of another effect. Basically, there are three types
of links: positive qualitative proportionalities; negative qualitative proportionalities,
and general qualitative dependencies.” [67, p. 56]. These dependencies may express
themselves in such a way that if, for example, a large distance stands between one
chord and the next (along the cycle of fifths) the transition is perceived to be “hard.”
If, in another case, a note of the melody is part of the chord of the underlying har-
mony, this area is perceived as harmonically stable. The different forms of musical
material, such as tension, relaxation and contrast, are additionally evaluated in a
qualitative scale ranging from “low” to “extremely high.”

The system generates hypotheses as to why a particular constellation is, for ex-
ample, perceived to be positive; these are either accepted or denied by the user.
Satisfying solutions are integrated into the system as rules for further application.
Figure 10.17 shows an extract of an explanation for a melodic-harmonic constella-
tion that is evaluated as positive.

27 For a more detailed description of determinations and heuristics, see [66, p. 498ff].

248 10 Artificial Intelligence

Fig. 10.16 The structure of the qualitative perception model [67, p. 55]. c© 1992 by the Mas-
sachusetts Institute of Technology.

10.1 Algorithmic Composition in AI 249

Fig. 10.17 Explanation in Widmer’s system for a satisfying melodic-harmonic constellation [67,
p. 58]. c© 1992 by the Massachusetts Institute of Technology.

250 10 Artificial Intelligence

A model-based system analyzes a problem domain by means of functions and
specifications of relevant reference models. Errors can be recognized through the
discrepancy between expected and observed behavior. One application of a tech-
nique designed in a similar way can be found in the work of Rens Bod [8], who an-
alyzes examples of folk music. Based on the principles of “Musikalische Gestalt,”28

compositions of a corpus are compared in terms of similarities in the structural form
of segments.

Case-based reasoning systems (CBR) make their decisions on the basis of al-
ready gained experience and usually run through a four-step process when solving
a problem:

1. Cases whose solutions may also be applied to solving the target problem are
retrieved from the memory.

2. The solution of the case that best matches the target problem is used for an initial
problem solving.

3. After mapping the previous solution to the target case, it is revised and adapted
to the target situation.

4. After the adaptation, the new case and the resulting experience are stored in the
memory for use in further cases. The system is therefore able to learn and extends
its problem solving competence with every new case.

Several works will now be introduced briefly as examples of the application of
CBR in the context of algorithmic composition.

Francisco Pereira, Carlos Grilo, Luı̀s Macedo and Amilcar Cardoso [43] devel-
oped a software system which, based on a corpus of some compositions of the
Baroque age, generates soprano voices after the input of a bass voice. In the anal-
ysis, the musical pieces are divided according to a hierarchical tree-like structure
whose nodes represent the musical terminals. Similar to the principles of a gener-
ative grammar, the material is subdivided into phrases and sub-phrases, etc. up to
the single notes. The different nodes are given additional indications for position,
meter, tonality, and previous and succeeding nodes as well. The system may also
comprehend musical structures that are completely modified by functions such as
transposition. Each of these musical objects is formulated within Prolog clauses and
represents the case memory of the CBR system. When a new bass voice is given
as an input, the system searches cases in the divided case database and generates a
soprano voice based on them, preferring solutions that differ more from the corpus.
In order to use the state space more efficiently, backtracking is applied.

A similar approach is being pursued by Paulo Ribeiro, Francisco Pereira, Miguel
Ferrand and Amilcar Cardoso with their system MusaCazUza [49]. Here, too, a so-
prano voice is produced, which, however, has a harmonic line as an input. The case

28 Developed by Christian Ehrenfels (1859–1932), founder of the “Gestalt theory” that states in
simple words that perception of phenomena happens as a complex whole and not as the sum of
its constituent parts. Ehrenfels demonstrates musical Gestalt e.g. by means of the transposability
of melody progressions whose concrete note values change, although the melody may still be
recognized.

10.1 Algorithmic Composition in AI 251

database of this system consists of harmonic elements (scale degrees) in combina-
tion with rhythmically structured melodic phrases. The context-dependent attributes
of each case are, for example, pitch and duration of the notes building up the melody,
the duration of the harmonic function, the harmonic function itself, information on
the context regarding melody and harmony and the amplitude and direction between
the first and the last notes in the case. After the input of a harmonic progression, the
system generates a sequence of possible cases for the production of the soprano
voice. Several possible cases are arranged by means of different criteria; the best
variant in each case is integrated in the output sequence. After obtaining a melody,
the user may alter the results and integrate them as a new case into the database.

The generations of these systems are, in some cases, described by the authors to
be satisfying; however, disadvantages result from the application of a comparatively
small corpus – a limiting fact that is also explicitly mentioned in the work of Pereira
et al. [43, p. 5].

Jordi Sabater, Joseph L. Arcos and Ramon López de Màntaras [53] are attempt-
ing to solve this problem in their CBR system for the harmonization of melodies by
involving rule-based techniques. A limitation of the state space in the case database
is reached in this system through the indication of “representative notes” that cor-
respond mainly to longer notes in the first half of the measure. Together with the
underlying harmonies, these notes constitute the cases of the database. If no appro-
priate case can be found for an input, the rule-based component of the system is
applied in which some simple principles for the generation of harmonic progres-
sions are encoded. The rule-based solutions are added to the CBR database and are
available in the case memory in case of a new generation of the system.

The system SaxEx by Arcos, Sabater and de Màntaras generates agogic and dy-
namic structure by means of a CBR system [3, 4, 5]. SaxEx uses spectral analysis
to extract information on parameters such as articulation, dynamics, rubato and vi-
brato of a saxophone interpretation and produces a database on the basis of the
performance data. As an input for the system, an “inexpressive” interpretation may
be used that is arranged by SaxEx with agogic and dynamic variations. Another pos-
sibility is to use a musically already interpreted performance and derive the agogic
and dynamic information for the expressive interpretation of other pieces of music.
The case data base in SaxEx consists of musical structures that are arranged accord-
ing to the principles of Lerdahl and Jackendoff’s generative theory of tonal music.
Results of the CBR system that may be modified by the user are available as new
cases in the database. In an extended version of SaxEx, musical movements are as-
signed differing shares of basic affective dimensions that may also be further applied
explicitly for the creation of the performance. A three-dimensional space serves to
represent musical affections. Each of these axes in that space represents a scale be-
tween two contrasting affections, such as “tender – aggressive,” “sad – joyful,” and
“calm – restless.” Then, a position is assigned on each of these axes to the musical
segment; therefore, for the whole emotional aspect of the musical segment a clear
position in this representation space results. Although the assignment of affective
qualities to musical structure is, in principle, a difficult undertaking, this represen-

252 10 Artificial Intelligence

tation form by Arcos et al. is, however, an interesting alternative for a differentiated
“affective” labeling of musical aspects.

10.1.6 Agents

In contrast to a central knowledge base, agents are models of cooperating intelli-
gence in the sense of a distributed problem solving approach. The agent does not
require knowledge about the superior or parallel problem solving entity in order
to complete its task; it acts autonomously. To differentiate such a construct from
the concept of sub-programs or simple objects, some necessary properties that the
program must possess in order to be considered an agent are given. Luger and Stub-
blefield define an agent as “an element of a society that can perceive (often limited)
aspects of its environment and affect that environment either directly or through co-
operation with other agents [35, p. 16]. The authors give a number of criteria for its
characterization: An agent is “autonomous” to a certain degree which means that
it performs some tasks of problem solving to the most part independent of other
agents. Further, it is “situated” in an own surrounding and has a certain knowledge
of its environment. An agent is “interactional,” referring to it being part of a col-
lection of individual agents that it collaborates with to solve tasks. Regarding the
society of all agents, they coordinate in order to find a solution. Consequently the
phenomenon of “emergence” occurs, meaning that through the cooperation of the
collective of agents a result is reached which has more significance than the contri-
bution of each individual agent [35, p. 15–16].

Lämmel’s [33] definition of an agent even includes several additional properties,
for example: Agents are “continuous” (acting continuously for some time), “mo-
bile” (e.g. movement in a network), and also have “personality” that may guarantee
a particular appearance of the agent. All these criteria have something in common:
They imagine an agent to possess “autonomy”; a property that, similar to the term
“intelligence,” may be interpreted in various ways.

Mikhail Malt [37] developed a multi-agent system that generates musical out-
put in the context of an artistic project related to the improvisation of an instru-
mentalist. Each agent in Malt’s system possesses a name, a fixed spatial position,
a central note, a perception radius (a region of listening), a task (a musical ges-
ture), a maximal life span, and a behavior that is expressed in different interactions
with circumjacent agents. The musical gesture of each agent may be an element of a
melody, a sound sample, or something similar. Within a particular perception radius,
interactions with other agents occur that appear in two basic behavioral patterns: In
“social” behavior, the musical parameters of adjacent agents assimilate, whereas in
“anti-social” behavior these parameters develop in contrary directions to their neigh-
bors. “Social” and “anti-social” behaviors are defined in this system by the relation
of the root tone of an agent to the average value of the root tones of other agents
within the perception radius. In order to enable the population size of the system to
remain the same despite the limited life span of the single agents, “reproduction”

10.1 Algorithmic Composition in AI 253

may be applied by transferring particular parameters such as name, position, or task
of an agent to a “descendant.” The interrelations between all agents produce the mu-
sical output of the system: “As the action of each agent is always dependent on the
other agents, the notion of emergence was fundamental in this experiment. This no-
tion expresses the appearance of a new meaning during the aggregation of elements
within a given context.” [37, p. 7].

Joseph Rukshan Fonseka [20] developed an agent type that interacts with other
agents by communicating in a computer network. The starting point for Fonseka’s
work is a description for the generation of musical material of the British composer
Cornelius Cardew: “Each chorus member chooses his own note (silently) for the
first line [. . .] For each subsequent line choose a note that you can hear being sung
by a colleague. [. . .] Time may be taken over the choice. If there is no note, or only
the note you have just been singing, or only 2 notes or notes that you are unable to
sing, choose your note for the next line freely. Do not sing the same note on two con-
secutive lines. [. . .] Remain stationary for the duration of a line; move around only
between lines.” [20, p. 27–28]. The description given here in a shortened version
makes up the seventh section of Cardew’s experimental musical work “The Great
Learning,” written in 1967. Music is herein described using instructions, for exam-
ple, in which tones are equated with states and circumjacent choir singers with the
environment; consequently, this concept shows a conceptual parallel with the prin-
ciples of cellular automata. In the realization of this concept in a network, Fonseka
uses the latency of data transmission between networked computers as an analogy
to the physical distance of the choir singers.

The fact that agent types that originally had not been developed for musical
tasks29 may also be applied in algorithmic compositions in interesting ways is
shown by Tatsuo Unemi and Daniel Bisig [64] in the context of an interactive in-
stallation which employs algorithms to generate music and visuals. In this work,
the movements of a user affect the activities of agents moving in a virtual three-
dimensional space – the graphical and musical output results from the interplay of
real and virtual movement. Each agent has two “instruments” whose panorama, tone
pitch and velocity (values on the x, y and z axes) are acquired from the present spa-
tial position of the agent. Apart from rules that determine the possible movements
of each agent within the flock, the user may influence the selection of the instrument
as well as the positioning of the entire flock. In order to limit the number of musi-
cal events, different strategies are applied that allow only certain agents to produce
tones. User interfaces enable the definition of a tone pitch range, the selection of
particular scales or also the indication of chord progressions within whose pitches
the agents may contain their musical activities.

29 Here: flocking agents; agents that may show complex patterns of movement resembling flocks of
fish or birds in their graphic representation. The first application was developed by Craig Reynolds
with “BOIDS,” a multi-agent system for the simulation of flocks of birds; cf. [48]. The work of
Unemi and Bisig is mentioned only as an example, similar approaches can also be found e.g. in
[51] [57] and [7]; for an overview, see [64]. Further interesting reading should be found in the
newly published book edited by Miranda and Biles [41].

254 10 Artificial Intelligence

In most of the multi-agent systems in the context of algorithmic composition,
the output of the system proves to be an emergent phenomenon – a complex, often
unpredictable musical result that is produced by the interaction of mostly simply
structured subprograms (the agents). This behavior, which is normally difficult to
foresee, can also be found in the conceptually related cellular automata as well as
in some works in the field of genetic algorithms.30 But it is exactly this aspect of
complexity and unpredictability that may represent an interesting approach: “From
these experiments it is possible to put forth the hypothesis that a musical surface
could be seen as a system to which an unstable dynamic will correspond, driven by
a multiplicity of forces in interaction. The composition will then be seen as a pro-
cess in permanent movement, a permanent search for meaning between the different
levels of the considered musical space, with moments of stabilization, moments of
destabilization and mainly the phenomena of emergence.”31

10.2 Synopsis

Due to the numerous approaches of classification, the representation of algorithmic
composition in the framework of artificial intelligence is quite difficult. The clas-
sification made in this chapter leaves some works that are treated in the context
of other techniques unmentioned. So it would indeed be possible to represent, for
example, generative grammars or Markov models as tools of language processing
within the scope of AI. The large quantities of literature available for methods like
these, however, are in this work a motivation to treat them separately. For the pro-
cedures subsumed in this chapter under the concept of AI, the following concluding
reflections may be made.

The peculiarity of musical information implies, at least in the generation of style
imitations, enormous state spaces. Brute-force techniques fail to handle the com-
plexity and diversity of the musical material. The basic problem here is the fact that
the musical components that are to be processed can only be connected to larger
units in a meaningful way through a complex approach. Even when, for example,
only one parameter such as pitch is treated, the result is related to problems such as
the correct handling of the context and the often necessary recognition of a hierar-
chical structure that is implicitly available in the corpus. Furthermore, when a larger
number of parameters are considered and polyphonic structures are modeled, this
increases the amount of possible outputs considerably. For these reasons, systems
of algorithmic composition in the framework of AI often apply heuristic strategies
for limiting the state space; however, heuristics cannot naturally guarantee optimal
solutions. In this regard, variants of context-related knowledge representation that
limit the musical event space to expected configurations must also be mentioned.
For the consideration of a larger number of parameters, multiple-viewpoint systems

30 Exemplary of that is [12], see chapter 7.
31 Malt on the results of his work; cf. [37, p. 7].

References 255

that may represent and process the musical material in terms of different aspects are
used frequently in AI.

In algorithmic composition, methods of logical reasoning and their extensions
are, above all, used for the representation and derivation of knowledge – such as, for
example, in the form of predicate calculus – or also for the limitation of parameter
areas by fuzzy sets. Non-monotonic reasoning is not an explicit procedure of algo-
rithmic composition; however, due to the fact that, in a creative process, musical
premises cannot have the validity of axioms in the sense of a “musical truth,” non-
monotonic logic represents a good analogy to a compositional process during which
musical premises are, in most cases, taken as a basis and may indeed be revised in
the further course of the creation of the work.

The evaluations of the outputs of algorithmic composition systems in the frame-
work of AI are subject to the same restrictions as a fitness evaluation in a genetic
algorithm. Apart from the already mentioned disadvantages of a user evaluation,
effective rule-based evaluations are not easy to perform in light of the complexity
of musical information. Methods of machine learning enable an improved approach
by allowing the induction of rules from a corpus in a self-acting way. Even if a
newly learned rule must also often be examined by a user with respect to its gen-
eralization capability, with every new rule the adaptive system extends its problem
solving capacity. Because learning happens in these systems exclusively by means
of examples, techniques of machine learning therefore adapt optimally to the spe-
cific situations in a given corpus. Similar advantages are also provided by methods
of case-based reasoning that, in the generation of new material, examine a corpus in
terms of “similar” solutions without having to possess domain-specific knowledge.

Aside from style imitation tasks, the field of multi-agent systems provides a large
number of interesting possibilities for algorithmic composition. The phenomenon of
emergence produces a complex system behavior that is much more than the total of
its individual parts – or expressed differently in analogy to the thinking of Douglas
R. Hofstadter: “Every aspect of thinking can be viewed as a high-level description
of a system which, on a low level, is governed by simple, even formal rules.” [27, p.
559].

References

1. Agon C, Assayag G, Bresson J (eds) The OM composer’s book, 1. Delatour France, Sampzon;
Ircam, Paris ISBN 2-7521-0028-0

2. Ames C, Domino M (1992) Cybernetic Composer: an Overview. In: Balaban M, Ebcioglu
K, Laske O (eds) Understanding music with AI. AAAI Press/MIT Press, Cambridge, Mass.
ISBN 0262-52170-9

3. Arcos JL, Lopez de Mantaras R, Serra X (1997) SaxEx: A case-based reasoning system for
generating expressive musical performances. In: Proceedings of the 1997 International Com-
puter Music Conference. International Computer Music Association, San Francisco

4. Arcos JL, Canamero D, Lopez de Mantaras R (1998) Affect-driven generation of expressive
musical performances. Emotional and intelligent: The tangled knot of cognition, papers from

256 10 Artificial Intelligence

the 1998 AAAI Fall Symposium. AAAI Technical Report FS 98-03. AAAI Press, Menlo
Park, Calif

5. Arcos JL, Lopez de Mantaras R (2002) AI and music. Case based reasoning. From composi-
tion to expressive performance. AI Magazine, 23/3, 2002

6. Balaban M, Ebcioglu K, Laske O (eds) Understanding music with AI. AAAI Press/MIT Press,
Cambridge, Mass. ISBN 0262-52170-9

7. Blackwell TM, Bentley PJ (2002) Improvised music with swarms. In: Proceedings of the
2002 Congress on Evolutionary Computation, vol 2. IEEE, New York, pp 1462–1467

8. Bod R (2002) Probabilistic grammars for music. In: Proceedings BNAICSaxEx: A case-based
reasoning system for generating expressive musical performances 2001, Amsterdam

9. Casey MA (2003) Musical structure and content repurposing with bayesian models. In: Pro-
ceedings of the Cambridge Music Processing Colloquium, University of Cambridge, 2003

10. Cope D (2001) Virtual music: computer synthesis of musical style. MIT Press, Cambridge,
Mass. ISBN 0-262-03283-X

11. Courtot F (1992) Logical representation and induction for computer assisted composition. In:
Balaban M, Ebcioglu K, Laske O (eds) Understanding Music with AI. AAAI Press, Califor-
nia. ISBN 0262-52170-9

12. Dahlstedt P (1999) Living Melodies.
http://www.design.chalmers.se/projects/art and interactivity/living-melodies/ Cited 26 Mar
2005

13. Dannenberg R (1984) An on-line algorithm for real-time accompaniment. In: Proceedings of
the 1984 International Computer Music Conference. International Computer Music Associa-
tion, San Francisco

14. Ebcioglu K (1992) An expert system for harmonizing four-part chorales. In: Schwanauer SM,
Levitt DA (eds) Machine models of music. MIT Press, Cambridge, Mass. ISBN 0-262-19319-
1

15. Elsea P (1995) Fuzzy logic and musical decisions.
http://arts.ucsc.edu/ems/music/research/FuzzyLogicTutor/FuzzyTut.html Cited 1 Jan 2005

16. Encyclopedia Britannica Online (2006)
http://www.britannica.com/dictionary?book=Dictionary&va=heuristic&query=heuristic
Cited 17 Jan 2006

17. Feigenbaum EA, Barr A (1981) The handbook of artificial intelligence, I. Pitman, London.
ISBN 0-273-08540-9

18. Feigenbaum EA, Barr A (1981) The handbook of artificial intelligence, II. Pitman, London.
ISBN 0-273-085553-0

19. Feigenbaum EA, Cohen PR (1981) The handbook of artificial intelligence, III. Pitman, Lon-
don. ISBN 0-273-08554-9

20. Fonseka JR (2000) Musical agents. Thesis, Electrical and Computer Systems Engineering
Department of Monash University, 2000

21. Friberg A, Colombo V, Frydén L, Sundberg J (2000) Generating musical performances with
Director Musices. Computer Music Journal, 24/3, 2000

22. Fry C (1984) Flavors Band: A language for specifying musical style. Computer Music Jour-
nal, 8/4, 1984

23. Görz G (1993) Einführung in die künstliche Intelligenz. Addison-Wesley, Bonn. ISBN 3
89319 507 6

24. Henz M, Lauer S, Zimmermann D (1996) CompoZe intention-based music composition
through constraint programming. In: Proceedings of the 8th International Conference on
Tools with Artificial Intelligence (ICTAI 96). IEEE Computer Society, Los Alamitos, Calif,
pp 118–121

25. Hiller L, Isaacson L (1993) Musical composition with a high-speed digital computer. In:
Schwanauer SM, Levitt DA (eds) Machine models of music. MIT Press, Cambridge, Mass.
ISBN 0-262-19319-1

26. Hiller L (1963) Informationstheorie und Computermusik. Darmstädter Beiträge zur neuen
Musik, 8. Schott, Mainz

References 257

27. Hofstadter D (1979) Goedel, Escher, Bach: An eternal golden braid. Basic Books, New York.
ISBN 0465026850

28. Jacob BL (1995) Composing with genetic algorithms. In: Proceedings of the 1995 Interna-
tional Computer Music Conference. International Computer Music Association, San Fran-
cisco

29. Jacob BL (1996) Algorithmic composition as a model of creativity. Organised Sound, 1/3,
Dec 1996

30. Johnson ML (1992) An expert system for the articulation of Bach fugue melodies. In: Baggi
D (eds) (1992) Readings in computer-generated music, IEE Computer Society Press, Los
Alamitos, Calif. ISBN 0-8186-2747-6

31. Katayose H, Inokuchi S (1989) The Kansei Music System. Computer Music Journal, 13/4,
1989

32. Kreutzer W, McKenzie B (1991) Programming for Artificial Intelligence. Methods, tools and
applications. Addison-Wesley, Sydney. ISBN 0 201 41621 2

33. Lämmel U, Cleve J (2001) Lehr- und Übungsbuch Künstliche Intelligenz. Fachbuchverlag
Leipzig im Carl-Hanser-Verlag, München. ISBN 3-446-21421-6

34. Levitt DA (1993) A representation of musical dialects. In: Schwanauer SM, Levitt DA (eds)
Machine models of music. MIT Press, Cambridge, Mass. ISBN 0-262-19319-1

35. Luger GF, Stubblefield W (1998) Artificial intelligence. Structures and strategies for complex
problem solving, 3rd edn. Addison Wesley Longman, Harlow. ISBN 0-805-31196-3

36. Homepage of The Loebner Prize in Artificial Intelligence (2007)
http://www.loebner.net/Prizef/loebner-prize.html Cited 2 May 2007

37. Malt M (2001) In Vitro – Growing an artificial musical society.
http://galileo.cincom.unical.it/esg/Music/workshop/articoli/malt.pdf Cited 2 Jun 2005

38. Manzolli JA, Moroni F, Von Zuben R, Gudwin R (1999) An evolutionary approach applied to
algorithmic composition. In: Proceedings of SBC’99 – XIX National Congress of the Com-
putation Brazilian Society, Rio de Janeiro, 3, 1999

39. Mazzola G (2002) The topos of music. Geometric logic of concepts, theory, and performance.
Birkhäuser, Basel. ISBN 3-7643-5731-2

40. Minsky M (1988) The society of mind. Simon & Schuster, New York. ISBN 0-671-60740-5
41. Miranda ER, Biles JA (eds) (2007) Evolutionary computer music. Springer, London. ISBN

978-1-84628-599-8
42. Pachet F (2001) Musical harmonization with constraints: A survey. Constraints, 6/1, 2001
43. Pereira FC, Grilo C, Macedo L, Cardoso A (1997) Composing music with case-based reason-

ing. In: Proceedings of the Second Conference on Computational Models of Creative Cogni-
tion, MIND-II, Dublin, Ireland, 1997

44. Phon-Amnuaisuk S, Smaill A, Wiggins G (2002) A computational model for chorale harmon-
isation in the style of J.S. Bach. In: Proceedings of ICMPC7 (the 7th International Conference
on Music Perception and Cognition), Sydney, Australia, 2002

45. Phon-Amnuaisuk S (2004) Logical representation of musical concepts (for analysis and com-
position tasks using computers). In: Proceedings of SMC’04 (Sound and Music Computing),
Paris, France

46. Ponce de Leòn PC, Pérez-Sancho C, Iñesta JM (2004) A shallow description framework for
musical style recognition. In: Fred A, Caelli T, Duin RPW, Camphilo A, de Ridder D (eds)
Structural, syntactic, and statistical pattern recognition: joint IAPR international workshops
SSPR 2004 and SPR 2004, Lisboa, Portugal, August 18–20, 2004; procedings. Lecture notes
in computer science, vol 3138. Springer, Berlin, pp 876–884

47. Ramirez R, Peralta J (1998) A constraint-based melody harmonizer. In: Proceedings ECAI’98
Workshop on Constraints for Artistic Applications, Brighton

48. Reynolds C (1987) Flocks, herds and schools: A distributed behavioural model. Computer
Graphics, 21/4, 1987, pages 25-34

49. Ribeiro P, Pereira FC, Ferrand M, Cardoso A (2001) Case-based melody generation with
MuzaCazUza. In: Proceedings of the AISB’01 Symposium on Artificial Intelligence and Cre-
ativity in Arts and Science, 2001

258 10 Artificial Intelligence

50. Riecken DR (1992) Wolfgang: A system using emotional potentials to manage musical
design. In: Balaban M, Ebcioglu K, Laske O (eds) Understanding music with AI. AAAI
Press/MIT Press, Cambridge, Mass. ISBN 0262-52170-9

51. Rowe R (1992) Machine listening and composing with Cypher. Computer Music Journal
16/1, 1992

52. Russell S, Norvig P (1995) Artificial intelligence. A modern approach. Prentice Hall, Engle-
wood Cliffs, NJ. ISBN 0-13-103805-2

53. Sabater J, Arcos JL, de Màntaras LR (1998) Using rules to support case-based reasoning for
harmonizing melodies. Multimodal reasoning: papers from the 1998 AAAI Spring Sympo-
sium. AAAI Technical Report SS-98-04. AAAI Press, Menlo Park, Calif

54. Schwanauer SM (1993) A learning machine for tonal composition. In: Schwanauer SM, Levitt
DA (eds) Machine models of music. MIT Press, Cambridge, Mass. ISBN 0-262-19319-1

55. Shieber SM (1994) Lessons from a restricted Turing test. Communications of the Association
for Computing Machinery, 37/6, 1994

56. Spangler RR (1999) Rule-based analysis and generation of music. Thesis, California Institute
of Technology, Pasadena, California

57. Spector L, Klein J (2002) Complex adaptive music systems in the breve simulation environ-
ment. In: Bilotta E et al (eds) ALife VIII: workshop proceedings, Sydney, NSW, pp 17–23

58. Taube H (2004) Notes from the metalevel: An introduction to algorithmic music composition.
Routledge, London. ISBN 9026519753

59. Thom B (1999) Learning melodic models for interactive melodic improvisation. In: Proceed-
ings of the 1999 International Computer Music Conference. International Computer Music
Association, San Francisco

60. Thom B (2000) Artificial Intelligence and real-time interactive improvisation. In: Proceed-
ings of the Seventeenth Conference on Artificial Intelligence (AAAI-2000), Workshop on
Artificial Intelligence and Music, Austin, Texas

61. Thom B (2000) Unsupervised learning and interactive Jazz/Blues improvisation. In: Proceed-
ings of the Seventeenth Conference on Artificial Intelligence. AAAI Press/MIT Press, Cam-
bridge, Mass, pp 652–657

62. Turing AM (1950) Computing machinery and intelligence. Mind 59, 1950
63. Wechsler D (1964) Die Messung der Intelligenz Erwachsener. Textband zum Hamburg Wech-

sler Test für Erwachsene (HAWIE). Hans Huber, Bern
64. Unemi T, Bisig D (2004) Playing music by conducting BOID agents. In: Pollack J, Bedau

MA, Husbands P, Ikegami T, Watson RA (eds) Artificial life IX: proceedings of the Ninth
International Conference on the simulation and synthesis of living systems. MIT Press, Cam-
bridge, Mass pp 546–550

65. Weizenbaum J (1966) ELIZA – A computer program for the study of natural language com-
munication between man and machine. Communications of the ACM, 9/1, January 1966

66. Widmer G (1992) The importance of basic musical knowledge. A knowledge intensive ap-
proach to machine learning. In: Balaban M, Ebcioglu K, Laske O (eds) Understanding music
with AI. AAAI Press, Cambridge Mass. ISBN 0262-52170-9

67. Widmer G (1992) Qualitative perception modeling and intelligent musical learning. Computer
Music Journal 16/2, 1992

68. Winston PH (1993) Artificial Intelligence, 3rd edn. Addison-Wesley, Reading, Mass. ISBN 0
201 53377 4

Chapter 11

Final Synopsis

Procedures of algorithmic composition may be used for the treatment of single as-
pects of a musical task, or for determining the overall structure of a musical piece.
These two alternatives imply the use of very specific approaches and aesthetic po-
sitions regarding the generation of a composition. Therefore, creating a conceptual
division may further clarify the different application possibilities of particular al-
gorithmic techniques. Algorithmic composition is used either for creating genuine,
original compositions, or in the field of style imitation, where musical material is
generated according to a given style or represents an attempt to verify a musical
analysis by resynthesis. The fact that the procedures described in this work are
mainly used for tasks of style imitation, may partly be explained by the environ-
ment the authors are working in, and their motivation for applying algorithms to the
generation of musical structure.

11.1 Algorithmic composition as a genuine method of

composition

If procedures of algorithmic composition are exclusively used for the realization of
an original compositional strategy, then one may speak of algorithmic composition
as a genuine method of composition. In this case, one must bear in mind that “gen-
uine methods of composition” cannot be defined precisely, since there may also exist
style imitations of a proprietary “style” by, for example, using algorithmic methods
to realize one specific aesthetic concept in several different works. Furthermore, the
integration of common algorithmic procedures of musical structure generation, such
as canonic or serial techniques, may also be seen as style imitation on a structural
level. Other gray areas in definition between genuine composition and style imi-
tation may result due to the cultural setting: Genuine composition may occur in a
specific cultural environment, but as soon as some of its aspects are reconstructed by
means of resynthesis, e.g. in the field of music ethnology, one would sooner regard
it as style imitation. Depending on the period of its creation, a historical approach

259

260 11 Final Synopsis

may classify a musical piece generated by some set of rules as a “genuine compo-
sition,” or as a style imitation. Finally, this aspect is inherent in most procedures
of algorithmic composition through the generation of a framework for the produc-
tion of a whole class of compositions – consequently, each concrete generation is
also a style-compliant production of a general underlying aesthetic concept. These
possible gray areas should only make clear that the terms “genuine composition”
and “style imitation” cannot be neatly separated. To simplify this, a dividing line
could be drawn between the two approaches in regard to the motivation for apply-
ing algorithmic techniques: Hence, algorithmic composition could be referred to
as a “method of composition” if procedures are applied in the context of the cre-
ation of a new musical piece of art. Accordingly, “style imitation” is the attempt to
model a style that is established in musicology, from a historic or ethnologic per-
spective, as a particular genre. Herein, not all rules of the genre under examination
must necessarily be encompassed, since the modeling may also be carried out using
non-knowledge-based methods.

If techniques of algorithmic composition are used as “genuine composition meth-
ods” in the sense of this definition, the question arises as to what extent algorithmic
principles contribute to the generation of a composition. This aspect of algorithmic
composition ranges from the complete determination of a structure to accompanying
procedures of a compositional process. The first case refers to “algorithmic compo-
sition” in the strictest sense. Although the total structure of a musical piece is mod-
eled here, not all possible musical parameters need to be algorithmically determined
in every case. In most computer music systems of algorithmic composition, the pa-
rameters pitch, duration, and dynamics may be manipulated; any further differen-
tiation in the articulation of details of musical events, like particular instrumental
playing techniques, is generally not performed. This may well be explained by the
continuing dominance of the MIDI protocol developed in the 1980s, and still used
in many systems as an interface today, which by default only allows for the mapping
of the three abovementioned parameters. “Computer Assisted Composition” (CAC),
in a narrower sense of the expression, uses algorithmic procedures as supplemen-
tary compositional tools. In the literature, the terms “algorithmic composition” and
“Computer Assisted Composition” are often used synonymously. Whether the appli-
cation of algorithmic principles is carried out with or without the aid of a computer
is of secondary importance in the end – a fact that is also borne out in numerous
historical applications of rule-based composing (see chapter 2).

Algorithmic composition may also be examined for the extent to which algorith-
mic principles are applied in the generation of a composition. If algorithmic proce-
dures are used in the process of composition as additional tools, they may either be
used to structure formal relationships or to generate musical material itself. In this
context, Xenakis, for example, uses Markov models to control the sequential order
of musical sections. Schönberg’s twelve-tone technique provides him with material
which is then further modified in the course of the process of composition. Algorith-
mic models, regardless of their use for the formal structuring or the generation of
new material, may also only represent compositional possibilities; the generations
serve as an inspiration here, without necessarily using the results of the algorithm

11.1 Algorithmic composition as a genuine method of composition 261

as concrete musical material in the final work. What these approaches have in com-
mon is that composition is understood to be a discursive process, which in its course
is influenced by individual preferences. This approach to algorithmic composition
finds its parallel in the non-monotonic logic of AI. Here, the algorithms formulated
for the compositional concept do not have the validity of axioms – on the contrary,
the results of the generative process may need to be critically examined during the
creative process. So in this case, the algorithmic procedures become a compilation
of useful tools that are used deliberately for the generation of a composition. Here,
a large part of the creative work is not determined by algorithms – individual human
intervention and original ideas remain essential aspects of this approach.

An alternative possibility when using algorithmic principles lies in the decided
intention to put the algorithm in the position of the composer. The composition
becomes an expression of a transpersonal principle, as can be seen in Hauer’s work,
or questions the traditional social role of composer, interpreter and recipient, as
with Cage. In addition, mapping strategies that aim at establishing “validity” of
compositional structure by trying to map systems valid for specific extra-musical
fields on musical structures may be subsumed under this category.

Furthermore, procedures of algorithmic composition may be applied for solv-
ing combinatorial tasks. In this context, the creation of a system that continually
produces new musical material is often a strong incentive for the application of al-
gorithmic procedures. The musical dice game (see chapter 2), which in the course
of history was likely generated by various composers, is a good example for this
category. In this approach, the motivation to meet highest quality standards of com-
position is not the primary focus.

Algorithmic principles may also be inherent in a musical genre. The isorhythmic
motet, counterpoint, and different types of canons are only a few forms that are
composed within the framework of a complex rule system. Although composing in
these genres is traditionally not understood to be algorithmic composition, the rules
are at least formulated as constraints or restricting conditions, which is one reason
for the frequent use of these and similar forms for applications of style imitation.

Procedures of algorithmic composition may also be used for implementing aes-
thetic principles in order to examine their musical applicability. A prime example
of this approach is the “Illiac Suite” (see chapter 10) by Hiller and Isaacson, who,
in their “experiments,” generated musical structures within generate-and-test cycles
by means of Markov models and other stochastic principles and constraints.

Another possible approach is the application of algorithmic procedures as a
composition language, determining the overall structure of a piece while perform-
ing modifications solely on the algorithmic level, but not altering the output. This
method should not be mixed up with a conventional generate-and-test cycle. Here,
stochastic alternatives are used to generate a class of compositions out of which
musical pieces are then selected according to individual preferences. Creative ma-
nipulation of the algorithm takes the place of personal selection – the algorithm is
further modified and finally becomes able to generate a very specific composition.
In this approach, the creation of the algorithm leads to treating the generations of
a system from a creative perspective – the algorithm, turned deterministic, replaces

262 11 Final Synopsis

personal selection and becomes able to represent a precisely formalized aesthetic
concept of a single possible composition.

Moreover, methods of algorithmic composition exist that primarily serve com-
mercial interests. A form of the musical game of dice, consisting of arbitrarily
combinable playing cards, was marketed as a parlor game in early 20th century
Boston.1 Although the sales did not meet the high expectations, the game marked
the beginning of the commercial marketing of a product which enables algorithmic
composition. Software systems such as BandInABox2 were not actually developed
with a fundamentally musical ethos in mind, but were predominantly focused on a
broad public as a marketable product. Algorithmically generated music may – far
from any claim to meet compositional criteria of quality – itself become the subject
of primarily commercial interests: Functional music for department store chains,
waiting loops for telephone systems, ring tones for mobile phones and the like,
are increasingly attractive branches of business. Software solutions here churn out
pleasing “compositions” as if off an assembly line; no musical education is needed
for the operation of systems of this kind – and above all, there are no royalties to be
paid.

11.2 The dominance of style imitation in algorithmic composition

The fact that procedures of algorithmic composition are, despite the wide variety
of possible applications, mainly used in the field of style imitation, may be partly
explained by the background of the authors who place their works in the public do-
main. The majority of the works mentioned have been developed in the fields of
human and natural sciences, in which publishing is considered part of a scholar’s
everyday work. In musicology, style imitation is mostly intended to verify analysis
approaches by resynthesis. In this sense, a comprehensive modeling of all possible
musical parameters is not intended or even feasible due to the complexity of the
examined style.3 Works that are developed in a natural scientific environment often
focus on an examination of the informatic properties of the applied algorithm; here,
musical information only represents one possible form of data. The fact that the em-
ployed musical styles have been examined by musicologists in terms of an explicitly
applied or implicit rule system seemingly allows an easy-to-perform evaluation of
the generated material.

On the other hand, publications on algorithmic techniques for genuine composi-
tion are rare – a fact that may be to a certain degree explained by the professional
environment and the aesthetic positions of composers. Moreover, the evaluation of
compositional results is mainly subject to subjective preferences. Provided that com-

1 The so-called Kaleidacousticon System, cf. [11, p. 823].
2 Software that produces a desired spectrum of musical pieces of different musical provenience on
the basis of chord progressions.
3 Cf. the problems of generative grammar in music-ethnological research and Blacking’s objections
in chapter 4.

11.2 The dominance of style imitation in algorithmic composition 263

posers are university educated, however, the study of algorithmic techniques – al-
though not explicitly formulated as such – represents an essential part of their edu-
cation. Subjects such as counterpoint and harmony are disciplines that are to a high
degree determined by rules, and practicing them teaches students to work in for-
malizable systems. A number of musicological concepts complement this approach
with analytical methods. So, even during education, composition is taught as a field
of art which can be formalized to a certain degree – a fact that implies the application
of algorithmic procedures in future compositional work. Composers publishing ma-
terial on their algorithmic methods is rather a rare occurrence and may be explained
to a certain extent due to the following consideration: Publishing is in general not
part of the profession. It is replaced by a composition, whose creative principles – if
formalized – are not willingly communicated for obvious reasons. In addition, there
are often basic objections to the use of algorithmic principles, because the musical
structure becomes comprehensible and the composition therefore cannot claim “in-
genious creativity” any longer. Associated with that is the fear of “disenchantment”
at a piece’s creative merit, which may also explain why algorithmic composition,
alongside the abovementioned reasons is mostly only used as a supplementary tool
in genuine composition. In consideration of this fact, it is gladly accepted that the
influence of algorithmic composition on the overall structure of the musical piece
remains marginal; essential decisions are left to the “creative” ideas of the com-
poser. If, however, interesting musical structures are generated by procedures of
algorithmic composition, these frequently mentioned objections hold less ground as
arguments. Even though the musical result is completely determined by the under-
lying formal principles, thus becoming seemingly banal, the creative process has, in
actual fact, only used a different language. Composition no longer takes place in the
notation of concrete note values, but in the realization of a compositional concept by
means of specially created formalizable processes. In both cases the musical result
is what counts – its “notation” is a question of the individual approach.

Composers are often also not sufficiently familiar with informatic methods to be
able to implement their structural ideas within a programming language. Although
algorithmic composition is not principally bound to the computer, more demand-
ing concepts are, however, hardly feasible with “pencil and paper.” Naturally, there
exists a wide range of programs that at the push of a button also map complex al-
gorithms on musical parameters; however, the possibilities for influencing the mod-
eling of the composition are limited mostly to the selection of particular scales or
rhythmic values used for the mapping. Accordingly, the results are arbitrary or again
represent simple style imitations that may be generated through the selection of cat-
egories such as “Techno,” “New-Age,” or “Experimental.”

When writing about the results of algorithms for “genuine composition,” contrary
to the output of “push and play” programs, they are difficult to judge, because here
no reference corpus or preceding analysis is available. In this context, algorithmic
composition is finally also a question of individual approach and musical objectives.

So, considered from the point of view of publishability, style imitation will be the
main field of application for algorithmic composition. However, a number of innova-
tions and further developments in highly specialized computer music environments

264 11 Final Synopsis

enabling algorithmic composition to almost any degree of complexity, also reveal a
great interest in developing a creative approach towards the generation of musical
structure, even though the pieces produced by these systems are in most cases not
published as a structural analysis of the applied algorithms.

11.3 Origins and characteristics of the treated procedures

Virtually all procedures used for tasks of algorithmic composition have their ori-
gins in extra-musical fields, and often become highly popular outside the purely
academic study of these disciplines. Chaos theory, cellular automata, Lindenmayer
systems, artificial intelligence, but also neural networks, are subjects of a broad non-
scientific discussion and are sometimes represented as comprehensive procedures
that claim to be solutions of universal validity. In this sense, for example, even the
title of Wolfram’s book on cellular automata, “A New Kind of Science,” suggests a
revolution in the scientific landscape.4 Similarly, even by 1987, James Gleick was
predicting a paradigm shift in physics with “Chaos: Making a New Science.”[4].
In the 1980s, chaos theory became extremely popular due to the wide adoption of
some aspects of the works of Edward N. Lorenz and Benoit Mandelbrot – the so-
called “butterfly effect,”5 self-similarity, and the visually fascinating illustrations of
the Mandelbrot set are all phenomena that helped chaos theory to attract extraordi-
nary public attention. Lindenmayer systems appear in their graphic representation
as intriguing plant-like structures. Neural networks present a completely new ap-
proach to sub-symbolic information processing – the fact that these systems are
based on a biological model further increases public interest. In the field of artificial
intelligence, programs such as ELIZA make the vision of thinking machines often
seem real; consequently, AI becomes a prevalent part of the repertoire of Science
Fiction. With Stanley Kubrick’s “2001: A Space Odyssey” in 1968, if not earlier,
Hollywood turned artificial intelligence into a deadly threat. In Kubrick’s film, it is
the computer HAL 9000 which – actually a friendly and caring companion – exter-
minates a spaceship crew due to a conflict in his programming. In Andy and Larry
Wachowski’s 1999 movie “The Matrix,” intelligent computer programs appear as
“agents,” keeping mankind in ignorance and slavery.

The general popularity of some procedures explains their application in algorith-
mic composition as well. Cellular automata and neural networks are, despite the fact
that they were developed for applications other than musical tasks, often used in the
generation of musical structure. Mapping the behavior of chaotic systems may yield
interesting musical results that are, however, subject to a number of restrictions in
terms of intervention and structuring possibilities. In addition to the techniques of

4 [14]; in this context, also see Wolfram’s statement in chapter 8.
5 Small modifications performed on the initial conditions of equations for a weather model devel-
oped by Lorenz, lead to strongly varying results. This behavior is illustrated with the example of a
butterfly which could by one flap of its wings (inducing turbulence) influence the meteorological
conditions at a distant location.

11.3 Origins and characteristics of the treated procedures 265

chaos theory, Lindenmayer systems are also well suited to the realization of self-
similar concepts in the generation of musical structure. Furthermore, in algorithmic
composition, the heterogeneous research field of artificial intelligence is unable to
provide universally valid solutions; rather it is a collection of different methods that
may be applied for the representation and processing of musical information.

The applicability of procedures of algorithmic composition may also be consid-
ered from the following perspective: In which context and for what application was
the algorithm originally developed? The background of a method may explain dif-
ficulties that are above all related to the peculiar character of musical information.
For example, Lindenmayer systems were developed for the simulation of the growth
process of plants. In the modeling of a fern, the L-system shows, in the graphic rep-
resentation of the iteration cycles, increasingly complex branching, until eventually
the “natural” density of the plant structure has been reached. The set of symbols of
an L-system is in general very limited. Therefore, when these symbols are mapped
on note values without carrying out further measures, a large number of similar
events are produced. In order to achieve a larger variability in the generated mate-
rial, the mapping strategy must be modified in different ways6 and the increase of
the systems must be treated musically.7

Similar problems may also be found in other procedures that were originally
not developed for musical disciplines. Generative grammar originating in the field
of linguistics is in principle well suited to the processing of one-dimensional sym-
bol strings; this results in the fact that mutual horizontal and vertical dependencies
of musical information can only be processed when the original formalism is ex-
tended.8 Neural networks, on the other hand, were originally developed for image
processing and classification; when they are applied in algorithmic composition, it
is above all the treatment of the temporal context that requires the modification of
network types or the search for an appropriate representational form for the musical
data.9

Different methods may also be distinguished due to their specific suitability for
tasks of algorithmic composition. Procedures such as generative grammars may be
applied both in genuine composition and the field of style imitation. Special cases
are cellular automata and Markov models, which are either only used for genuine
composition (CA), or almost exclusively10 in the field of style imitation (MM). An
essential criterion for the suitability of a particular approach is given by the possibil-
ities of encoding the musical information. In many cases, it is already these greatly
differing ways of encoding that determine the possible applications of a particular
procedure. In this sense, generative grammars may, due to their rewriting rules, for-

6 Cf. e.g. DuBois’ strategies in chapter 6.
7 Interesting issues regarding the musical realization of self-similar structures can also be found in
a theoretical work by composer Bernhard Lang: “Diminuendo. Über selbstähnliche Verkleinerun-
gen” [5].
8 Cf. software Bol Processor by Bernhard Bel in chapter 4.
9 Cf. Mozer’s system CONCERT in chapter 9.
10 Here, also, exceptions prove the rule, cf. the applications of MM for tasks in genuine composi-
tion as performed by Xenakis and Hiller.

266 11 Final Synopsis

mulate good descriptions of a given musical structure. This similarly applies to a
Markov model, which is nearly exclusively created on the basis of an underlying
corpus. The rules of a cellular automaton, on the other hand, are hardly able to de-
scribe a particular corpus, but are the starting point for the changing of cell states.
Of course, procedures may be modified to a considerable degree and applied in an
originally unintended way – but, to quote a Buddhist analogy: Does it make sense
to pave a street with leather instead of putting on shoes?

The way in which a specific procedure outputs the data, also plays an essential
part. A generative grammar produces its terminals only at the end of all substitutions
– this is a singular process which in its temporal steps may not be traced back musi-
cally, since non-terminals that remain in the symbol strings up to the last derivation
do not yet represent concrete musical information. A genetic algorithm, however,
produces generations of material until it is stopped or the fitness criteria have been
fulfilled. A cellular automaton continuously modifies the states of its cells during its
cyclic sequence, whereas in contrast to the genetic algorithm, no temporal limit is
given by the fulfillment of a particular objective. This difference in behavior alone
brings about distinct fields of application – here, there are principally two concepts
that can be distinguished: The first generates single outputs as the result of a calcu-
lation process or a parsing; the other produces a continuous data flow which may
be understood as a musical process in time, be it target-oriented or not. Naturally, a
generative grammar may enable a permanent musical output by means of a special
application using stochastic rewriting rules, and a genetic algorithm may only be
made audible in its last generation – interesting studies, however, often refer to the
peculiarities of the output of a particular procedure.11

11.4 Strategies of encoding, representation and musical mapping

An algorithm that is to represent musical information in an appropriate way requires
some sort of data encoding for its inputs, as well as specific strategies for musical
“mapping,” meaning the way the outputs of the algorithm are mapped on musi-
cal parameters. These aspects of algorithmic composition are of crucial importance
since they present the interfaces between information processing and the musical
structure. Both the encoding and the representation provide musical information for
processing in an algorithm. However, a comparison of these procedures12 illustrates
two distinct principles that are nevertheless closely related: Encoding is a neces-
sary precondition for the processing of a priori existing musical information in an
algorithm; representation, on the other hand, maps the output of the algorithm on

11 Cf. the “Living Melodies” of Dahlstedt and Nordahl in chapter 7 or Dorin’s Boolean Sequencer
in chapter 8.
12 “Encode: to change information into a form that can be processed by a computer,” “Representa-
tion: the act of presenting sb/sth in a particular way,” both definitions from [7]. Frequently, the term
“representation” is used for “encoding,” e.g. “An individual member of a population is represented
as a string of symbols.” [2].

11.4 Strategies of encoding, representation and musical mapping 267

note values in different ways, or displays the musical material with regard to one or
more different aspects. Degrees of a tempered scale, for example, may be encoded
as binary or decimal values; in both variants of encoding, the musical material may
be represented in an absolute way – here, a particular number corresponds to a par-
ticular note value. Also, for example, distances in a tonal space may be encoded in
binary or decimally for a relative representation – in this case, the information on
the concrete note values may only be obtained through the preceding context. Rep-
resentation may take place within local or distributed models. In a local scheme, for
example, a particular note value may be assigned to a grid column of a cellular au-
tomaton, or a certain neuron on a neural network. In a distributed encoding, on the
other hand, e.g. the activation states of distinct neurons of a particular layer provide
the information for determining a note value. Although the representation of musi-
cal information does not modify the specific behavior of an algorithm, it has strong
influence on the form of the output since it also presents a musical interpretation of
the produced data.

While during encoding musical information is prepared as optimally as possible
for its processing through an algorithm, representation is responsible for provid-
ing the encoding with the type of information which best characterizes the musical
material. The effects of absolute (e.g. by concrete note values) representations are
easy to manage and changes only happen locally – any modification of the context
may be disregarded. In this sense, in an absolute representation, the mutation of a
genetic algorithm only changes the corresponding note value and the succeeding
values remain untouched in regard to their musical interpretation. A relative (e.g.
intervallic distances of a melodic movement) representation enables a generalized
illustration of pitches by abstracting away from concrete keys; however, by changing
a value, all succeeding values are also modified – a property of relative representa-
tion that may also lead to undesired consequences. Through this representation, for
example, the result of the mutation in a genetic algorithm becomes overly compli-
cated, and in neural networks, a net error has an affect on all succeeding values.
Multi-dimensional forms of representation correspond to the potential complexity
of the underlying musical material and enable the display of musical parameters
under different aspects. Mozer, for example, uses three representational forms for
the parameter ‘pitch’ in his system CONCERT (see chapter 9).Another interesting
approach of this kind is developed by Cope in his EMI system, which enables the
illustration of a musical component on different hierarchical levels.13

In the mapping of the outputs of the algorithm on musical parameters, the ap-
plied strategy has great influence on the structure of the generated material. Outputs
that are restricted within particular limits may well be mapped on musical parameter
ranges by means of scaling. In algorithms that, for example, produce monotonously
ascending or descending values, modulo operations may be used to limit the outputs
to appropriate ranges. However, this method may also cloud the specific behavior of
an algorithm, if it does not consider, for example, the toroidal structure of a cellular
automaton. In case a musical mapping requires a scaling of the data, this can be

13 By means of the classification module SPEAC, see chapter 5.

268 11 Final Synopsis

achieved, for example, by a rhythmical quantization, or by means of an assignment
which maps value ranges on particular musical events. Quantization and assign-
ment may, however, also make the results of the algorithm and its musical outputs
arbitrary. In case a rhythmic structure is quantized too roughly, this may cause a
stylistically relevant parameter to become unrecognizable. But also, if complex out-
puts of an algorithm are mapped on only a few pitches which are “melodious” in all
combinations, a pleasing sound texture is generated, though the structure-forming
algorithm becomes exchangeable.

Such arbitrary mapping strategies raise the question of whether the idiosyncrasies
of an algorithm should always be reflected in the musical output as a matter of prin-
ciple. Basically, regardless of the underlying algorithm, in every case the form of
musical output will be of primary significance; if, however, the characteristics of
the applied algorithm are not considered in either way within the mapping strategy,
the motivation for its application must be questioned. If the idiosyncrasies of an
algorithm are taken into account in the mapping process, this fact does not mean
that the underlying structure is or should be perceptually comprehensible as well.
Furthermore, the complexity of an algorithm is of lesser significance to the musical
logic. Strategies, whose musical effects are easily predictable, such as the appli-
cation of rewriting rules or methods like serialism, allow for interesting musical
results. Disregarding the intentional generation of unpredictable material for “en-
tering new musical territory,” these “simple” concepts may be used to effectively
put into practice decidedly intended musical objectives. Frequently used mapping
strategies apply the results of already performed mappings in non-musical domains
as a starting point, and consequently represent a ‘mapping of a mapping.’ Examples
of this can be found in the interpretation of graphical representations of algorithms,
such as in the musical mapping of turtle graphics of a Lindenmayer system or in the
association of columns of a CA-grid with particular pitch information. In principle,
there are no theoretical objections to this form of mapping; however, the respec-
tive strategies may make essential properties of an algorithm unrecognizable: The
self-similarity of an LS is no longer apparent in the musical structure; the cells of a
CA-grid become, contrary to their usual function, switches of values, that are only
dependent on their particular position.

In algorithmic composition, the parameters ‘pitch’ and ‘duration’ are used mostly
for the mapping. Systems like SaxEx, by Arcos et al., dealing as they do with the
modeling of agogic and dynamic interpretation, are exceptions. Attempts which go
beyond that and try to analyze emotional qualities in musical information, or to ap-
ply them as a means of a compositional process, reduce these perceptive phenomena
to easily comprehensible structural properties and therefore often remain arbitrary
in regard to their strategies.14

Algorithmic composition aims to either generate style-compliant material or to
realize a compositional principle. From these approaches, the technique of sonifi-
cation must be distinguished, which makes particular properties of an underlying
data material auditorily available. Making the results of sonification aesthetically

14 For these works, see chapter 10.

11.5 The evaluation of generated material 269

appealing – suggesting a close relationship to algorithmic composition as a genuine
artistic discipline – is, however, not a necessary precondition. The mapping, which
consequently may also be musically motivated, here takes a completely different
approach and serves a fundamentally different purpose.

11.5 The evaluation of generated material

The evaluation of generated material is an essential aspect in the application of
procedures of algorithmic composition. Two basic approaches may be distinguished,
which either examine the suitability of an algorithm for particular data structures or
evaluate the musical output. In the first category are, for example, comparisons that
examine algorithms for their suitability for treating a musical context.

The evaluation of an output may either be performed by a user, or algorithmi-
cally – here, the aforementioned problems of the fitness function arise. The alter-
native user evaluation is often difficult to objectify, since in many cases subjective
or vague statements, such as those which follow, are made on the results of musi-
cal generations: “After sufficient training, GenJam’s playing can be characterized
as competent with some nice moments.” [1, p. 6]; “Most musical pieces created
sounded very reasonable.” [10, p. 7]; “SICOM compositions are comparable to a
young student’s with the first degree of Analysis and Composition.” [9, p. 6]. In
“Towards a Framework for the Evaluation of Machine Compositions,” [8] Marcus
Pearce and Geraint Wiggins therefore claim a scientifically verifiable evaluation
of the outputs of algorithmic composition systems. They differentiate between the
evaluation strategies of the system, which finally lead to an output (“critic”), and the
final evaluation of the generated material (“evaluation”). Different alternatives are
described regarding the second case. In addition to the abovementioned subjective
rating carried out by a human, the situation in a concert as well as an algorithmic
evaluation are also considered problematic: An algorithmic rating often only im-
plies a subjective opinion; in a concert, which should through the audience balance
the subjectivity of an individual opinion, the differing levels of knowledge, as well
as the different individual musical preferences, may be difficult to manage in terms
of a quality criterion in the field of style imitation. As to original composition, this
form of evaluation is considered to be a suitable method: “However, while a well
received performance would seem a good criterion for the evaluation of new works
(as in the case of Biles) [...]” [8, p. 3]. Examining this argument, one may object that
Biles’s system also acts in the context of an established style and therefore could be
regarded as style imitation. In addition, the taste of the audience may indeed be a
measure for the acceptance of a composition, but hardly for the quality of a piece of
art. On the basis of Turing’s test, Pearce and Wiggins decided to use an evaluation
performed by human users in a number of tests series, with the task being to dis-
tinguish between machine-generated and “human composed” musical fragments.15

15 Cope subjects the outputs of EMI to a musical Turing test as well, see chapter 10.

270 11 Final Synopsis

In this work, the attempt to establish an objective evaluation sets a clear focus on
the examination of the output of algorithmic composition systems – an important
aspect, which, however, is neglected in many approaches in this field. Instead, in
most cases a detailed investigation is only carried out in regard to the architecture of
the system; here, the output is a pleasing by-product and often merely a confirma-
tion of the functionality of the system. Mozer, too, explicitly points to this weakness
in regard to the generation of musical structure by means of neural networks: “One
potential pitfall in the research area of connectionist music composition is the uncrit-
ical acceptance of a network’s performance. It is absolutely essential that a network
be evaluated according to some objective criterion. One cannot judge the enterprise
to be a success simply because the network is creating novel output.” [6, p. 195].

11.6 Limits of algorithmic composition

In general, procedures of algorithmic composition may be divided into knowledge-
based and non-knowledge-based methods. Knowledge-based approaches generate
their outputs often on the basis of a rule-based system which is formulated by if-
then conditions and/or constraints. Non-knowledge-based methods are able to au-
tonomously derive rules from an underlying corpus and produce outputs that, in
supervised learning, are additionally evaluated by a superior instance. Both systems
are well suited to both genuine composition and the generation of style imitations.

The processing of knowledge within a rule-based system does not pose any prob-
lems for genuine composition; in analogy to the Closed World Assumption16 of AI,
the following argument may be applied to this field: The rules, which may be ex-
tended arbitrarily, present a creative instrument of artistic interpretation and reflect
in any case the intentions of the user – that which has not been modeled is also
irrelevant here. The rules of a knowledge-based system which apply to style im-
itation may, however, come into conflict with the other implicit rules of the style
to be modeled – though the algorithm may conform to the Closed World Assump-
tion, for the desired style it would require all of its criteria to be without exception
comprehended by the rule system. This objective is, in most cases, not feasible. In
general, according to the terminology of generative grammar, the highest generative
capacity possible is aimed for: The task is to model all aspects of a style and at the
same time exclude all incorrect constructs from the generation. First, high genera-
tive capacity brings along the problems of high complexity, and second, due to the
peculiarity of the algorithm, correct (in the sense of well-formed) structures may be
produced that are, however, not allowed in the respective style. This means that, for
example, incorrect movements may be produced by a generative grammar, since the
local positioning of a musical movement contradicts a musical rule that has not been
acquired. Although this problem may be theoretically met with a very restrictive set
of rules, as a consequence, the output of the system is reduced.

16 Everything that cannot be proved explicitly is assumed to be false, this meaning that everything
that is not modeled is also irrelevant to the respective model.

11.6 Limits of algorithmic composition 271

In general, the rules and constraints of a knowledge-based system disregard the
generation of a single musical structure, and describe a class of possible composi-
tions instead. The applicability of a number of possible rules, and the basic con-
ditions formulated by the constraints, create a stochastic scope which enables the
abstraction from a single case. Within these alternative possibilities, a wide variety
of solutions are possible; but, it is not guaranteed that each of these generations is
appropriately generated in terms of the style to be modeled, and even if the criterion
of well-formedness should be fulfilled, this is not a sufficient condition for an aes-
thetically suitable solution. This stochastic scope, which may include a number of
solutions, is opposed to a highly restrictive algorithmic description that, in the worst
case, only reproduces examples of the corpus.

For genuine composition – as one possible approach – the finally determined out-
put of an algorithm (after a repeated modification) does not present a problem; here,
a new composition is produced as a result of dealing creatively with the algorithm.

The possible applications of non-knowledge-based systems are limited by the
structure of the corpus and the aligned possibilities of the necessary derivation of
information from data. In applications of style imitation, the data mostly consists
of pieces of a particular genre. Systems such as neural networks, or methods of
machine learning, generalize information available in a musical corpus in order to
generate a class of “similar” compositions. In general, optimal procedures do not
exist here, since the generalization capability of a procedure strongly depends on the
type of data material, as well as on the form of the desired output. If the generation
of smaller musical segments is the objective, genetic algorithms or neural networks
may be well applied for this task. These methods prove to be less suited for the
modeling of larger structures. In this case, procedures like grammatical inference,
which generate hierarchical rewriting rules on the basis of a corpus, can be used –
a restriction exists insofar as only state transitions can be encoded in the rules that
also exist in the corpus.

Furthermore, the structure of the corpus is to a large extent jointly responsible
for the quality of the generated output. The selected examples should be able to
sufficiently represent the class of possible compositions and at the same time, de-
pending on the strategy of the algorithm, these musical pieces should be able to be
combined with each other – this means that the corpus must not join several classes
of compositions whose structural properties are not interchangeable. Generally, the
previously mentioned problems are only relevant in the context of style imitation, as
within genuine composition, algorithms may be optionally formulated according to
a concept of composition – here, a conflict between the algorithmic program and the
musical result can only occur through an insufficient formalization of the individual
compositional requirements.

In most cases, systems of algorithmic composition generate – analogous to the
score in occidental music – a symbolic level. However, since beyond this level music
is a complex phenomenon of interpretation and reception, this fact points out another
limitation of generating musical structure using algorithmic procedures.

272 11 Final Synopsis

11.7 Transpersonalization and systems of “universal” validity

Algorithmic composition is often motivated by the desire to transpersonalize the
process of composition and to establish an unchallengeable quality criterion through
the referencing of the musical structure to its however “scientifically” generated ba-
sis. In all these attempts, circular reasoning is inherent: An idea is elevated to an
axiom on whose basis a model of composition of unchallengeable validity may be
asserted. As soon as a “primary principle” of musical creation is formulated, the
quality of musical structure becomes explainable due to this principle; composi-
tions meeting the highest quality criteria will virtually produce themselves through
the application of rules that have once been accepted as valid. In such a philosophi-
cal approach – not regarding musical quality – it is of secondary importance whether
we are talking about a “Zwölftonspiel” in Hauer’s system or a composition based on
Schillinger’s17 rules. A similar principle can already be found in the establishment
of the truth of the “Ars Magna,” the difference in this case being that the axioms are
asserted from Christian dogmatism (see chapter 2). Regardless of the quality of the
generated musical structure, the problem of such theoretical concepts is apparent
and produces justifiable doubts in regard to algorithmically generated music. A pos-
sible way to avoid this evident dilemma may be to undertake the abovementioned
discursive examination of musical structure on an algorithmic level: In this context,
applying the algorithm here only represents a rather unusual compositional method,
whereas neither axiomatic validity nor transpersonal significance are inherent in this
approach, just as is the case in every other creative approach bringing into being a
piece of art.

11.8 Concluding remark

“To some extent, this match is a defense of the whole human race. Computers play
such a huge role in society. They are everywhere. But there is a frontier that they
must not cross. They must not cross into the area of human creativity. It would
threaten the existence of human control in such areas as art, literature and music.”18

This statement, made by Garry Kasparov, who in 1997 as Chess World Champion
was defeated by the supercomputer Deep Blue in a tournament, illustrates reser-
vations and fears that arise when considering automated “creativity.” If programs
play chess on the level of grand masters, this does not appear so strange; but when
a computer invades a creative artistic field, this is met with skepticism. However –
algorithmic composition is not a musical golem, usurping creativity from the human

17 Schillinger was also a well-known teacher of theory. His composition system, cf. [12] became
popular e.g. through the “Moonlight Serenade,” created as an exercise by his student Glenn Miller.
The following citation illustrates Schillinger’s evaluation of compositional systems: “The final
step in the evolution of the arts is the scientific method of art production, whereby works of art are
manufactured and distributed according to definite specifications.” [13, p. 6].
18 Garry Kasparov, cited after [3, p. 40].

References 273

realm. The algorithm is a tool and means for the creative examination of the com-
plex aspects of musical production. Or with the words of HAL 9000: “I’ve got the
greatest enthusiasm and confidence in the mission.”

References

1. Biles JA (1994) GenJam: A genetic algorithm for generating Jazz solos. In: Proceedings of the
1994 International Computer Music Conference. International Computer Music Association,
San Francisco

2. Biles JA (1995) GenJam Populi: Training an IGA via audience-mediated performance. In:
Proceedings of the 1995 International Computer Music Conference. International Computer
Music Association, San Francisco

3. Cope D (2001) Virtual music: Computer synthesis of musical style. MIT Press, Cambridge,
Mass. ISBN 0-262-03283-X

4. Gleick J (1987) Chaos: Making a new science. Penguin Books, New York. ISBN 0-14-00
9250-1

5. Lang B (1996) Diminuendo. Über selbstähnliche Verkleinerungen. Beiträge zur Elektron-
ischen Musik, 7. Institut für Elektronische Musik (IEM) an der Universität für Musik und
darstellende Kunst in Graz, Graz

6. Mozer M C (1991) Connectionist music composition based on melodic, stylistic, and psy-
chophysical constraints. In: Todd PM, Loy DG (eds) Music and connectionism. MIT Press,
Cambridge, Mass. ISBN 0-262-20081-3

7. Oxford Advanced Learner’s Dictionary (2006)
http://www.oup.com/oald-bin/web getald7index1a.pl. Cited 17 Jan 2006

8. Pearce M, Wiggins G (2001) Towards a framework for the evaluation of machine composi-
tions. In: Proceedings of the AISB 2001, Symposium on AI and Creativity in the Arts and
Sciences

9. Pereira FC, Grilo C, Macedo L, Cardoso A (1997) Composing music with case-based reason-
ing. In: Proceedings of the Second Conference on Computational Models of Creative Cogni-
tion, MIND-II, Dublin

10. Pigg P (2002) Cohesive music generation with genetic algorithms.
http://web.umr.edu/ tauritzd/courses/cs401/fs2002/project/Pigg.pdf. Cited 11 Nov 2004

11. Roads C (1996) The computer music tutorial. MIT Press, Cambridge, Mass. ISBN 0-262-
68082-3

12. Schillinger J (1973) Schillinger System of musical composition. Da Capo Press, New York.
ISBN 0306775522

13. Schillinger J (1976) The mathematical basis of the arts. Kluwer Academic/Plenum Publishers,
New York. ISBN 0306707810

14. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign, Ill. ISBN 1-57955-
008-8

Index

abacus, 28
abductive reasoning, 235
Accadians, 11
Ackermann, Wilhelm, 46
action potential, 205
activation function, 206
Adaline, 208
Ada programming language, 43
adaptive linear element, see Adaline
adaptive network architecture, 209
adaptive resonance theory, see self-organizing

map
additive number system, 11
additive rhythmic, 45
Adjukiewicz, Kasimierz, 84
Afghan lute, 101
agent, 252–254

autonomous, 252
continuous, 252
interactional, 252
personality, 252
situated, 252

agogic, 221, 251
Agon, Carlos, 240
Agostini, Philippe, 64
Ahlbäck, Sven, 96
Aiken, Howard H., 4, 50, 54
A ja jait, 101
al Khowarizmi, see al-Khwarizmi
Alamos National Laboratory, 55
Albertus Magnus, 17
aleatorics, 39
Alexander de Villa Dei, 2
Alexander the Great, 13
Algol 60, 84
Algorismi de numero Indorum, 2
algorithm

as a compositional language, 261–262
conditions and classes, 2
definitions, 2
etymology, 2

algorithmic composition
as style imitation or as a genuine method of

composition, 259–264
aspects of creativity, 261–263, 272
evaluation of results, 269–270

Allan, Moray, 78
Allen, Paul, 56
Alpern, Adam, 172, 174–175
alphabet, 59, 84
Altair 8800, 56
Alto, 56
Ames, Charles, 241
anagram, 38
analysis, 7
Analytical Engine, 41–43
analytical geometry, 7
Anderson, Peter G., 177
Andronicus of Rhodes, 15
ANN, see artificial neural network
Anselm of Canterbury, 17
Apple I, 57
Apple Man, 136–138
applicative programming languages, 62
Aquinas, Thomas, see Thomas Aquinas
Arca Musarithmica, 25
Arca Musurgia, 25
Archimedes, 8
Arcos, Joseph L., 251–252
Ardeen, John, 56
Aristotle, 14–17, 28
Arithmomètre, 33
Ars Antiqua, 23
Ars Cantus Mensurabilis, 23

275

276 Index

Ars conjectandi, 7
Ars Magna, 17, 24, 272
Ars Nova, 23
ART, see self-organizing map
articulation, 241
artificial intelligence, 5, 225–228, 264, 265

applications in algorithmic composition, 228
artificial life-forms by genetic algorithm,

180–182
artificial neural network, 5, 264, 265

applications in algorithmic composition,
213–221

architecture, 208–213
as fitness evaluator, 172, 175, 177
history, 207–208
theory, 205–207

ARTMAP, see self-organizing map
assembly languages, 62
Atanasoff, John V., 54
Atanasoff–Berry Computer, 54
Atari, 57
ATN, see augmented transition network
atomists, 14
attractor, 134

dimension, 134
augmented transition network, 129
Ausfaltung, 93
Auskomponierung, 93
automaton

android, 8–9
computability theory, 58–61, 87
etymology, 58
state, 58

axiom, 15, 21
axon, 205

Bürgi, Jost, 7, 29
Babbage, Charles, 4, 40–43
Babylonian number system, 11, 13
Bach, Carl P. E., 36
Bach, Johann S., 1, 23, 28

cadences, 241
chorales, 78, 99, 112, 123, 213, 217, 219,

239
fugues, 241

Bach in a Box, 167
back-propagation algorithm, 208, 211, 221
back-propagation net, 209, 211
backtracking system, 171
Backus, John, 84
Backus-Naur form, 84
backward chaining, 237
Baily, John, 101
Baker, Robert, 63, 239

BandInABox, 262
Banks, Bruce, 141
Baroni, Mario, 98–100
Barr, Avron, 228
Basic, 63
bass arpeggiation, 93
Bassbrechung, 93
Baum-Welch algorithm, 71, 80
bayesian network, 236
bayesian reasoning, 236
Bays, Carter, 188
Becker, Alton, 100
Becker, Judith, 100
Begriffsschrift, 45
Bel, Bernard, 101–106, 228
Belar, Henry, 71
belief network, see bayesian network
Bellgrad, Matthew, 219–220
Berkeley, George, 9
Bernoulli, Daniel, 67
Bernoulli, Jakob, 7
Bernstein, Sergey N., 68
Berry, Clifford Edward, 54
Beyls, Peter, 195
bias, 208
Bidlack, Rick, 146, 153
Biles, Al, 172, 176–177
Billings, John Shaw, 48
Bilotta, Eleonora, 200–201
binary system, 33–34
Birmingham, William, 94
Bisig, Daniel, 253
Blacking, John, 92, 101
Bloomfield, Leonard, 84
BM, see Boltzmann machine
Bod, Rens, 250
Boethius, 17
BOIDS, 253
bol, 102
Bol Processor, 63, 101–106
Boltzmann machine, 219–220
Boole, George, 44
Boolean algebra, 44
Boolean lattice, 44
Boolean network, 200
Boolean Sequencer, 200
Borges, Jorge L., 38
Bouchon, Basile, 39, 48
Bouvet, Joachim, 34
BP2, 106
Braun, Antonius, 32
Braunschweig, Johann F., 26
Brittain, Walter H., 56
Brooks, Frederik P., 72–74

Index 277

Brouwer, Luitzen E.J., 46
Brown, Andrew, 168–170
brownian noise, 144
Brunetti, Rosella, 98–100
brute-force, 254
Buddhist logic, 16
Burks, Arthur W., 188
Burton, Anthony R., 173
Bush, Vannevar, 38, 50
butterfly effect, 133, 264

CAC, see Computer Assisted Composition
CA Explorer, 195
Cage, John, 39, 261
calculating machine, 28–33
Calculating Space, 187
calculi, 28
calculus ratiocinator, 27
calibration, see bias
Callegari, Laura, 98–100
Camillieri, Lelio, 99
Campo, Alberto de, 115
CAMUS, 197–199
CAMUS 3D, 199
Cantor, Georg, 46, 135
Cantor set, 135
cantus firmus, 93
Cardew, Cornelius, 253
Cardoso, Amilcar, 250–251
CARLA, 235
Carmen de Algorismo, 2
Carpenter, Gail, 208
case-based reasoning, 250–252
categorical grammar, 84
CDC 6600, 57
Cellular Automata Music, 195, 196
Cellular Automata Workstation, 197
cellular automaton, 5, 152, 264–266

1-dimensional, 189–191
2-dimensional, 191–193, 201
3-dimensional, 193
applications in algorithmic composition,

195–201
classes of 1-dimensional automata, 190
continuous, 194
extended types, 194
history and theory, 187–195
puffer, 193
rule, 190
sonification, 200–201
space ship, 193

C-Grammar, see categorical grammar
Chai, Wei, 80
Champollion, Jean F., 25

CHANSON, 98
chaos, 5
chaos theory, 264

applications in algorithmic composition,
144–148

history and theory, 131–137
chaos, etymology, 131
chaotic system, 153, 264

applications in algorithmic composition,
146–148

characteristic numbers, 27
Chebyshev, Pafnuty, 67
Chemellier, Mark, 107
Chomsky hierarchy, 87–90
Chomsky, Noam, 83, 85
CHORAL, 239–241
chromosome

in the cell, 157
in the genetic algorithm, 158

Church, Alonso, 58
circular reasoning, see circular statement
circular statement, 21, 24
circulus vitiosus, see circular statement
Clarke, John, 145
classification, 221
Cleve, Jürgen, 228
Closed World Assumption, 270
Colmar, Xavier T. de, 33
Colombo, Vittorio, 243–244
color, 23
Commodore, 57
Common Lisp Music, 64
Common Music, 63
compiler, 54
complexity, 87
computer

analogue, 50
digital, 50
etymology, 50

Computer Assisted Composition, 260
Computing Tabulating Recording Company,

49
concept graph, 234, 235
concept relation, 234
CONCERT, 217–221, 267
condition net, 127
conditional jump, 43
conflict set, 237
constituent, 85
constraint, 237–238, 271
context depth, 216
context-free grammar, see type-2 grammar
context-free language, 88
context neuron, 211

278 Index

context-sensitive grammar, see type-1 grammar
context-sensitive language, 88
Context Snake, 115–116
context unit, 215
Control Data Corporation, 57
Conway, John H., 188, 191–192
Cope, David, 4, 116, 122–127, 227
Courtot, Francis, 235
Cray, Seymour R., 57
credo ut intelligam, 17
crossover

in genetic programming, 162
in the genetic algorithm, 159

Csound, 64
Curta, 33
Cybernetic Composer, 241

Dahlstedt, Palle, 180–182
Dannenberg, Roger, 232
Dantzig, Tobias, 10
Dartmouth Conference, 228
Darwin, Charles, 5, 157
Davis, Martin, 48
decadic wheel, 30
decidability problem, 47
decidable languages, 88
deduction, 16
Deep Blue, 57, 272
deep structure, 90, 117
Deliège, Célestin, 93, 94
Democritus, 16
Demon Cyclic Space, 197–198
demotic, 9, 12
dendrites, 205
derivation, 85
Descartes, René, 7, 8, 28
Desprez, Josquin, 23
deterministic finite automaton, 89–90
DFA, see deterministic finite automaton
Diederich, Joachim, 168–170
difference engine, 40
difference engine no 1, 40
difference engine no 2, 40
differential psychology, 227
Diophantus of Alexandria, 8
Director Musices, 243–244
Dodge, Charles, 145–146
Domino, Michael, 241
Donaueschinger Musiktage, 64
Dorado, Julian, 173, 221
Dorin, Alan, 200, 202
dragon curve, 141
DuBois, Roger L., 149–153, 265
Dufay, Guillaume, 23

Dum calculat Deus, fit mundus, 28
Dunn, John, 182
dyadic, see binary system

Ebcioglu, Kemal, 229, 239–241
Eck, Douglas, 220–221
Eckert, John P., 54
EDSAC, 56
EDVAC, 50, 55
Egyptian number system, 12
Ehrenfels, Christian, 250
Electronic Music Synthesizer, 71
electron tube, 56
ELIZA, 5, 225–228, 264
Elman net, 211
Elsea, Peter, 236
emergence, 252, 255
EMI, see Experiments in Musical Intelligence
emission probabilities, 69
empiricism, 9
encoding, 266–267
ENIAC, 50, 54
Escher, Maurits C., 135
Essay d’une nouvelle science des nombres, 33
Euler, Leonhard, 7
event net, 127
evolutionary algorithms, 157
Experiments in Musical Intelligence, 122–127,

129, 227, 267
expert system, 237

Fairchild, 56
Falcon, Jean B., 39
Farbood, Mary, 77
feedforward network, 209
Feigenbaum, Edward A., 228
Feigenbaum diagram, 133
Fels, Sidney, 179–180
Fermat, Pierre de, 7, 8
Ferrand, Miguel, 250–251
Feulner, Johannes, 213–214
Fibonacci series, 15
finite automaton, 59, 88–90, 121
First draft of a report on the EDVAC, 61
first-order predicate logic, 245
first premise, see major premise
Fitch, John, 146–147
fitness evaluation, 255
fitness function, 159, 183, 269–270

algorithmic, 172, 184
human, 159, 167
multi-dimensional, 168
multi-stage, 168
rule-based, 255

Index 279

fitness-bottleneck, 167
flocking agents, 253
flow relation, 127
Fonseka, Joseph R., 253
formal languages, 87
Fortran, 63
forward algorithm, 70
forward chaining, 237
Foster, Stephen, 71
fractal, 135–137
fractal dimension, 136
fractional noise, applications in algorithmic

composition, 144–146
frames, 233–235, 245
Franco of Cologne, 23
Fredkin, Ed, 188
free monoid, see Kleene closure
Frege, Ludwig G., 45
Freytag-Löringhoff, Bruno Freiherr von, 30
Friberg, Anders, 243–244
Fry, Christopher, 229
Frydén, Lars, 243–244
Fuenffache Denckring der Teutschen Sprache,

36
functional music, 262
fuzzy logic, 235–236
fuzzy set, 178, 255

Gödel, Kurt, 47, 58
Görz, Günther, 228, 229
Galilei, Galileo, 8
Game of Life, 188–189, 191–192, 197
game theory, 35
Gamelan, 100
Gartland-Jones, Andrew, 165–166
GAT, see generate-and-test
gate component of an LSTM, 220
Gates, Bill, 56
Gena, Peter, 182
generalization capability, 215
generate-and-test, 238, 261
generative capacity, 87, 117
generative grammar, 4, 148, 153, 222, 241,

265, 266, 270
applications in algorithmic composition,

91–112
Chomsky hierarchy, 87–90
historical, 83
theory of syntax, 84–86

genetic algorithm, 5, 157, 201, 266
applications in algorithmic composition,

164–165, 176–182
in comparison to rule-based system,

171–172

multi-stage model, 172
scheme, 159
theory, 157–161

genetic programming, 5
applications in algorithmic composition,

174–176
genetic variability, 158
GenJam, 176–177, 269
genome, 158
genotype, 158
geometrical square, 26
Gerbert of Aurillac, 14–15
Glashoff, Klaus, 28
Gleick, James, 131, 264
glider gun, 188
Glushkov, Viktor M., 57
Gogins, Michael, 146
GoL, see Game of Life
Goldberg, David E., 157, 159, 164–165
golden ratio, 15
Goldstine, Herman, 54
Gosper, William, 188
GPMusic, 175
grammatical inference, 4, 91, 112–116
Grassmann, Hermann G., 44
Grassmann, Robert, 44
Greek, 131
Greek number system, 12
Griffeath, David, 197
Grilo, Carlos, 250
Grimaldi, Claudio F., 34
Groove, 63
Grossberg, Stephen, 208
Gudwin, Ricardo, 178–179
Guido of Arezzo, 1, 21
Gunter, Edmund, 29
Gutenberg, Johannes, 7

printing press, 7
Gwalior, inscription from Gwalior, 13

Hénon attractor, 134
Habsburg, Carl J., 26
Hahn, Philipp M., 32
HAL 9000, 264, 273
half-logarithmic notation, 50
halting problem, 47, 60
Hamilton, William, 44
HarmAn, 94
HARMONET, 213–214
HARMONY, 98
Harsdörffer, Georg P., 36
Harter, William, 141
Harter-Heighway Dragon, 141
Hauer, Joseph M., 24, 261, 272

280 Index

Haus, Goffredo, 128–129
Hausser, Roland, 84
Haydn, Joseph, 38
head-note, 93
Hebb, Donald O., 207
Hebbian learning, 207
Heighway, John, 141
Heisenberg, Werner, 35
Henz, Martin, 237
Herbrand, Jacques, 47
heredity concept, 27
Herzstark, Curt, 33
Hesper, Ben, 138
heuristic, 232, 254
hidden layer, 209
hidden Markov model, 4, 69–71, 81

applications in algorithmic composition,
77–80

stylistic classification, 80
hierarchical grammars, 148
hieratic, 9, 12
hieroglyphs, 9, 24
higher programming language, 62
Hilbert, David, 45
Hild, Hermann, 213–214
Hiller, Lejaren, 56, 63, 64, 72, 238–239, 261
Hintergrund, 93
Hinton, Geoffrey, 208
Hirzel, Martin, 77
HMM, see hidden Markov model
Hobbes, Thomas, 9
Hoff, Marcian E., 208
Hofstadter, Douglas R., 123, 127, 255
Hogeweg, Paulien, 138
Holland, John H., 157
Hollerith, Hermann, 8, 48
Hopfield net, 209, 212, 219
Hopfield, John, 208
Hopkins, A. L., 72–74
Hopper, Grace M., 54
Horner, Andrew, 164–165
Horowitz, Damon, 173
Hughes, David W., 99–101
Hume, David, 9
Hunt, Andy, 197
hyperbolic function, 206
hypertext system, 38

IAS, 56
IBM, 49
IC, see integrated circuit
I Ching, 34, 38, 39
ideogram, 9
ILLIAC computer, 56, 63, 72

Illiac Suite, 4, 63, 64, 72, 238–239, 261
immediate constituent analysis, 84
incompleteness theorem, 58, 60
IndagoSonus, 166
indeterminacy relation, 35
India

mathematics and number system, 13–14
philosophy, 13

Indo-Arabic number system, 13, 14
induction, 16

by enumeration, 16
imperfect, 16

inductive biases, 245
infinitesimal calculus, 7
information continuum, 187
Information Mechanics Group, 188
initial probabilities, 70
initial state distribution, 70
Inochuki, Seiji, 244
input layer, 212
Institut de Recherche et Coordination

Acoustique/Musique, see IRCAM
integrated circuit, 56
Integrated Electronics, see Intel
Intel, 56
Intel 4004, 56
intelligence

etymology and definitions, 227–228
intelligence quotient, 227
intelligence test, 228
International Business Machines Corporation,

see IBM
Introductio in analysin infinitorum, 7
intuitionists, 46
IRCAM, 229, 240
Isaacson, Leonard, 56, 63, 64, 72, 238–239,

261
Ishango bone, 10
Ising, Ernst, 187
Ising model, 187
isorhythm, 23
iteration depth, 140

Jackendoff, Ray, 83, 93–94, 146, 251
Jacob, Bruce L., 165–166
Jacoboni, Carlo, 98–100
Jacquard, Joseph-Marie, 8, 39
Jacquet-Droz, Henri, 8
Jacquet-Droz, Pierre, 8
Jeppesen, Knud, 77, 115
Jerse, Thomas A., 145
Jevons, William S., 44
Jobs, Stephen P., 56
Johanson, Brad, 172, 175–176

Index 281

Johnson, Margret, 241
Johnson-Laird, Philip N., 107–109
Jones, Kevin, 75
Jordan net, 211, 215
Julia, Gaston M., 136

König, Gottfried M., 1
Kaleidacousticon System, 262
Kanji, 9
Kansei Music System, 244
Kant, Immanuel, 9
Kaplan, Robert, 13
Kasparov, Garry, 57, 272
Katayose, Haruhiro, 244
Keefe, Douglas H., 218
Kempelen, Wolfgang von, 8
Kepler, Johannes, 8, 30
key words, 226
al-Khwarizmi, 2, 13
Kilby, Jack St.C., 56
Kippen, Jim, 101–106, 228
Kircher, Athanasius, 24, 29
Kirnberger, Philipp, 36
Kleene, Stephen C., 58
Kleene closure, 84
Knab, Bernhard, 70
knowledge representation, 229
knowledge-based system, 91, 237, 270, 271

context-dependent, 233
Knuth, Donald, 10
Koch, Helge von, 136, 140
Koch curve, 140
Kohonen, Teuvo, 113–115, 208
Kohonen feature map, 208, 212
Kohonen’s self-organizing maps, 221
Kopfnote, 93
Kreutzer, Wolfgang, 228
Kubrick, Stanley, 264

2001: A Space Odyssey, 264
Kyburz, Hanspeter, 154

Lämmel, Uwe, 228, 252
Laden, Bernice, 218
lambda calculus, 58
Lang, Bernhard, 265
Langton, Chris, 195
Langton’s Lambda parameter, 195
language

artificial, 84
natural, 84

Laplace, Pierre S. de, 35, 67
Lasswitz, Kurd, 38
Lavoisier, Antoine L., 8
law of contradiction, 16

law of excluded middle, 16, 235
law of identity, 16
law of non-contradiction, see law of

contradiction
laws of gravitation, 8
laws of planetary motion, 8
Leach, Jeremy, 146–147
Lebedev, Sergey A., 57
Le Corbusier, 64
left-linear, 89
Leibniz, Gottfried, 7, 9, 16, 26–28, 30, 33–35
Lemombo bone, 10
Lempel-Ziv encoding, 110, 111
Lempel-Ziv tree, 110–111
Lenz, Wilhelm, 187
Leonardo da Pisa, 15
Leonardo da Vinci, 8, 28
Leonin, 21
Lerdahl, Fred, 83, 93–94, 146, 251
Lesniewski, Stanislaw, 84
Leupold, Jakob, 32
Levitt, David, 241
lexical categories, 85
lexical insertion rules, 85
lexicon, 84
Li, Tien-Yien, 131
Liber Abaci, 15
limit cycle, 134
Lindblom, Björn, 96–99
Lindenmayer, Aristid, 137–138
Lindenmayer system, 5, 112, 131, 153,

264–265
0L, 140
1L-system, 140
2L-system, 140
applications in algorithmic composition,

148–149
axiom, 139
context-free, 140–141, 148
context-sensitive, 140–141
D0L, 140, 141
deterministic, 142–143
history, 137–138
IL-system, 140
k, l-system, 140
non-parametric, 142–144
parametric, 142–144
predecessor, 139
production rule, 139
stochastic, 142–143
successor, 139
theory, 138–144

linear associator, 208
linear-bounded automaton, 88

282 Index

lipogram, 38
LIQUIPRISM, 200
Lisp, 63
Lloyd, Charles, 77
Llull, Ramón, see Lullus, Raimundus
Locke, John, 9
Loebner Prize, 227
logarithm, 7
Loggi, Laura W., 177
logic, 15–16

conclusion, 15, 16
copula, 45
existential quantifier, 45
judgment, 44
juncture, 17
major premise, 16
minor premise, 16
predicate, 16, 44, 45
subject, 16, 44
term, 45
terminus medius, 16
universal quantifier, 45

logical piano, 44
Logic Theorist, 48
logistic equation, 132–133, 146
logogram, 9
logos, 15
long short-term memory recurrent neural

network, 220–221
loom, 39
loop, 43
Lorenz, Edward N., 131, 133, 264
Lorenz attractor, 134
Lorenz equations, 133
Lovelace, Ada, 4, 43, 54
LS, see Lindenmayer system
Luger, George, 228, 229, 252
Lullus, Raimundus, 17, 24, 26, 36
Lyon, Douglas, 129
LZ-encoding, see Lempel–Ziv encoding
LZ-tree, see Lempel-Ziv tree

Müller, Johann H., 32, 40
Màntaras, Ramon L. de, 251–252
Macedo, Luı̀s, 250
Machaut, Guillaume de, 23
machine languages, 62
machine learning, 237, 244–252, 255

symbol-based, 245
Madaline, 208
Magnus liber organi de gradali et antiphonario,

21
major premise, 16
Mallarmé, Stéphane, 38

Malt, Mikhail, 252–254
Mandelbrot, Benoit, 131, 135, 154, 264
Mandelbrot set, 136–137
Manhattan project, 188
Manzolli, Jonatas, 178–180, 236
map layer, 212
mapping, 267–268
mapping of a mapping, 268
Margolus, Norman, 188
Mark I, 50
Mark I Perceptron, 207
Mark I to Mark IV, 54
Markov, Andrey A., 67
Markov chain, 68
Markov model, 4, 91, 129, 148, 216, 222, 265,

266
applications in algorithmic composition,

71–77
historical, 67–68
theory, 68–69

materialistic-mechanistic anthropology, 9
mathematical music theory, 1
mathematical organ, 26, 29
Mathews, Max, 63, 64
Mauchly, John W., 54
MAX, 130
Maya, 12
Mazzola, Guerino, 1, 240
McCarthy, John, 228
McClelland, James, 208
McCormack, John, 148–149
McCulloch, Warren St., 207
McCulloch-Pitts neuron, 207, 208
Mcel, 190
Mc Intyre, Ryan, 167–168, 183
Mealy machine, 59
mechanistic determinism, 35
Meehan, James, 93, 94
Mellish, Chris, 76–77
MELOS 2, 98
memory block component of an LSTM, 220
Menabrea, Luigi F., 43
mensural notation, 23–24
Menzel, Wolfram, 213–214
Metaphysics, by Aristotle, 15
Micro Instrumentation and Telemetry Systems,

see MITS
Micrologus de disciplina artis musicae, 1, 21
micro processor, 56–58
Microsoft, 56, 57
MIDI, 260
Midi Lisp, 63
Mill, John S., 44
Millen, Dale, 195–197

Index 283

minor premise, 16
Minsky, Marvin, 208, 210
Miranda, Eduardo R., 197–199
Mirifici logarithmorum canonis descriptio, 29
MITS, 56
Mittelgrund, 93
model-based system, 250
monotonicity of entailment, 235
Moonlight Serenade, 272
Moore, Gordon E., 56
Moore, Richard F., 63
Moore machine, 59
Moore School of Electrical Engineering, 54
Morgan, Augustus de, 44
Morgenstern, Oskar, 35
Moroni, Artemis, 178–179, 236
Moscow mathematical papyrus, 12
motet, 21
Motus, 21
Mozart, Wolfgang A., 38
Mozer, Michael C., 183, 217–222, 270
MS-DOS, 57
multi-agent system, 252, 253, 255
multi-level perceptron, 209
multi-valued logic, 235
Multiple Adaline, see Madaline
multiple-viewpoint systems, 254
MusaCazUza, 250–251
MUSE, 245–246
musical analysis, 80, 93–96, 259
musical analysis by resynthesis, 259, 262
musical dice game, 4, 36–38, 261
MusicBox, 166
MusicN

languages, 64
Musicomp, 63
Musikalische Gestalt, 250
Musurgia Universalis, 25–26
mutation, 157

in genetic programming, 162
in the cell, 158
in the genetic algorithm, 159

Napier, John, 7, 29
Napier’s abacus, see Napier’s bones
Napier’s bones, 26, 29, 30
Napier’s rods, see Napier’s bones
Naur, Peter, 84
Nearest Neighbor Heuristic, 233
neighborhood, 189
Neumann, John von, 35, 55, 187–189
Neumann, Peter G., 72–74
neumes, 23
neurocomputer, 207

neuron
artificial, 206
biological, 205

Nevill-Manning, Craig, 112–113
Newell, Allen, 48
Newton, Isaac, 7, 8
NFA, see non-deterministic finite automaton,

89–90
non-deterministic finite automaton, 89
non-knowledge-based system, 91, 270, 271
non-linear dynamical system, 153
non-linear equation system, 146
non-linear maps, see non-linear equation

system
non-linear separable functions, 210, 211
non-monotonic reasoning, 235, 255
non-terminal symbol, 85
Nordahl, Matts, 180–182
Noyce, Robert N., 56
number system, development of, 9–13
number theory, 7, 8

objective score, 158
object-oriented programming

class, 63
heredity, 63
method, 63
object, 63

observable output, 69
occidental art music, 1
Olson, Harry F., 71
OM, see OpenMusic
On Formally Undecidable Propositions. . . , see

Über formal unentscheidbare Sätze. . .
OpenMusic, 63, 130, 229
Oppenheimer, Robert, 55
orbit, 146
Organon, 15
Organum Mathematicum, 29
Orlando di Lassus, 23
Orton, Richard, 197
Oughtred, William, 30
Oulipo, 38
output function, 206
Ouvroir de Littérature Potentielle, see Oulipo
over-generation, 81, 92

Pérotin, 21
Pachet, François, 108–112, 237
Palestrina, Giovanni P., 23, 115
palindrome, 38
Pantano, Pietro, 200–201
Papadopoulos, George, 167
Papert, Seymor, 208, 210

284 Index

parallel rewriting system, 138
Pardo, Bryan, 94
parsing, 85
partially decidable language, 87
Pascal, Blaise, 30
Pascal, programming language, 63
Pascaline, 30
Patch Work, 63
Pazos, Alejandro, 173, 221
Peano, Giuseppe, 46
Pearce, Marcus, 173–174, 269
Peirce, Charles, 44
Pelinski, Ramòn, 101–102
perceptron, 207, 209–210
Perec, Georges, 38
Pereira, Francisco, 250–251
Petri net, 5

applications in algorithmic composition, 128
marking, 127
place, 127
theory, 127
token, 127
transition, 127

Petrus de Cruce, 21
Petrus Hispanus, 17
phase space, 134, 153
phenotype, 158
Philips pavilion, 64
Phon-Amnuaisuk, Somnuk, 170–171, 183,

229, 241
phonogram, 9
phrase structure grammar, 85
pictogram, 9
Pigg, Paul, 172
pin cylinder, 8
pink noise, 144
pitch class, 26
Pitts, Walter, 207
plan unit, 215
Plankalkül, 62
Plato, 15
Poème Electronique, 65
Poincaré, Jules H., 132
Poleni, Giovanni, 32
Poli, Ricardo, 175–176
Ponsford, Dan, 76–77
populations, 158
positional number system, 11
Post, Emil, 84
predicate calculus, 255
Pressing, Jeff, 146
principal component analysis, 170
Principia Mathematica, 46
principle of sufficient reason, 16

probability calculus, 7, 35
production system, 236–237
programming, 62–63
programming language

functional, 58
imperative, 58
procedural, 58

Prolog, 62
propagation function, 206
propositional logic, 44
Prusinkiewicz, Przemyslaw, 138, 148
punched card, 39
punched card computer, 8
PureData, 64, 130
pushdown automaton, 88
Pythagorean abacus, 29
Pythagorean School, 14

qa’ida, 102
QAVAID, 103–104
Queneau, Raymond, 38, 39
Quipu, 10

Rössler attractor, 134
Rabdologiae, 29
Rader, Gary, 96
radius, 189
Ramirez, Rafael, 237
random walk, 219
Rank Xerox, 56
rationalism, 9
reasoning, 235–236
reasoning in uncertain situations, 235
Rechenberg, Ingo, 157
recognize-act cycle, 237
recognizer, 59
recombinancy, 123–127
recurrent network, 214
recursion depth, 141
recursively defined geometric objects, 188
recursively enumerable language, 87
recursive transition network, 121
regular grammar, see type-3 grammar
regular language, 89
reinforcement learning, 244
Rennard, Jean-Philippe, 194
representation, 266–267

absolute, 182–183, 215, 221
distributed, 215, 221, 267
local, 215, 220, 221, 267
multi-dimensional, 183, 217–219, 221
relative, 182–183, 215, 221

rewriting rules, 85, 142
Reynolds, Craig, 253

Index 285

Rhind mathematical papyrus, 12
Ribeiro, Paulo, 250–251
Riecken, Douglas, 244
Riego, A. Santos del, 173, 221
right-linear, 89
ring tones, 262
Roads, Curtis, 83, 93, 262
Roberts, Edward, 56
Roman number system, 12
Romero-Cardalda, J.J., 173, 221
Rosenblatt, Frank, 207
Rosetta Stone, 25
Ross, Kirk, 197
Rozenberg, Grzegorz, 138
rule, 237–238, 271
rule-based expert system, 237
rule-based system, 123, 174, 236–238, 241,

260–261
in comparison to genetic algorithm, 171–172

Rumelhart, David, 208
Russell, Bertrand A.W., 45
Russell, Stuart, 228

Sabater, Jordi, 251–252
Sametti, Alberto, 128–129
SaxEx, 251–252, 268
scale invariance, see self-similarity
Schütz, Heinrich, 23
Schönberg, Arnold, 260
Schenker, Heinrich, 93, 94, 117, 125, 240
Scheutz, Edvard, 41
Scheutz, Pehr G., 40
Schickard, Wilhelm, 30
Schickard’s calculator, 30
Schillinger, Josef, 24, 45, 272
Schmidhuber, Jürgen, 220–221
Schockley, William B., 56
Scholasticism, 17
Schoner, Bernd, 77
Schott, Caspar, 29
Schott’s counting box, 29
Schottstaedt, Bill, 64
Schröder, Ernst, 44
Schubert, Franz, 99
Schwanauer, Stephan, 245–246
Schwefel, Hans-Paul, 157
ScoreSynth, 128–129
script, 234–235
search

breadth-first, 232
brute-force, 233
data-driven, 231
data-oriented, 237
depth-first, 232

goal-driven, 231
goal-oriented, 237
heuristic, 232
uninformed, 231

second premise, see minor premise
Seife, Charles, 13
self-associative net, see Hopfield net
Self-Learning Musical Grammar, 113–115
self-organizing map, 208, 212
Self-Reproducing Automata, 188
self-similarity, 5, 135, 138, 264
semantic networks, 233, 235
semantics, 117, 124
semi-decidability, 48, 88
SEQUITUR, 112–113
serialism, 39
sexagesimal system, 11
Shannon, Claude E., 44, 62
Shaw, Cliff, 48
Shyreswood, William, 17
SICOM, 269
Sierpinski triangle, 152, 191
sieves, 45
sigmoid function, 206
Simon, Herbert A., 48
simulated annealing, 219
Skolem, Thoralf, 47
Sleator, Daniel, 94
slide rule, 30
Smaill, Alan, 229, 241
Smalltalk, 63
Smith, Alvy R., 138
Smoliar, Stephen, 93, 94
smoothed n-grams, 69, 77, 81
Socrates, 15, 16
SOM, see self-organizing map
sonification, 182, 268–269
Soroban, 28
Soukup, Daniela, 77
Spangler, Randall, 232
SPEAC, 124–126
Spector, Lee, 172, 174–175
spectral density, 144
sprocket wheel, 32
stability-plasticity dilemma, 212
Stadler, Maximilian, 36
state space, 231–233, 254
state space search, 228
state transition graph, 68
Stchoty, 28
Steedman, Mark, 83, 84, 106–107
step reckoner, 30
Stern, William, 227
stoa, 16

286 Index

stochastic chain, 68
Stockhausen, Karlheinz, 39
strange attractor, 134
Stubblefield, W., 229, 252
style imitation, 270
Suan Pan, 28
subroutine, 43, 54
substitution system, 81, 201
Summulae Logicales, 17
Sundberg, Johan, 83, 96–99, 243–244
sunya, 13
SuperCollider, 64
super computer, 57
supervised learning, 244
surface structures, 90
survival of the fittest, 157, 158
syllogism, 16

Buddhist, 16
Sylvester II, see Gerbert of Aurillac
symbol, development of, 9
Symbolic Composer, 63
synapse, 205
syntagma, 25–26
syntax, 84–85

definition by Chomsky, 85

tabla, 101
Tabulating Machine Company, 49
Talarico, Valerio, 201
talea, 23
Temperley, David, 94
terminal symbol, 85
Texas Instruments, 56
theatre machines, 8
thematic bridging, 164
Thom, Belinda, 245
Thomas Aqinas, 14, 17
Thue, Axel, 84
TN, see transition network
Todd, Peter M., 180–182, 214–217
Toffoli, Tomaso, 188
torus, 181, 190, 192, 197, 201, 202
Towsey, Michael, 168–170
Tractatus Logicae, 17
TRADIC, 56
trajectory, see phase space
transition matrix, 68
transition network, 4

applications in algorithmic composition,
122–129

augmented, 122
recursive, 121
theory, 121

transition probability, 68

Traveling Salesman Problem, 233
Tsang, Lawrence P., 219–220
Turing machine, 58–60

non-deterministic, 87
Turing test, 123, 227, 269
Turing, Alan M., 5, 58, 226–227
turtle graphics, 139–148
Tuson, Andrew, 170–171
twelve tone technique, 39
type-0 grammar, 87–88, 129
type-1 grammar, 88
type-2 grammar, 84, 88–89
type-3 grammar, 89–91

Über formal unentscheidbare Sätze. . . , 47
Ulam, Stanislav M., 187–189
Unemi, Tatsuo, 253
unfolding, 98
universal language, 26–28, 35
unrestricted grammar, see type-0 grammar
unsupervised learning, 91, 245
Uomo Universalis, 8
Urlinie, 93, 98
Ursatz, 93

Varèse, Edgar, 65
Variations, 166, 228
Vaucanson, Jacques de, 8, 39
Venn, John, 44
Vercoe, Barry, 64, 80
Verhulst, Pierre-François, 132–133
Verhulst equation, see logistic equation
vigesimal system, 11
Virtual Laboratory, 139
Visser, Harm, 106
Viterbi algorithm, 71, 77, 80, 81
Viterbi path, 71
Vitry, Philippe de, 21, 23
von Neumann architecture, 55, 61–62
Vordergrund, 93
Voss, Richard F., 145
Vox Populi, 176, 178–179, 236

Wachowski, Andy and Larry, 264
The Matrix, 264

waiting loops, 262
Wechsler, David, 228
Weizenbaum, Joseph, 225–227
well-formedness, 84, 92, 124
Well-Tempered Clavier, 241
Werbos, Paul, 208
Werner, Gregory, 180–182
white noise, 144
Whitehead, Alfred N., 45

Index 287

Widmer, Gerhard, 245–247
Widrow, Bernard, 208
Wiggins, Geraint, 76–77, 167, 170–171, 183,

229, 241, 269
wild card, 104
Wilkes, Maurice V., 56
winner neuron, 212
Winston, Patrick H., 228
Witten, Ian, 112–113
Wojtowicz, Mirek, 190
Wolff, Christian, 9
WOLFGANG, 244
Wolfram, Stephen, 189, 264
Wozniac, Stephen, 56
Wright, Susan, 168–170
Wright, William V., 72–74

writing system, development of, 9

Xenakis, Iannis, 1, 45, 64, 72

Yorke, James, 131

Z1 computer by Zuse, 50
Z2 computer by Zuse, 50
Z3 computer by Zuse, 50–53
Z4 computer by Zuse, 53
Zenon’s paradoxon, 14
zero, development of, 13–15
Zouhar, Vit, 65
Zuben, Ferdinando von, 178–179
Zuse, Konrad, 4, 50–54, 62, 187–189
Zwölftonspiel, 24, 272

