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Preface

The title of this book, Analysis, Synthesis, and Perception of Musical Sounds, has
been the subject of many conference sessions (for example, at the 127th Meeting
of the Acoustical Society of America at Cambridge, Massachusetts in May, 1994,
which originally inspired this book) and journal papers, but there has been little
to date which combines these subjects into a single volume. Traditionally, dating
back to Helmholtz (1877), the subject of analysis of musical sounds consisted
solely of harmonic analysis of sustained-tone instruments. However, many other
applications have been developed during the last several decades, and the topics
of analysis, synthesis, and perception (AS&P) are very representative of these
applications.

It almost goes without saying that the principal tool that has facilitated AS&P
is the digital computer, and all of the projects described in this book have used
this indispensible tool. Another common thread is that all of these projects have
used a form of time-varying spectral analysis [usually implemented using a form
of the short-time Fourier transform (STFT)], which models signals as sums of sine
waves (sinusoids).

Indisputably, the first time-varying spectral analysis and synthesis of musi-
cal sounds by a digital computer was accomplished in Melville Clark Jr.’s lab
at MIT (Luce, 1963, 1975; Luce and Clark, 1967; Strong and Clark, 1967a,
1967b). Projects by Beauchamp and Fornango (1966), Freedman (1967, 1968), and
Beauchamp (1969, 1974, 1975) at the University of Illinois at Urbana-Champaign,
Risset and Mathews (1969) at Bell Telephone Laboratories, and Keeler (1972) at
the University of Waterloo soon followed. Some of these projects were described
in the book Music by Computers (von Forester and Beauchamp, eds., 1969). Strong
and Clark’s project (1967a, 1967b) was the first to incorporate listening tests in pub-
lications on musical sound synthesis derived from spectral analysis. Luce, Strong,
and Clark were also first to emphasize the importance of musical instrument spec-
tral envelopes, which are smoothed versions of sound spectra. Later, John Grey,
James A. Moorer, and John Gordon at Stanford University completed a much more
extensive series of perceptual studies based on spectral analysis/synthesis in the
mid-1970s (Grey, 1975, 1977; Grey and Moorer, 1977; Grey and Gordon, 1978),
including the use of the multidimensional scaling (MDS) method to determine a
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“space” of musical timbres. These were preceded by similar timbre space studies
by Wedin and Goude (1972), Wessel (1973), and Miller and Carterette (1975),
which also used the MDS method but only employed original acoustic sounds or
artificial sounds not obtained by analysis/synthesis.

The phase vocoder, a method of time-varying analysis/synthesis similar to that
used by the early music researchers, was first employed for speech applications
by Flanagan and Golden (1966) and Portnoff (1976) and later extended for music
by Moorer (1978) and Dolson (1986). Again for speech, McAulay and Quatieri
(1986) introduced the spectral frequency tracking (SFT) method, and a similar
method (called PARSHL) was developed for music applications by Smith and
Serra (1987). This method (now called SMS) was extended by Serra and Smith
(1990) with the additional feature of extracting a time-varying noise residual from
the sound signal. Separate control of the noise residual offered advantages such
as reduction of artifacts when time-scaling is employed. A freely downloadable
source-code package (called SNDAN) which combines a tunable phase vocoder
and the SFT method was described by Beauchamp (1993). Since then, many new
music analysis/synthesis methods have been developed. A comparison of current
methods was given in Wright et al. (2001).

Other aspects of the history of analysis/synthesis are discussed in the chapter
by Levine and Smith (Chapter 4).

This book consists of eight chapters. In the first chapter James Beauchamp dis-
cusses basic methods of time-varying spectral analysis and synthesis and gives ex-
amples of the analysis of various musical instruments. The two analysis/synthesis
methods presented are the Harmonic Filter Bank (HFB, aka phase vocoder) and
the Spectral Frequency-Tracking (SFT) methods. The HFB method, where the fre-
quencies of analysis can be aligned with frequencies of a harmonic sound, works
best for sounds that are quasiperiodic, i.e., they have nearly constant pitch (i.e.,
fundamental frequency). The SFT method works best for sounds with variable
pitch. Both methods can be used for sounds with inharmonic partials, although the
HFB has the advantage of avoiding problems of excessive amplitude thresholding
and partial frequency mistracking. This chapter also defines several “higher-level”
measures of spectra, which may be useful for classifying instruments. These are
the spectral centroid (associated with “perceptual brightness”), spectral irregular-
ity, inharmonicity, decay rate, spectrotemporal incoherence, and inverse spectral
density, and examples for different instruments are given. Beauchamp concludes
by showing how the SFT method can be used to track the fundamental frequency
as well as to separate the harmonics of a signal with substantial time-varying pitch.

While the traditional Fourier transform yields frequencies that are uniformly
spaced, it is possible to define a variation on this transform, called the constant-
Q transform, which yields an analysis at logarithmically spaced frequencies. In
Chapter 2, Judith Brown looks at methods of analysis using this transform. She
then shows how fundamental-frequency (pitch) tracking can be based on pattern
matching of the constant-Q transform output, giving examples of violin perfor-
mance analysis. Next, a high-resolution pitch analyzer is described, which is based
on the phase changes of spectral components, to improve the precision of pitch
tracking. This pitch analyzer was applied to the problem of resolving the frequency
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ratios of musical instrument partials in order to determine the degree to which they
were, or were not, harmonic. Finally, a listening experiment was conducted to
determine the perceived pitch center of viola vibrato tones, and results for rela-
tively experienced and inexperienced listeners are compared. This also yielded an
estimate of the pitch JND for these listeners.

In Chapter 3, Lippold Haken, Kelly Fitz, and Paul Christensen describe a novel
analysis/synthesis method and how it can be used as a synthesis engine for a “fin-
gerboard” musical instrument. The method is an extension of the SFT method
described in Chapter 1. The two extensions are noise enhancement and spectral
reassignment. Rather than separate additive noise into a residual as has been done
by Serra and Smith (1990), noise is treated in terms of separable “noise-factor”
signals that are modulated onto individual partials during synthesis. Thus, each
partial is represented by three parameters: amplitude, frequency, and noise fac-
tor. With spectral reassignment, the time and frequency for each time frame and
partial within the frame are reestimated by utilizing centroids of the windowed
time function and its Fourier transform. The overall method results in improved
analysis/synthesis of complex sounds having sharp transients and inharmonic par-
tials. The result is parameter streams that can be easily manipulated in time and
frequency. The method has been been used as the synthesis engine of a new “fin-
gerboard” musical instrument, called the Continuum, which, in addition to pitch
and loudness control, affords timbral control by morphing between two target
instrument sounds appropriate for each pitch.

Another method of processing complex, even polyphonic, sounds with increased
perceptual accuracy is described by Scott Levine and Julius Smith in Chapter 4.
Their method builds on the sinusoids-plus-noise model developed by Serra and
Smith (1990). The new method divides the signal into three parts: time-varying
sinusoids, time-varying noise, and transients. The signal is first segmented into
attack-transient and nontransient time regions. The transient segments are coded
using a variation on an MPEG audio transient coder. Nontransient time regions
are analyzed as “multiresolution sinusoids” and noise. “Multiresolution” means
that frequencies below 5000 Hz are analyzed as time-varying sinusoids for the
frequency ranges 0–1250 Hz, 1250–2500 Hz, and 2500–5000 Hz with different
time resolutions of 46 ms, 23 ms, and 11.5 ms, respectively. Overlap regions
between transient and sinusoids are phase-matched to avoid discontinuities. Noise
is modeled in terms of Bark bands, which are critical bands varying in bandwidth
across the spectrum (Zwicker, 1961). Below 5000 Hz noise is based on the residual
between the signal and the sum of analyzed sinusoids. Above 5000 Hz noise is
based on the entire signal. Time variation of the noise is given in terms of a
piecewise linear curve for the amplitude of each Bark-band noise. The method
allows time expansion and other modifications (such as frequency tuning) without
loss of fidelity, including the preservation of sharp attack transients.

In Chapter 5, Xavier Rodet and Diemo Schwarz describe various methods for
representing signals in terms of time-varying spectral envelopes. A tacit assump-
tion is that the spectral envelope provides appropriate spectral variation as the
fundamental frequency (pitch) varies. It is also useful for morphing between dif-
ferent vocal or instrumental spectra. The chapter outlines the importance of the
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source/filter model, especially for speech signals, and the importance of formants,
which are pronounced maxima within spectra or filter response functions at par-
ticular frequencies, usually higher than the fundamental. Source spectra generally
have no formants, but they can vary with time and with intensity; in the latter case,
usually the tilt (i.e., average slope) of the spectrum varies with intensity. Three
important properties of a spectral envelope are given: (1) It should envelope the
spectral maxima; (2) it should be smooth; and (3) it should adapt to fast variation.
Later, properties of exactness and robustness are added. Then, various spectral-
envelope estimation methods are given, including methods that are derived by
autoregression (AR) [also called linear predictive coding (LPC)], cepstrum, dis-
crete cepstrum, and several enhancements of the discrete cepstrum method. The
spectral envelope of the residual signal is treated as a special case, because this
is assumed to be nonsinusoidal. Other topics covered are concerned with syn-
thesis: filter coefficients, geometric representations, formants, spectral-envelope
manipulation, morphing, sine-wave additive synthesis, and inverse-FFT synthesis.

In Chapter 6 Andrew Horner discusses methods of data reduction for mul-
tiple wavetable and frequency-modulation (FM) resynthesis based on match-
ing the time-varying spectral analysis of harmonic (or approximately harmonic)
fixed-pitch musical instrument tones. A relative-amplitude spectral error formula
is defined, and the use of a genetic algorithm combined with the well-known
least-squares method to compute a set of near-optimum spectra and associated
amplitude-vs-time envelopes for resynthesis is described. Several different meth-
ods of resynthesis are examined: wavetable indexing, wavetable interpolation,
group additive, formant FM, double FM, and nested FM. Results are shown for
trumpet, tenor voice, and Chinese pipa tone matches using each of the methods.
Wavetable indexing and wavetable interpolation are found to give the best matches.
However, wavetable indexing is found to require the least memory, while wavetable
interpolation is found to be the most computationally efficient of the two methods.

John Hajda reviews recent research on the salience of various timbre-related pa-
rameters in Chapter 7. Two basic methods for studying timbre are classification and
relational measures. Some spectrotemporal parameters that may impact timbre are
time-envelope (attack, steady-state, decay), spectral centroid, spectral irregularity,
and spectral flux. When the attack portions are deleted from 12 sustained (aka con-
tinuant) tones (with attack time measured three different ways), the “remainder
tones” are on average correctly identified almost at the same rate as the original
sounds (85% vs 93% correct) and are better for identification than “attack-only
tones.” Moreover, reverse playback of entire sustained tones does not affect their
identification. These two results indicate the relative importance of steady-state
and decay. Two different relational methods are (1) verbal attribute magnitude
estimation, where timbres are rated on a scale from, say, “dull” to “sharp”; and (2)
numerical ratings of timbre dissimilarity, which can be analyzed by MDS statis-
tical algorithms to produce a “timbre space,” where each timbre occupies a point
in the space and the distance between any two timbres represents their average
perceptual dissimilarity. In the latter case, physical parameters such as attack time,
spectral centroid, and spectral variance have been found to correlate well with
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MDS dimensions. In one study, parameter salience was determined by testing how
well listeners could detect various simplifications to time-varying spectral data
after resynthesis, under the assumption that if a parameter is easily detected when
a parameter is simplified, the parameter must have timbral saliency (McAdams
et al., 1999). Another study with similar simplifications used a similarity rating
method of testing subjects (Hajda, 1999). Both studies agreed that spectral flux,
the amount of variation of the amplitude-normalized spectrum, is the most salient
parameter of the sustained musical instrument sounds tested. The chapter closes
with brief discussions of the effect of musical context on timbre and the perception
of percussion (aka impulse) sounds.

Finally, in Chapter 8 Sophie Donnadieu considers a number of topics related to
timbre perception. She begins by noting the difficulty of studying timbre due to the
absence of a satisfactory definition, its multidimensional nature, and a diversity
of notions about the types of sound sources that produce timbre, whether they be
isolated tones, multiple pitches on a single instrument, combinations of different
instruments, or unfamiliar sounds produced by sound synthesis. Next, the concept
of perceptual dimensions is discussed, with an emphasis on MDS methods, and the
results of several MDS experiments are described (e.g., Grey and Moorer, 1977;
McAdams et al., 1995). Usually two or three dimensions can be resolved and cor-
related (either qualitatively or quantitatively) with spectrotemporal features such
as “temporal envelope,” “spectral envelope,” and “spectral flux.” Next she intro-
duces the concept of “specificities,” whereby different instruments have unique
aspects of timbral quality, such as special types of attacks or special spectral or
formant characteristics. The effect of listener musical experience is also explored,
and musicianship is found to affect the precision and coherence of judgments.
Furthermore, the predictive power of timbre spaces is discussed in terms of in-
terpolating along dimensions using morphing techniques, perception of “timbral
intervals,” auditory streaming, and the effect of context. Finally, attempts to eval-
uate the efficacy of verbal attributes such as “smooth” vs “rough” for describing
timbre are discussed. In the next section Donnadieu looks at the idea of timbral
categorization. According to categorization theory, timbre is mentally organized
by clusters, rather than as a continuum, e.g., any sound with certain characteristics
might be categorized as a “trumpet.” Or it is also plausible that timbres are strictly
grouped by listeners according to physical sound-production characteristics (e.g.,
instrument size, shape, material, and manner of excitation) which are inferred from
the corresponding sounds. Donnadieu describes her own experiment on catego-
rization processes and finds that timbral categories correspond to perceptual reality
while at the same time they are related to the physical functioning of musical in-
struments. She concludes by describing several studies, including one of her own,
which use a physical parameter continuum (e.g., attack time) to test the relationship
between “identification” and “discrimination.” While most studies seem to suggest
that categorical perception is salient and is based on feature detection, her study
on a rise-time continuum for struck and bowed vibraphones supported a theory of
noncategorical perception. Therefore, the conditions under which categorical vs
noncategorical perception of timbre occur is still an open question.
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These eight chapters give eight different perspectives on the problem of under-
standing musical sounds from an analytical point of view. They hopefully will give
the reader a broad insight into how sounds can be analyzed, illustrated, modified,
synthesized, and perceived.

J.W.B.
Urbana, Illinois, U.S.A.

February, 2005
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signal. In each frequency range, a separate masking threshold is computed based on
the MPEG psychoacoustic model II [see the ISO/IEC 11172-3 standard (ISE/IEC,
1993)]. In each frequency range, the masking threshold is computed on an approx-
imate third-Bark-band scale or Threshold Calculation Partition Domain as defined
by the standard. From 0 to 5 kHz, there are about 50 non-uniformly spaced fre-
quency divisions within which the thresholds are computed. Therefore, each i th
sinusoidal parameter triad pi [l] in frame l obtains another parameter, the signal-
to-masking threshold mi [l]. This threshold is the difference between the energy
of the i th sinusoid (correctly scaled to match the psychoacoustic model) and the
masking threshold of its third-Bark band (in dB).

Not all of the sinusoids estimated in the initial analysis are stable (Thomson,
1982). Because we only desire to encode stable sinusoids and not model noisy
signals represented by many closely spaced short-lived sinusoids, we use a psy-
choacoustic model that provides a tonality measure (Bosi and Goldberg, 2003)
based on the prediction of FFT magnitudes and phases (ISE/IEC, 1993) to double-
check the results of the initial sinusoidal estimations.

As can be seen in Fig. 4.4, shorter sinusoidal trajectories have (on average)
lower signal-to-masking thresholds. This means that many shorter trajectories will
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FIGURE 4.4. Average maximum signal-to-masking threshold (in decibels) vs sinusoidal
trajectory length. Note that the longer a trajectory lasts, the higher its signal-to-masking
threshold. These data were derived from the top frequency range of 8 s of pop music, where
each frame length is approximately 6 ms.
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FIGURE 4.5. The original spectral energy vs the masking threshold for three pure sinusoids
at frequencies 500, 1500, and 3200 Hz. Note that the masking threshold is approximately
18 dB below each sinusoidal peak.

be masked by those that are longer and more stable. A likely reason for this trend
is that the shorter trajectories attempt to model noise, while the longer trajectories
model true sinusoids. As illustrated in the IEC/ISO standard (ISE/IEC, 1993), a
stable sinusoid typically has a signal-to-masking threshold of −18 dB in its third-
Bark band, whereas a noisy signal typically has only a −6 dB masking threshold.
Therefore, tonal signals have a lower signal-masking threshold than noisy signals
(Zwicker and Fastl 1990). A simple graphical example of the masking thresholds
for stable sinusoids can be seen in Fig. 4.5. As mentioned above, these signal-
to-masking thresholds and sinusoidal trajectory lengths are important factors for
determining which trajectories to eliminate and the number of bits to assign to the
remaining parameters.

3.2.3 Sinusoidal Trajectory Elimination

Not all sinusoidal trajectories constructed as described in Section 3.2.1 are retained.
For example, a trajectory is eliminated if it is completely masked, meaning its
time-averaged energy is below the masking thresholds of the third-Bark bands that
contain it. By eliminating the completely masked trajectories, the sinusoidal bit-
rate is decreased by approximately 10% in typical audio input signals. Trajectories
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that are near the masking threshold and have sufficiently short duration are also
eliminated, typically reducing the sinusoidal bit-rate by approximately 40%. Most
of these masked (or nearly masked) trajectories have very short trajectory lengths
and are most likely attempts to model noise. For more details on the trajectory
selection process, see Levine (1998) and Levine and Smith (1999). Section 5
discusses how signal energy corresponding to the eliminated sinusoidal trajectories
is modeled by residual noise.

3.2.4 Sinusoidal Trajectory Quantization

Once masked and short-length trajectories have been eliminated, the remaining
ones are quantized. In this section we focus only on amplitude and frequency
quantization. Phase quantization is discussed in Section 3.3. Initially, amplitudes
are quantized to 5 bits, in increments of 1.5 dB, giving a dynamic range of 96 dB.
Frequencies are quantized to an approximate just-noticeable-difference frequency
(JNDF) scale using 9 bits. Because amplitude and frequency trajectories vary
slowly, temporal first-order differences across each trajectory can be efficiently
quantized. These are then Huffman-encoded (Huffman, 1952; Ali, 1996).

In the previous section, we discussed how masked or short-length near-masking-
threshold trajectories are eliminated while retaining all other trajectories even those
whose energies are just barely higher than their Bark-band masking thresholds
with longer duration. In principle, these lower-energy trajectories should not be
allocated as many bits as the more perceptually important trajectories; i.e., those
having energies much higher than their masking thresholds. A solution found to
be bit-rate efficient, which did not impair sound quality, was to down-sample
the lower-energy sinusoidal trajectories by a factor of 2. Thus, their sinusoidal
parameters are updated at half of the original rate. At the decoder, the missing
parameters are linearly interpolated. This effectively reduces the bit-rate of these
trajectories by 50% and the total sinusoidal bit-rate by an additional 25%.

After testing several different kinds of music, we were able to quantize the three
frequency ranges within 0–5 kHz (see Table 4.1) of the multiresolution sinusoids at
bit-rates between 12 and 16 kbps. In practice, these numbers depend on how much
of the signal from 0 to 5 kHz is encoded using transient modeling, as discussed
in Section 4. As a tradeoff, more transients per unit time lowers the sinusoidal
bit-rate, while increasing the transient-modeling bit-rate.

3.3 Switched Phase Reconstruction
In sinusoidal modeling, computing and saving correct phase information is usually
only necessary for one of two reasons: The first reason is to assist in creating a
residual error signal obtained by subtracting the synthesized sinusoids from the
original signal (Serra, 1989; Serra and Smith, 1990). If the synthesized phases are
not correct, much of original sinusoids will “leak” into the residual. However, this is
only required at the encoder, not at the decoder. Thus, we need not transmit phases
for this purpose. The second reason phase information is important is for improved
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FIGURE 4.6. How sines and transients are combined: The top plot shows the multiresolution
sinusoidal modeling component of the original signal. The sinusoids are faded-out during the
transient region. The second plot shows a transform-coded transient. The third plot shows
the sum of the sines plus the transient. For comparison, the bottom plot is the original
signal. The original signal has a sung vowel through the entire section, with a snare drum
hit occurring at t ∼= 60 ms. Note that between 0 and 30 ms, the sines are not phase-matched
with the original signal, but they do become phase-matched between 30 and 60 ms, when
the transient signal is cross-faded in.

modeling of attack transients. During sharp attacks, the phases of sinusoids can
be perceptually important. But in our system sharp attacks are not modeled by
sinusoids; instead they are modeled by a transform coder. Thus, phase information
is not needed for this purpose.

A simple example of switching between sines and transients is depicted in
Fig. 4.6. At time t = 40 ms, the sinusoids are cross-faded out and the transients
are cross-faded in. Near the end of the transients region at time t = 90 ms, the
sinusoids are cross-faded back in. The trick is to phase-match the sinusoids during
the cross-fade in/out times while only transmitting the phase information for the
frames at the boundaries of the transient region.

To accomplish this goal, cubic-polynomial phase interpolation (McAulay and
Quatieri, 1986) is used at the boundaries between the sinusoidal and transient
regions. At all other times, we perform phaseless reconstruction (see Section 3.3.2)
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sinusoidal synthesis. Because transient boundaries only occur at most several times
a second, the contribution of phase information to the total bit-rate is extremely
small.

Next, we describe the cubic-polynomial phase reconstruction and then show the
differences between it and phaseless phase reconstruction. Then, we show how we
can switch seamlessly between the two methods.

3.3.1 Cubic-Polynomial Phase Reconstruction

As discussed in Section 3.2, at each lth frame, R[l] triad sets of parameters pr [l]
= {Ar [l], ωr [l]φr [l]} are estimated. These parameters must be interpolated from
frame-to-frame to eliminate any discontinuities at the frame boundaries. While the
amplitude is simply linearly interpolated from frame-to-frame, the phase interpo-
lation is more complicated. At each sample m the instantaneous phase θ r [l, m]
is computed as a function of surrounding frequencies {ωr [l], ωr [l − 1]} and
surrounding phases {φr [l], φr[l − 1]}. Because the instantaneous phase is de-
rived from four parameters, a cubic-polynomial interpolation function is used [see
McAulay and Quatieri (1986) or Chapter 1 by Beauchamp]. Finally, the recon-
struction for frame l becomes

s(m + l S) =
R[l]∑

r=1

Ar [l, m] cos(θr [l, m]), m = 0, . . . , S − 1 (4.3)

where Ar [l, m] = Ar [l] + m(Ar [l + 1] − Ar [l]) is the linearly interpolated am-
plitude and θr [l, m] is the cubic-interpolated phase.

3.3.2 Phaseless Reconstruction

With “phaseless” reconstruction, explicit phase information is not required for
signal resynthesis. The resulting signal is not phase-aligned with the original signal,
but, on the other hand, it is guaranteed not to have any discontinuities at frame
boundaries.

Instead of deriving the instantaneous phase from frame-boundary phases and fre-
quencies, phaseless reconstruction derives instantaneous phase as the cumulative
sum of the instantaneous frequency (Serra, 1989). The instantaneous frequency,
ωr [l, m], is first obtained by linear interpolation from the frame boundary values:

ωr [l, m] = ωr [l] + (ωr [l + 1] − ωr [l])
S

m, m = 0, . . . , S − 1 (4.4)

Then, the instantaneous phase for the r th trajectory in the lth frame is

θr [l, m] = θ [l, m − 1] + ωr [l, m], m = 0, . . . , S − 1, (4.5)

where the term θ r [l, m − 1] refers to the instantaneous phase at the last sample of
the previous sample frame. The signal is then synthesized using Eq. (4.3), but using
θ r [l, m] from Eq. (4.5) instead of the result of a cubic-polynomial interpolation
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quantization schemes are obtained, while retaining the ability to perform
compressed-domain processing such as time-scaling. In addition, sharp attack
transients are preserved, even with large time-scale modification factors. To hear
demonstrations of the data compression and modifications described in this chap-
ter, see Levine (1998).
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Spectral Envelopes and Additive +
Residual Analysis/Synthesis

XAVIER RODET AND DIEMO SCHWARZ

1 Introduction

The subject of this chapter is the estimation, representation, modification,
and use of spectral envelopes in the context of sinusoidal-additive-plus-residual
analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function,
which may be obtained from the envelope of a short-time spectrum (Rodet et al.,
1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spec-
trum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis
method is based on a representation of signals in terms of a sum of time-varying
sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche
et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many
musical sound signals may be described as a combination of a nearly periodic
waveform and colored noise. The nearly periodic part of the signal can be viewed
as a sum of sinusoidal components, called partials, with time-varying frequency
and amplitude. Such sinusoidal components are easily observed on a spectral anal-
ysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

In consequence, some of the first attempts at sound synthesis were based on the
additive synthesis method, i.e., the summation of time-varying sinusoidal compo-
nents [e.g., Risset and Mathews (1969)]. This signal-modeling approach inherits
a rich history of signal processing techniques. For example, harmonic or inhar-
monic partials are easy to characterize and easy to synthesize. Also, there exist
many methods to automatically analyze sounds in terms of partials and noise that
can then be used directly for additive synthesis [e.g., Serra and Smith (1990)].
Another interesting aspect of additive synthesis is its ease for mapping partial pa-
rameters (frequency and amplitude) into the human perceptual space. Also, these
parameters are meaningful and easily understood by musicians. Furthermore, be-
cause independent control of every component is available in additive synthesis, it
is possible to implement models of perceptually significant features of sound such
as inharmonicity and roughness. Thus, additive synthesis is accepted as perhaps
the most powerful and flexible sound synthesis method available.

A drawback of the classical sinusoidal oscillator (i.e., simple addition of sine
waves) implementation of additive synthesis (Moore, 1990) is its computational
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